|   | 
Details
   web
Records
Author Wang, J.; Zhang, K.; Meynen, V.; Bogaerts, A.
Title Dry reforming in a dielectric barrier discharge reactor with non-uniform discharge gap : effects of metal rings on the discharge behavior and performance Type A1 Journal article
Year 2023 Publication Chemical engineering journal Abbreviated Journal
Volume Issue Pages 142953-29
Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The application of dielectric barrier discharge (DBD) plasma reactors is promising in various environmental and energy processes, but is limited by their low energy yield. In this study, we put a number of stainless steel rings over the inner electrode rod of the DBD reactor to change the local discharge gap and electric field, and we studied the dry reforming performance. At 50 W supplied power, the metal rings mostly have a negative impact on the performance, which we attribute to the non-uniform spatial distribution of the discharges caused by the rings. However, at 30 W supplied power, the energy yield is higher than at 50 W and the placement of the rings improves the performance of the reactor. More rings and with a larger cross-sectional diameter can further improve the performance. The reactor with 20 rings with a 3.2 mm cross-sectional diameter exhibits the best performance in this study. Compared to the reactor without rings, it increases the CO2 conversion from 7% to 16 %, the CH4 conversion from 12% to 23%, and the energy yield from 0.05 mmol/kJ supplied power to 0.1 mmol/kJ (0.19 mmol/kJ if calculated from the plasma power), respectively. The presence of the rings increases the local electric field, the displaced charge and the discharge fraction, and also makes the discharge more stable and with more uniform intensity. It also slightly improves the selectivity to syngas. The performance improvement observed by placing stainless steel rings in this study may also be applicable to other plasma-based processes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000986051300001 Publication Date 2023-04-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 15.1 Times cited Open Access OpenAccess
Notes Approved (up) Most recent IF: 15.1; 2023 IF: 6.216
Call Number UA @ admin @ c:irua:195603 Serial 7264
Permanent link to this record
 

 
Author Orozco-Jimenez, A.J.; Pinilla-Fernandez, D.A.; Pugliese, V.; Bula, A.; Perreault, P.; Gonzalez-Quiroga, A.
Title Angular momentum based-analysis of gas-solid fluidized beds in vortex chambers Type A1 Journal article
Year 2023 Publication Chemical engineering journal Abbreviated Journal
Volume 457 Issue Pages 141222-21
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Gas-solid vortex chambers are a promising alternative for reactive and non-reactive processes requiring enhanced heat and mass transfer rates and order-of-milliseconds contact time. The conservation of angular momentum is instrumental in understanding how the interactions between gas, particulate solids, and chamber walls influence the formation of a rotating solids bed. Therefore, this work applies the conservation of angular momentum to derive a model that gives the average angular velocity of solids in terms of gas injection velocity, wall-solids bed drag coefficient, gas and particle properties, and chamber geometry. Three datasets from published studies, comprising 1 g-Geldart B- and d-type particles in different vortex chambers, validate the model results. Using a sensitivity analysis, we assessed the effect of input variables on the average angular velocity of solids, average void fraction, and average bed height. Results indicate that the top and bottom end-wall boundaries exert the most significant braking effect on the rotating solids bed compared with the cylindrical outer wall and gas injection boundaries. The wall-solids bed drag coefficient appears independent of the gas injection velocity for a wide range of operating conditions. The proposed model is a valuable tool for analyzing and comparing gas–solid vortex typologies, unraveling improvement opportunities, and scale-up.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000951011600001 Publication Date 2022-12-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 15.1 Times cited Open Access OpenAccess
Notes Approved (up) Most recent IF: 15.1; 2023 IF: 6.216
Call Number UA @ admin @ c:irua:192868 Serial 7282
Permanent link to this record
 

 
Author Ag, K.R.; Minja, A.C.; Ninakanti, R.; Van Hal, M.; Dingenen, F.; Borah, R.; Verbruggen, S.W.
Title Impact of soot deposits on waste gas-to-electricity conversion in a TiO₂/WO₃-based photofuel cell Type A1 Journal article
Year 2023 Publication Chemical engineering journal Abbreviated Journal
Volume 470 Issue Pages 144390-13
Keywords A1 Journal article; Engineering sciences. Technology
Abstract An unbiased photo-fuel cell (PFC) is a device that integrates the functions of a photoanode and a cathode to achieve simultaneous light-driven oxidation and dark reduction reactions. As such, it generates electricity while degrading pollutants like volatile organic compounds (VOCs). The photoanode is excited by light to generate electron-hole pairs, which give rise to a photocurrent, and are utilized to oxidise organic pollutants simultaneously. Here we have systematically studied various TiO2/WO3 photoanodes towards their photocatalytic soot degradation performance, PFC performance in the presence of VOCs, and the combination of both. The latter thus mimics an urban environment where VOCs and soot are present simultaneously. The formation of a type-II heterojunction after the addition of a thin TiO2 top layer over a dense WO3 bottom layer, improved both soot oxidation efficiency as well as photocurrent generation, thus paving the way towards low-cost PFC technology for energy recovery from real polluted air.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001030456200001 Publication Date 2023-06-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record
Impact Factor 15.1 Times cited Open Access Not_Open_Access: Available from 29.12.2023
Notes Approved (up) Most recent IF: 15.1; 2023 IF: 6.216
Call Number UA @ admin @ c:irua:197222 Serial 8882
Permanent link to this record
 

 
Author Zhang, K.; Wang, J.; Ninakanti, R.; Verbruggen, S.W.
Title Solvothermal synthesis of mesoporous TiO2 with tunable surface area, crystal size and surface hydroxylation for efficient photocatalytic acetaldehyde degradation Type A1 Journal article
Year 2023 Publication Chemical engineering journal Abbreviated Journal
Volume 474 Issue Pages 145188-14
Keywords A1 Journal article; Engineering sciences. Technology; Laboratory of adsorption and catalysis (LADCA)
Abstract Photocatalytic acetaldehyde degradation exhibits satisfactory performance only at relatively low acetaldehyde flow rates, predominately below 10 × 10-3 mL/min, leaving ample room for improvement. Therefore, it is necessary to prepare more efficient photocatalysts for acetaldehyde degradation. Moreover, the impact of the interaction strength between the titania surface and surface water on the photocatalytic acetaldehyde efficiency is poorly understood. To address these issues, in this work a series of (0 0 1)-faceted anatase titania samples with various surface properties and structures were synthesized via a solvothermal method and tested at high acetaldehyde flow rates under UV light irradiation. With increasing solvothermal time, the pore volume, surface area, and the abundance of surface OH groups all increased, while the crystallite size decreased. These were all identified to be beneficial to promote the degradation performance. When the solvothermal temperature was 180 ℃ and the reaction time was 5 h, the prepared sample displayed the most efficient performance at 19.25× 10-3 mL/min of acetaldehyde (conversion of (74 ± 1)% versus (29 ± 1)% for P25), and achieved a 100 % conversion at 16 × 10-3 mL/min. A weaker interaction strength between surface water and the titania surface was found to improve the acetaldehyde adsorption capacity, thereby promoting the acetaldehyde degradation efficiency. The stability of the best performing sample was tested over 48 h, demonstrating a highly stable performance with no signs of deactivation. Even at a relative humidity of 30 %, the acetaldehyde conversion retains 82% of its efficiency in a dry atmosphere, highlighting its potential in practical applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001144928800001 Publication Date 2023-08-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 15.1 Times cited Open Access Not_Open_Access: Available from 06.02.2024
Notes Approved (up) Most recent IF: 15.1; 2023 IF: 6.216
Call Number UA @ admin @ c:irua:198652 Serial 8933
Permanent link to this record
 

 
Author Vingerhoets, R.; Brienza, C.; Sigurnjak, I.; Buysse, J.; Vlaeminck, S.E.; Spiller, M.; Meers, E.
Title Ammonia stripping and scrubbing followed by nitrification and denitrification saves costs for manure treatment based on a calibrated model approach Type A1 Journal article
Year 2023 Publication Chemical engineering journal Abbreviated Journal
Volume 477 Issue Pages 146984-14
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Resource-efficient nitrogen management is of high environmental and economic interest, and manure represents the major nutrient flow in livestock-intensive regions. Ammonia stripping/scrubbing (SS) is an appealing nitrogen recovery route from manure, yet its real-life implementation has been limited thus far. In nutrient surplus regions like Flanders, treatment of the liquid fraction (LF) of (co–)digested manure typically consists of nitrification/denitrification (NDN) removing most N as nitrogen gas. Integrating SS before NDN in existing plants would expand treatment capacity and recover N while maintaining low N effluent values, yet cost estimations of this novel approach after process optimisation are not yet available. A programming model was developed and calibrated to minimise the treatment costs of this approach and find the balance between N recovery versus N removal. Four crucial operational parameters (CO2 stripping time, NH3 stripping time, temperature and NaOH addition) were optimised for 18 scenarios which were different in terms of technical set-up, influent characteristics and scrubber acid. The model shows that SS before NDN can decrease the costs by 1 to 56% under optimal conditions compared to treatment with NDN only, with 1 to 8% reduction for the LF of manure (22–29% recovered of N treated), and 11 to 56% reduction for the LF of co-digested manure (42–67% recovered of N treated), primarily dependent on resource pricing. This study shows the power of modelling for minimum-cost design and operation of manure treatment yielding savings while producing useful N recovery products with SS followed by NDN.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001108935900001 Publication Date 2023-10-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record
Impact Factor 15.1 Times cited Open Access
Notes Approved (up) Most recent IF: 15.1; 2023 IF: 6.216
Call Number UA @ admin @ c:irua:200649 Serial 9003
Permanent link to this record
 

 
Author Živanić, M.; Espona‐Noguera, A.; Lin, A.; Canal, C.
Title Current State of Cold Atmospheric Plasma and Cancer‐Immunity Cycle: Therapeutic Relevance and Overcoming Clinical Limitations Using Hydrogels Type A1 Journal article
Year 2023 Publication Advanced Science Abbreviated Journal Adv Sci
Volume Issue Pages 2205803
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Cold atmospheric plasma (CAP) is a partially ionized gas that gains attention

as a well-tolerated cancer treatment that can enhance anti-tumor immune

responses, which are important for durable therapeutic effects. This review

offers a comprehensive and critical summary on the current understanding of

mechanisms in which CAP can assist anti-tumor immunity: induction of

immunogenic cell death, oxidative post-translational modifications of the

tumor and its microenvironment, epigenetic regulation of aberrant gene

expression, and enhancement of immune cell functions. This should provide

a rationale for the effective and meaningful clinical implementation of CAP. As

discussed here, despite its potential, CAP faces different clinical limitations

associated with the current CAP treatment modalities: direct exposure of

cancerous cells to plasma, and indirect treatment through injection of

plasma-treated liquids in the tumor. To this end, a novel modality is proposed:

plasma-treated hydrogels (PTHs) that can not only help overcome some of the

clinical limitations but also offer a convenient platform for combining CAP

with existing drugs to improve therapeutic responses and contribute to the

clinical translation of CAP. Finally, by integrating expertise in biomaterials and

plasma medicine, practical considerations and prospective for the

development of PTHs are offered.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000918224200001 Publication Date 2023-01-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2198-3844 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 15.1 Times cited Open Access OpenAccess
Notes European Research Council, 714793 ; Fonds Wetenschappelijk Onderzoek, 12S9221N G044420N ; Ministerio de Economía y Competitividad, PID2019‐103892RB‐I00/AEI/10.13039/501100011033 ; Approved (up) Most recent IF: 15.1; 2023 IF: 9.034
Call Number PLASMANT @ plasmant @c:irua:193166 Serial 7238
Permanent link to this record
 

 
Author Wang, K.; Ceulemans, S.; Zhang, H.; Tsonev, I.; Zhang, Y.; Long, Y.; Fang, M.; Li, X.; Yan, J.; Bogaerts, A.
Title Inhibiting recombination to improve the performance of plasma-based CO2 conversion Type A1 Journal Article
Year 2024 Publication Chemical Engineering Journal Abbreviated Journal Chemical Engineering Journal
Volume 481 Issue Pages 148684
Keywords A1 Journal Article; Plasma-based CO2 splitting Recombination reactions In-situ gas sampling Fluid dynamics modeling Kinetics modeling Afterglow quenching; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract Warm plasma offers a promising route for CO2 splitting into valuable CO, yet recombination reactions of CO with oxygen, forming again CO2, have recently emerged as critical limitation. This study combines experiments and fluid dynamics + chemical kinetics modelling to comprehensively analyse the recombination reactions upon CO2 splitting in an atmospheric plasmatron. We introduce an innovative in-situ gas sampling technique, enabling 2D spatial mapping of gas product compositions and temperatures, experimentally confirming for the first time the substantial limiting effect of CO recombination reactions in the afterglow region. Our results show that the CO mole fraction at a 5 L/min flow rate drops significantly from 11.9 % at a vertical distance of z = 20 mm in the afterglow region to 8.6 % at z = 40 mm. We constructed a comprehensive 2D model that allows for spatial reaction rates analysis incorporating crucial reactions, and we validated it to kinetically elucidate this phenomenon. CO2 +M⇌O+CO+M and CO2 +O⇌CO+O2 are the dominant reactions, with the forward reactions prevailing in the plasma region and the backward reactions becoming prominent in the afterglow region. These results allow us to propose an afterglow quenching strategy for performance enhancement, which is further demonstrated through a meticulously developed plasmatron reactor with two-stage cooling. Our approach substantially increases the CO2 conversion (e.g., from 6.6 % to 19.5 % at 3 L/min flow rate) and energy efficiency (from 13.5 % to 28.5 %, again at 3 L/min) and significantly shortens the startup time (from ~ 150 s to 25 s). Our study underscores the critical role of inhibiting recombination reactions in plasma-based CO2 conversion and offers new avenues for performance enhancement.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001168999200001 Publication Date 2024-01-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record
Impact Factor 15.1 Times cited Open Access Not_Open_Access
Notes Key Research and Development Program of Zhejiang Province, 2023C03129 ; Vlaamse regering; European Research Council; National Natural Science Foundation of China, 51976191 52276214 ; Horizon 2020 Framework Programme; Fonds De La Recherche Scientifique – FNRS; Fonds Wetenschappelijk Onderzoek, 1101524N ; Vlaams Supercomputer Centrum; Horizon 2020, 101081162 810182 ; European Research Council; Approved (up) Most recent IF: 15.1; 2024 IF: 6.216
Call Number PLASMANT @ plasmant @c:irua:204352 Serial 8993
Permanent link to this record
 

 
Author De Meyer, R.; Gorbanev, Y.; Ciocarlan, R.-G.; Cool, P.; Bals, S.; Bogaerts, A.
Title Importance of plasma discharge characteristics in plasma catalysis: Dry reforming of methane vs. ammonia synthesis Type A1 Journal Article
Year 2024 Publication Chemical Engineering Journal Abbreviated Journal Chemical Engineering Journal
Volume 488 Issue Pages 150838
Keywords A1 Journal Article; Gas conversion Dry reforming of methane Ammonia Microdischarges Dielectric barrier discharge; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract Plasma catalysis is a rapidly growing field, often employing a packed-bed dielectric barrier discharge plasma reactor. Such dielectric barrier discharges are complex, especially when a packing material (e.g., a catalyst) is introduced in the discharge volume. Catalysts are known to affect the plasma discharge, though the underlying mechanisms influencing the plasma physics are not fully understood. Moreover, the effect of the catalysts on the plasma discharge and its subsequent effect on the overall performance is often overlooked. In this work, we deliberately design and synthesize catalysts to affect the plasma discharge in different ways. These Ni or Co alumina-based catalysts are used in plasma-catalytic dry reforming of methane and ammonia synthesis. Our work shows that introducing a metal to the dielectric packing can affect the plasma discharge, and that the distribution of the metal is crucial in this regard. Further, the altered discharge can greatly influence the overall performance. In an atmospheric pressure dielectric barrier discharge reactor, this apparently more uniform plasma yields a significantly better performance for ammonia synthesis compared to the more conventional filamentary discharge, while it underperforms in dry reforming of methane. This study stresses the importance of analyzing the plasma discharge in plasma catalysis experiments. We hope this work encourages a more critical view on the plasma discharge characteristics when studying various catalysts in a plasma reactor.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2024-03-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947 ISBN Additional Links UA library record
Impact Factor 15.1 Times cited Open Access
Notes This research was supported through long-term structural funding (Methusalem FFB15001C) and by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme with grant agreement No 810182 (SCOPE ERC Synergy project) and with grant agreement No 815128 (REALNANO). We acknowledge the practical contribution of Senne Van Doorslaer. Approved (up) Most recent IF: 15.1; 2024 IF: 6.216
Call Number PLASMANT @ plasmant @c:irua:205154 Serial 9115
Permanent link to this record
 

 
Author Maerivoet, S.; Tsonev, I.; Slaets, J.; Reniers, F.; Bogaerts, A.
Title Coupled multi-dimensional modelling of warm plasmas: Application and validation for an atmospheric pressure glow discharge in CO2/CH4/O2 Type A1 Journal Article
Year 2024 Publication Chemical Engineering Journal Abbreviated Journal Chemical Engineering Journal
Volume 492 Issue Pages 152006
Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract To support experimental research into gas conversion by warm plasmas, models should be developed to explain the experimental observations. These models need to describe all physical and chemical plasma properties in a coupled way. In this paper, we present a modelling approach to solve the complete set of assumed relevant equations, including gas flow, heat balance and species transport, coupled with a rather extensive chemistry set, consisting of 21 species, obtained by reduction of a more detailed chemistry set, consisting of 41 species. We apply this model to study the combined CO2 and CH4 conversion in the presence of O2, in a direct current atmospheric pressure glow discharge. Our model can predict the experimental trends, and can explain why higher O2 fractions result in higher CH4 conversion, namely due to the higher gas temperature, rather than just by additional chemical reactions. Indeed, our model predicts that when more O2 is added, the energy required to reach any set temperature (i.e., the enthalpy) drops, allowing the system to reach higher temperatures with similar amounts of energy. This is in turn related to the higher H2O fraction and lower H2 fraction formed in the plasma, as demonstrated by our model. Altogether, our new self-consistent model can capture the main physics and chemistry occurring in this warm plasma, which is an important step towards predictive modelling for plasma-based gas conversion.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2024-05-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947 ISBN Additional Links
Impact Factor 15.1 Times cited Open Access
Notes This research was supported by the Excellence of Science FWO-FNRS project (FWO grant ID G0I1822N; EOS ID 40007511) and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 810182–SCOPE ERC Synergy project, and grant agreement No. 101081162–PREPARE ERC Proof of Concept project). computational resources and services used in this work were provided by the HPC core facility CalcUA of the Universiteit Antwerpen, and VSC (Flemish Supercomputer Center), funded by the Research Foundation – Flanders (FWO) and the Flemish Government. Approved (up) Most recent IF: 15.1; 2024 IF: 6.216
Call Number PLASMANT @ plasmant @ Serial 9132
Permanent link to this record
 

 
Author Thomassen, G.; Van Passel, S.; Dewulf, J.
Title A review on learning effects in prospective technology assessment Type A1 journal article
Year 2020 Publication Renewable & Sustainable Energy Reviews Abbreviated Journal Renew Sust Energ Rev
Volume 130 Issue Pages 109937
Keywords A1 journal article; Learning effects; Life cycle assessment; Techno-economic assessment; Prospective technology assessment; Learning-by-doing; Learning curve; Progress rate; Experience curve; Engineering Management (ENM) ;
Abstract Global environmental problems have urged the need for developing sustainable technologies. However, new technologies that enter the market have often higher economic costs and potentially higher environmental impacts than conventional technologies. This can be explained by learning effects: a production process that is performed for the first time runs less smooth than a production process that has been in operation for years. To obtain a fair estimation of the potential of a new technology, learning effects need to be included. A review on the current literature on learning effects was conducted in order to provide guidelines on how to include learning effects in prospective technology assessment. Based on the results of this review, five recommendations have been formulated and an integration of learning effects in the structure of prospective technology assessment has been proposed. These five recommendations include the combined use of learning effects on the component level and on the end product level; the combined use of learning effects on the technical, economic and environmental level; the combined use of extrapolated values and expert estimates; the combined use of learning-by-doing and learning-by-searching effects and; a tier-based method, including quality criteria, to calculate the learning effect. These five complementary strategies could lead to a clearer perspective on the environmental impact and cost structure of the new technology and a fairer comparison base with conventional technologies, potentially resulting in a faster adoption and a shorter time-to-market for sustainable technologies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000548790900008 Publication Date 2020-06-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1364-0321 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 15.9 Times cited Open Access
Notes The authors acknowledge the full financial support received from the Flemish administration via the Steunpunt Circulaire Economie (Policy Research Centre Circular Economy). We would also like to thank the SDEWES conference for the best paper award which was granted to the current paper. The authors declare no competing financial interests. This publication contains the opinions of the authors, not that of the Flemish administration. The Flemish administration will not carry any liability with respect to the use that can be made of the produced data or conclusions. Approved (up) Most recent IF: 15.9; 2020 IF: 8.05
Call Number ENM @ enm @c:irua:170076 Serial 6389
Permanent link to this record
 

 
Author Yagmurcukardes, M.; Qin, Y.; Ozen, S.; Sayyad, M.; Peeters, F.M.; Tongay, S.; Sahin, H.
Title Quantum properties and applications of 2D Janus crystals and their superlattices Type A1 Journal article
Year 2020 Publication Applied Physics Reviews Abbreviated Journal Appl Phys Rev
Volume 7 Issue 1 Pages 011311-11316
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Two-dimensional (2D) Janus materials are a new class of materials with unique physical, chemical, and quantum properties. The name “Janus” originates from the ancient Roman god which has two faces, one looking to the future while the other facing the past. Janus has been used to describe special types of materials which have two faces at the nanoscale. This unique atomic arrangement has been shown to present rather exotic properties with applications in biology, chemistry, energy conversion, and quantum sciences. This review article aims to offer a comprehensive review of the emergent quantum properties of Janus materials. The review starts by introducing 0D Janus nanoparticles and 1D Janus nanotubes, and highlights their difference from classical ones. The design principles, synthesis, and the properties of graphene-based and chalcogenide-based Janus layers are then discussed. A particular emphasis is given to colossal built-in potential in 2D Janus layers and resulting quantum phenomena such as Rashba splitting, skyrmionics, excitonics, and 2D magnetic ordering. More recent theoretical predictions are discussed in 2D Janus superlattices when Janus layers are stacked onto each other. Finally, we discuss the tunable quantum properties and newly predicted 2D Janus layers waiting to be experimentally realized. The review serves as a complete summary of the 2D Janus library and predicted quantum properties in 2D Janus layers and their superlattices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000519611500001 Publication Date 2020-02-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1931-9401 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 15 Times cited 107 Open Access
Notes ; S.T. acknowledges support from NSF Contract Nos. DMR 1552220, DMR 1904716, and NSF CMMI 1933214. H.S. acknowledges financial support from the Scientific and Technological Research Council of Turkey (TUBITAK) under Project No. 117F095. H.S. acknowledges support from the Turkish Academy of Sciences under the GEBIP program. M.Y. is supported by the Flemish Science Foundation (FWO-Vl) through a postdoctoral fellowship. Part of this work was supported by the FLAG-ERA project TRANS2D-TMD. ; Approved (up) Most recent IF: 15; 2020 IF: 13.667
Call Number UA @ admin @ c:irua:167712 Serial 6591
Permanent link to this record
 

 
Author Bottari, F.; Daems, E.; de Vries, A.-M.; Van Wielendaele, P.; Trashin, S.; Blust, R.; Sobott, F.; Madder, A.; Martins, J.C.; De Wael, K.
Title Do aptamers always bind? The need for a multifaceted analytical approach when demonstrating binding affinity between aptamer and low molecular weight compounds Type A1 Journal article
Year 2020 Publication Journal Of The American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 142 Issue 46 Pages jacs.0c08691-19630
Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Medical Biochemistry
Abstract In this manuscript, we compare different analytical methodologies to validate or disprove the binding capabilities of aptamer sequences. This was prompted by the lack of a universally accepted and robust quality control protocol for the characterization of aptamer performances coupled with the observation of independent yet inconsistent data sets in the literature. As an example, we chose three aptamers with a reported affinity in the nanomolar range for ampicillin, a β-lactam antibiotic, used as biorecognition elements in several detection strategies described in the literature. Application of a well-known colorimetric assay based on aggregation of gold nanoparticles (AuNPs) yielded conflicting results with respect to the original report. Therefore, ampicillin binding was evaluated in solution using isothermal titration calorimetry (ITC), native nano-electrospray ionization mass spectrometry (native nESI-MS), and 1H-nuclear magnetic resonance spectroscopy (1H NMR). By coupling the thermodynamic data obtained with ITC with the structural information on the binding event given by native nESI-MS and 1H NMR we could verify that none of the ampicillin aptamers show any specific binding with their intended target. The effect of AuNPs on the binding event was studied by both ITC and 1H NMR, again without providing positive evidence of ampicillin binding. To validate the performance of our analytical approach, we investigated two well-characterized aptamers for cocaine/quinine (MN4), chosen for its nanomolar range affinity, and l-argininamide (1OLD) to show the versatility of our approach. The results clearly indicate the need for a multifaceted analytical approach, to unequivocally establish the actual detection potential and performance of aptamers aimed at small organic molecules.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000592911000024 Publication Date 2020-11-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 15 Times cited Open Access
Notes Approved (up) Most recent IF: 15; 2020 IF: 13.858
Call Number UA @ admin @ c:irua:173136 Serial 6488
Permanent link to this record
 

 
Author Toso, S.; Akkerman, Q.A.; Martin-Garcia, B.; Prato, M.; Zito, J.; Infante, I.; Dang, Z.; Moliterni, A.; Giannini, C.; Bladt, E.; Lobato, I.; Ramade, J.; Bals, S.; Buha, J.; Spirito, D.; Mugnaioli, E.; Gemmi, M.; Manna, L.
Title Nanocrystals of lead chalcohalides : a series of kinetically trapped metastable nanostructures Type A1 Journal article
Year 2020 Publication Journal Of The American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 142 Issue 22 Pages 10198-10211
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We report the colloidal synthesis of a series of surfactant-stabilized lead chalcohalide nanocrystals. Our work is mainly focused on Pb4S3Br2, a chalcohalide phase unknown to date that does not belong to the ambient-pressure PbS-PbBr2 phase diagram. The Pb4S3Br2 nanocrystals herein feature a remarkably narrow size distribution (with a size dispersion as low as 5%), a good size tunability (from 7 to similar to 30 nm), an indirect bandgap, photoconductivity (responsivity = 4 +/- 1 mA/W), and stability for months in air. A crystal structure is proposed for this new material by combining the information from 3D electron diffraction and electron tomography of a single nanocrystal, X-ray powder diffraction, and density functional theory calculations. Such a structure is closely related to that of the recently discovered high-pressure chalcohalide Pb4S3I2 phase, and indeed we were able to extend our synthesis scheme to Pb4S3I2 colloidal nanocrystals, whose structure matches the one that has been published for the bulk. Finally, we could also prepare nanocrystals of Pb3S2Cl2, which proved to be a structural analogue of the recently reported bulk Pb3Se2Br2 phase. It is remarkable that one high-pressure structure (for Pb4S3I2) and two metastable structures that had not yet been reported (for Pb4S3Br2 and Pb3S2Cl2) can be prepared on the nanoscale by wet-chemical approaches. This highlights the important role of colloidal chemistry in the discovery of new materials and motivates further exploration into metal chalcohalide nanocrystals.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000538526500035 Publication Date 2020-05-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 15 Times cited 32 Open Access OpenAccess
Notes ; We would like to thank Dr. A. Toma for the access to the IIT clean room facilities' SEM/FIB and evaporators, the Smart Materials group (IIT) for the access to the ATR-FTIR equipment, S. Marras for the support during XRPD measurements, G. Pugliese for help with the TGA measurements, M. Campolucci for help with the experiments on NC growth kinetics, S. Lauciello for help with the SEM-EDX analyses, and D. Baranov and R. Brescia for the helpful discussions. We also acknowledge funding from the Programme for Research and Innovation Horizon 2020 (2014-2020) under the Marie Sklodowska-Curie Grant Agreement COMPASS No. 691185. I.I. acknowledges the Dutch NWO for financial support under the Vidi scheme (Grant No. 723.013.002). S.B. acknowledges support by means of the ERC Consolidator Grant No. 815128 REALNANO. E. M. and M.G acknowledge the Regione Toscana for funding the purchase of the Timepix detector through the FELIX project (Por CREO FESR 2014-2020 action). ; sygma Approved (up) Most recent IF: 15; 2020 IF: 13.858
Call Number UA @ admin @ c:irua:170218 Serial 6566
Permanent link to this record
 

 
Author Han, Y.; Zeng, Y.; Hendrickx, M.; Hadermann, J.; Stephens, P.W.; Zhu, C.; Grams, C.P.; Hemberger, J.; Frank, C.; Li, S.; Wu, M.X.; Retuerto, M.; Croft, M.; Walker, D.; Yao, D.-X.; Greenblatt, M.; Li, M.-R.
Title Universal a-cation splitting in LiNbO₃-type structure driven by intrapositional multivalent coupling Type A1 Journal article
Year 2020 Publication Journal Of The American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 142 Issue 15 Pages 7168-7178
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Understanding the electric dipole switching in multiferroic materials requires deep insight of the atomic-scale local structure evolution to reveal the ferroelectric mechanism, which remains unclear and lacks a solid experimental indicator in high-pressure prepared LiNbO3-type polar magnets. Here, we report the discovery of Zn-ion splitting in LiNbO3-type Zn2FeNbO6 established by multiple diffraction techniques. The coexistence of a high-temperature paraelectric-like phase in the polar Zn2FeNbO6 lattice motivated us to revisit other high-pressure prepared LiNbO3-type A(2)BB'O-6 compounds. The A-site atomic splitting (similar to 1.0-1.2 angstrom between the split-atom pair) in B/B'-mixed Zn2FeTaO6 and O/N-mixed ZnTaO2N is verified by both powder X-ray diffraction structural refinements and high angle annular dark field scanning transmission electron microscopy images, but is absent in single-B-site ZnSnO3. Theoretical calculations are in good agreement with experimental results and suggest that this kind of A-site splitting also exists in the B-site mixed Mn-analogues, Mn2FeMO6 (M = Nb, Ta) and anion-mixed MnTaO2N, where the smaller A-site splitting (similar to 0.2 angstrom atomic displacement) is attributed to magnetic interactions and bonding between A and B cations. These findings reveal universal A-site splitting in LiNbO3-type structures with mixed multivalent B/B', or anionic sites, and the splitting-atomic displacement can be strongly suppressed by magnetic interactions and/or hybridization of valence bands between d electrons of the A- and B-site cations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000526300600046 Publication Date 2020-03-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 15 Times cited 1 Open Access Not_Open_Access
Notes ; This work was supported by the National Science Foundation of China (NSFC-21875287), the Program for Guangdong Introducing Innovative and Entrepreneurial Teams (2017ZT07C069), and an NSF-DMR-1507252 grant (U.S.). Use of the NSLS, Brookhaven National Laboratory, was supported by the DOE BES (DE-AC02-98CH10886). M.R. is thankful for the Spanish Juan de la Cierva grant FPDI-2013-17582. Y.Z. and D.-X.Y. are supported by NKRDPC-2018YFA0306001, NKRDPC-2017YFA0206203, NSFC-11974432, NSFG-2019A1515011337, the National Supercomputer Center in Guangzhou, and the Leading Talent Program of Guangdong Special Projects. Work on IOP, CAS, was supported by NSFC and MOST grants. A portion of this research at ORNL's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. J.H. and M.H. thank the FWO for support for the electron microscopy studies through grant G035619N. We thank beamline BL14B1 (Shanghai Synchrotron Radiation Facility) for providing beam time and help during the experiments. ; Approved (up) Most recent IF: 15; 2020 IF: 13.858
Call Number UA @ admin @ c:irua:170294 Serial 6646
Permanent link to this record
 

 
Author Tang, C.S.; Zeng, S.; Wu, J.; Chen, S.; Naradipa, M.A.; Song, D.; Milošević, M.V.; Yang, P.; Diao, C.; Zhou, J.; Pennycook, S.J.; Breese, M.B.H.; Cai, C.; Venkatesan, T.; Ariando, A.; Yang, M.; Wee, A.T.S.; Yin, X.
Title Detection of two-dimensional small polarons at oxide interfaces by optical spectroscopy Type A1 Journal article
Year 2023 Publication Applied physics reviews Abbreviated Journal
Volume 10 Issue 3 Pages 031406-31409
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Two-dimensional (2D) perovskite oxide interfaces are ideal systems to uncover diverse emergent properties, such as the arising polaronic properties from short-range charge-lattice interactions. Thus, a technique to detect this quasiparticle phenomenon at the buried interface is highly coveted. Here, we report the observation of 2D small-polarons at the LaAlO3/SrTiO3 conducting interface using high-resolution spectroscopic ellipsometry. First-principles investigations show that interfacial electron-lattice coupling mediated by the longitudinal phonon mode facilitates the formation of these polarons. This study resolves the long-standing question by attributing the formation of interfacial 2D small polarons to the significant mismatch between experimentally measured interfacial carrier density and theoretical values. Our study sheds light on the complexity of broken periodic lattice-induced quasi-particle effects and its relationship with exotic phenomena at complex oxide interfaces. Meanwhile, this work establishes spectroscopic ellipsometry as a useful technique to detect and locate optical evidence of polaronic states and other emerging quantum properties at the buried interface.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001038283300001 Publication Date 2023-09-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1931-9401 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 15 Times cited Open Access OpenAccess
Notes Approved (up) Most recent IF: 15; 2023 IF: 13.667
Call Number UA @ admin @ c:irua:198433 Serial 8847
Permanent link to this record
 

 
Author Ren, P.; Zhang, T.; Jain, N.; Ching, H.Y.V.; Jaworski, A.; Barcaro, G.; Monti, S.; Silvestre-Albero, J.; Celorrio, V.; Chouhan, L.; Rokicinska, A.; Debroye, E.; Kustrowski, P.; Van Doorslaer, S.; Van Aert, S.; Bals, S.; Das, S.
Title An atomically dispersed Mn-photocatalyst for generating hydrogen peroxide from seawater via the Water Oxidation Reaction (WOR) Type A1 Journal article
Year 2023 Publication Journal of the American Chemical Society Abbreviated Journal
Volume 145 Issue 30 Pages 16584-16596
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Organic synthesis (ORSY); Theory and Spectroscopy of Molecules and Materials (TSM²)
Abstract In this work, we have fabricatedan aryl amino-substitutedgraphiticcarbon nitride (g-C3N4) catalyst with atomicallydispersed Mn capable of generating hydrogen peroxide (H2O2) directly from seawater. This new catalyst exhibitedexcellent reactivity, obtaining up to 2230 & mu;M H2O2 in 7 h from alkaline water and up to 1800 & mu;Mfrom seawater under identical conditions. More importantly, the catalystwas quickly recovered for subsequent reuse without appreciable lossin performance. Interestingly, unlike the usual two-electron oxygenreduction reaction pathway, the generation of H2O2 was through a less common two-electron water oxidation reaction(WOR) process in which both the direct and indirect WOR processesoccurred; namely, photoinduced h(+) directly oxidized H2O to H2O2 via a one-step 2e(-) WOR, and photoinduced h(+) first oxidized a hydroxide (OH-) ion to generate a hydroxy radical ((OH)-O-& BULL;), and H2O2 was formed indirectly by thecombination of two (OH)-O-& BULL;. We have characterized thematerial, at the catalytic sites, at the atomic level using electronparamagnetic resonance, X-ray absorption near edge structure, extendedX-ray absorption fine structure, high-resolution transmission electronmicroscopy, X-ray photoelectron spectroscopy, magic-angle spinningsolid-state NMR spectroscopy, and multiscale molecular modeling, combiningclassical reactive molecular dynamics simulations and quantum chemistrycalculations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001034983300001 Publication Date 2023-07-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 15 Times cited 21 Open Access Not_Open_Access
Notes S.D. thanks the IOF grant and Francqui start up grant from the University of Antwerp, Belgium, for the financial support. P.R. thanks CSC and T.Z. thanks FWO for their financial assistance to finish this work. E.D. would like to thank the KU Leuven Research Fund for financial support through STG/21/010. J.S.A. acknowledges financial support from MCIN/AEI/10.13039/501100011033 and EU NextGeneration/PRTR (Project PCI2020-111968/3D-Photocat) and Diamond Synchrotron (rapid access proposal SP32609). This work was supported by the European Research Council (grant 770887-PICOMETRICS to S.V.A. and Grant 815128-REALNANO to S.B.). S.B. and S.V.A. acknowledge financial support from the Research Foundation Flanders (FWO, Belgium, project G.0346.21 N). We also thank Mr. Jian Zhu and Mr. Shahid Ullah Khan from the University of Antwerp, Belgium, for helpful discussions. Approved (up) Most recent IF: 15; 2023 IF: 13.858
Call Number UA @ admin @ c:irua:198426 Serial 8831
Permanent link to this record
 

 
Author Broers, F.T.H.; Janssens, K.; Weker, J.N.; Webb, S.M.; Mehta, A.; Meirer, F.; Keune, K.
Title Two pathways for the degradation of orpiment pigment (As₂S₃) found in paintings Type A1 Journal article
Year 2023 Publication Journal of the American Chemical Society Abbreviated Journal
Volume 145 Issue 16 Pages 8847-8859
Keywords A1 Journal article; Antwerp X-ray Imaging and Spectroscopy (AXIS)
Abstract Paintings are complex objects containing many different chemical compounds that can react over time. The degradation of arsenic sulfide pigments causes optical changes in paintings. The main degradation product was thought to be white arsenolite (As2O3), but previous research also showed the abundant presence of As(V) species. In this study, we investigate the influence of the presence of a medium on the degradation mechanism of orpiment (As2S3) using synchrotron radiation (SR)-based tomographic transmission X-ray microscopy, SR-based micro-X-ray fluorescence, and Xray absorption near edge structure spectroscopy. Upon direct illumination of dry orpiment powder using UV-visible light, only the formation of As2O3 was observed. When As2S3 was surrounded by a medium and illuminated, As2O3 was only observed in the area directly exposed to light, while As(V) degradation species were found elsewhere in the medium. Without accelerated artificial light aging, As(V)(aq) species are formed and migrate throughout the medium within weeks after preparation. In both scenarios, the As(V) species form via intermediate As(III)(aq) species and the presence of a medium is necessary. As(V)(aq) species can react with available cations to form insoluble metal arsenates, which induces stress within the paint layers (leading to, e.g., cracks and delamination) or can lead to a visual change of the image of the painting.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000974346900001 Publication Date 2023-04-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 15 Times cited Open Access OpenAccess
Notes Approved (up) Most recent IF: 15; 2023 IF: 13.858
Call Number UA @ admin @ c:irua:196762 Serial 8948
Permanent link to this record
 

 
Author Singh, A.; Yuan, B.; Rahman, M.H.; Yang, H.; De, A.; Park, J.Y.; Zhang, S.; Huang, L.; Mannodi-Kanakkithodi, A.; Pennycook, T.J.; Dou, L.
Title Two-dimensional halide Pb-perovskite-double perovskite epitaxial heterostructures Type A1 Journal article
Year 2023 Publication Journal of the American Chemical Society Abbreviated Journal
Volume 145 Issue 36 Pages 19885-19893
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Epitaxial heterostructures of two-dimensional (2D) halide perovskites offer a new platform for studying intriguing structural, optical, and electronic properties. However, difficulties with the stability of Pb- and Sn-based heterostructures have repeatedly slowed the progress. Recently, Pb-free halide double perovskites are gaining a lot of attention due to their superior stability and greater chemical diversity, but they have not been successfully incorporated into epitaxial heterostructures for further investigation. Here, we report epitaxial core-shell heterostructures via growing Pb-free double perovskites (involving combinations of Ag(I)-Bi(III), Ag-Sb, Ag-In, Na-Bi, Na-Sb, and Na-In) around Pb perovskite 2D crystals. Distinct from Pb-Pb and Pb-Sn perovskite heterostructures, growths of the Pb-free shell at 45 degrees on the (100) surface of the lead perovskite core are observed in all Pb-free cases. The in-depth structural analysis carried out with electron diffraction unequivocally demonstrates the growth of the Pb-free shell along the [110] direction of the Pb perovskite, which is likely due to the relatively lower surface energy of the (110) surface. Furthermore, an investigation of anionic interdiffusion across heterostructure interfaces under the influence of heat was carried out. Interestingly, halide anion diffusion in the Pb-free 2D perovskites is found to be significantly suppressed as compared to Pb-based 2D perovskites. The great structural tunability and excellent stability of Pb-free perovskite heterostructures may find uses in electronic and optoelectronic devices in the near future.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001060980300001 Publication Date 2023-08-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 15 Times cited Open Access
Notes Approved (up) Most recent IF: 15; 2023 IF: 13.858
Call Number UA @ admin @ c:irua:200342 Serial 9111
Permanent link to this record
 

 
Author Chen, B.; Gauquelin, N.; Strkalj, N.; Huang, S.; Halisdemir, U.; Nguyen, M.D.; Jannis, D.; Sarott, M.F.; Eltes, F.; Abel, S.; Spreitzer, M.; Fiebig, M.; Trassin, M.; Fompeyrine, J.; Verbeeck, J.; Huijben, M.; Rijnders, G.; Koster, G.
Title Signatures of enhanced out-of-plane polarization in asymmetric BaTiO3 superlattices integrated on silicon Type A1 Journal article
Year 2022 Publication Nature communications Abbreviated Journal Nat Commun
Volume 13 Issue 1 Pages 265
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract In order to bring the diverse functionalities of transition metal oxides into modern electronics, it is imperative to integrate oxide films with controllable properties onto the silicon platform. Here, we present asymmetric LaMnO<sub>3</sub>/BaTiO<sub>3</sub>/SrTiO<sub>3</sub>superlattices fabricated on silicon with layer thickness control at the unit-cell level. By harnessing the coherent strain between the constituent layers, we overcome the biaxial thermal tension from silicon and stabilize<italic>c</italic>-axis oriented BaTiO<sub>3</sub>layers with substantially enhanced tetragonality, as revealed by atomically resolved scanning transmission electron microscopy. Optical second harmonic generation measurements signify a predominant out-of-plane polarized state with strongly enhanced net polarization in the tricolor superlattices, as compared to the BaTiO<sub>3</sub>single film and conventional BaTiO<sub>3</sub>/SrTiO<sub>3</sub>superlattice grown on silicon. Meanwhile, this coherent strain in turn suppresses the magnetism of LaMnO<sub>3</sub>as the thickness of BaTiO<sub>3</sub>increases. Our study raises the prospect of designing artificial oxide superlattices on silicon with tailored functionalities.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000741852200073 Publication Date 2022-01-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 16.6 Times cited 11 Open Access OpenAccess
Notes This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 823717—ESTEEM3. B.C. is sponsored by Shanghai Sailing Program 21YF1410700. J.V. and N.G. acknowledge funding through the GOA project “Solarpaint” of the University of Antwerp. The microscope used in this work was partly funded by the Hercules Fund from the Flemish Government. D.J. acknowledges funding from FWO Project G093417N from the Flemish fund for scientific research. M.T., N.S., M.F.S. and M.F. acknowledge the financial support by the EU European Research Council (Advanced Grant 694955—INSEETO). M.T. acknowledges the Swiss National Science Foundation under Project No. 200021-188414. N.S. acknowledges support under the Swiss National Science Foundation under Project No. P2EZP2-199913. M.S. acknowledges funding from Slovenian Research Agency (Grants No. J2-2510, N2-0149 and P2-0091). B.C. acknowledges Prof. C.D.; Prof. F.Y.; Prof. B.T. and Dr. K.J. for valuable discussions.; esteem3reported; esteem3TA Approved (up) Most recent IF: 16.6
Call Number EMAT @ emat @c:irua:185179 Serial 6902
Permanent link to this record
 

 
Author Otero-Martinez, C.; Imran, M.; Schrenker, N.J.; Ye, J.; Ji, K.; Rao, A.; Stranks, S.D.; Hoye, R.L.Z.; Bals, S.; Manna, L.; Perez-Juste, J.; Polavarapu, L.
Title Fast A-site cation cross-exchange at room temperature : single-to double- and triple-cation halide perovskite nanocrystals Type A1 Journal article
Year 2022 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit
Volume 61 Issue 34 Pages e202205617-11
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We report here fast A-site cation cross-exchange between APbX(3) perovskite nanocrystals (NCs) made of different A-cations (Cs (cesium), FA (formamidinium), and MA (methylammonium)) at room temperature. Surprisingly, the A-cation cross-exchange proceeds as fast as the halide (X=Cl, Br, or I) exchange with the help of free A-oleate complexes present in the freshly prepared colloidal perovskite NC solutions. This enabled the preparation of double (MACs, MAFA, CsFA)- and triple (MACsFA)-cation perovskite NCs with an optical band gap that is finely tunable by their A-site composition. The optical spectroscopy together with structural analysis using XRD and atomically resolved high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and integrated differential phase contrast (iDPC) STEM indicates the homogeneous distribution of different cations in the mixed perovskite NC lattice. Unlike halide ions, the A-cations do not phase-segregate under light illumination.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000823857300001 Publication Date 2022-06-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 16.6 Times cited 28 Open Access OpenAccess
Notes L.P. acknowledges the support from the Spanish Ministerio de Ciencia e Innovacion through Ramon y Cajal grant (RYC2018-026103-I) and the Spanish State Research Agency (Grant No. PID2020-117371RA-I00), the grant from the Xunta de Galicia (ED431F2021/05). N.J.S. acknowledges financial support from the Research Foundation-Flanders via a postdoctoral fellowship (FWO Grant No. 1238622N). S.B. thanks the financial support of the European Research Council (ERC-CoG-2019815128) and of the European Commission (EUSMI, Grant 731019). R.L.Z.H. thanks the Royal Academy of Engineering through the Research Fellowships scheme (No.: RF\201718\1701). S.D.S. and K.J. acknowledge the Royal Society for funding. S.D.S. acknowledges the Royal Society and Tata Group (UF150033). The work has received funding from the European Research Council under the European Union's Horizon 2020 research and innovation programme (HYPERION -grant agreement no. 756962). The authors acknowledge the Engineering and Physical Sciences Research Council (EPSRC) for funding (EP/R023980/1). M.I. and L.M. acknowledge financial support from the Italian Ministry of University and Research (MIUR) through the Flag-Era JTC2019 project “Solution-Processed Perovskite/Graphene Nanocomposites for Self-Powered Gas Sensors” (PeroGaS). The authors acknowledge the Universidade de Vigo/CISUG for open access funding. Approved (up) Most recent IF: 16.6
Call Number UA @ admin @ c:irua:189675 Serial 7083
Permanent link to this record
 

 
Author Toso, S.; Imran, M.; Mugnaioli, E.; Moliterni, A.; Caliandro, R.; Schrenker, N.J.; Pianetti, A.; Zito, J.; Zaccaria, F.; Wu, Y.; Gemmi, M.; Giannini, C.; Brovelli, S.; Infante, I.; Bals, S.; Manna, L.
Title Halide perovskites as disposable epitaxial templates for the phase-selective synthesis of lead sulfochloride nanocrystals Type A1 Journal article
Year 2022 Publication Nature communications Abbreviated Journal Nat Commun
Volume 13 Issue 1 Pages 3976-10
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Colloidal chemistry grants access to a wealth of materials through simple and mild reactions. However, even few elements can combine in a variety of stoichiometries and structures, potentially resulting in impurities or even wrong products. Similar issues have been long addressed in organic chemistry by using reaction-directing groups, that are added to a substrate to promote a specific product and are later removed. Inspired by such approach, we demonstrate the use of CsPbCl3 perovskite nanocrystals to drive the phase-selective synthesis of two yet unexplored lead sulfochlorides: Pb3S2Cl2 and Pb4S3Cl2. When homogeneously nucleated in solution, lead sulfochlorides form Pb3S2Cl2 nanocrystals. Conversely, the presence of CsPbCl3 triggers the formation of Pb4S3Cl2/CsPbCl3 epitaxial heterostructures. The phase selectivity is guaranteed by the continuity of the cationic subnetwork across the interface, a condition not met in a hypothetical Pb3S2Cl2/CsPbCl3 heterostructure. The perovskite domain is then etched, delivering phase-pure Pb4S3Cl2 nanocrystals that could not be synthesized directly. Phase-selective approaches, such using reaction-directing groups, are often seen in traditional organic chemistry and catalysis. Here authors use perovskite nanocrystals as disposable templates to drive the phase-selective synthesis of two colloidal nanomaterials, the lead sulfohalides Pb3S2Cl2 and Pb4S3Cl2.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000825867200003 Publication Date 2022-07-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 16.6 Times cited 15 Open Access OpenAccess
Notes The authors would like to acknowledge Dr. Joka Buha for the help with preliminary tests preceding this project, and Dr. B. M. Aresta and Dr. L. Cassano for their administrative support. The authors acknowledge financial support from the Research Foundation Flanders (FWO) through a postdoctoral fellowship to N.J.S. (FWO Grant No. 1238622N, N.J.S). S.B. acknowledges financial support from the European Commission by ERC Consolidator grant REALNANO (No. 815128, S.B.). L.M. acknowledges financial support from the Italian Ministry of University and Research (MIUR) through the Flag-Era JTC2019 project “Solution-Processed Perovskite/Graphene Nanocomposites for SelfPowered Gas Sensors” (PeroGaS, L.M.). The access to the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC0298CH10886 (NSLS-II Proposal Number 307441). Approved (up) Most recent IF: 16.6
Call Number UA @ admin @ c:irua:189684 Serial 7085
Permanent link to this record
 

 
Author Wang, D.; Hermes, M.; Najmr, S.; Tasios, N.; Grau-Carbonell, A.; Liu, Y.; Bals, S.; Dijkstra, M.; Murray, C.B.; van Blaaderen, A.
Title Structural diversity in three-dimensional self-assembly of nanoplatelets by spherical confinement Type A1 Journal article
Year 2022 Publication Nature communications Abbreviated Journal Nat Commun
Volume 13 Issue 1 Pages 6001-6012
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Nanoplatelets offer many possibilities to construct advanced materials due to new properties associated with their (semi)two-dimensional shapes. However, precise control of both positional and orientational order of the nanoplatelets in three dimensions, which is required to achieve emerging and collective properties, is challenging to realize. Here, we combine experiments, advanced electron tomography and computer simulations to explore the structure of supraparticles self-assembled from nanoplatelets in slowly drying emulsion droplets. We demonstrate that the rich phase behaviour of nanoplatelets, and its sensitivity to subtle changes in shape and interaction potential can be used to guide the self-assembly into a wide range of different structures, offering precise control over both orientation and position order of the nanoplatelets. Our research is expected to shed light on the design of hierarchically structured metamaterials with distinct shape- and orientation- dependent properties. Nanoplatelets can be used as anisotropic building blocks for constructing novel optoelectronic materials. Here, Wang et al. show a route of assembling nanoplatelets with controllable positional and orientational order in three dimensions facilitated by the surface tension of drying emulsion droplets.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000867312100031 Publication Date 2022-10-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 16.6 Times cited 7 Open Access OpenAccess
Notes We thank A. Kadu, M. Chiappini, F. Rabouw, S. Paliwal, X. Xie, C. Xia and Z. Wang for fruitful discussions. D.W. and A.v.B. acknowledge partial financial support from the European Research Council under the European Union's Seventh Framework Programme (FP-2007-2013)/ERC Advanced Grant Agreement 291667 HierarSACol. M.H. was supported by the Netherlands Center for Multiscale Catalytic Energy Conversion (MCEC). D.W. acknowledges an Individual Fellowship funded by the Marie Sklodowska-Curie Actions (MSCA) in Horizon 2020 program (grant 894254 SuprAtom). Y.L. acknowledges the Sustainability project between the faculties of Science and Geosciences of Utrecht University. M.D. acknowledges financial support from European Research Council (Grant No. ERC-2019-ADV-H2020 884902 SoftML). S.B. acknowledges financial support from ERC Consolidator Grant No. 815128 REALNANO. C.B.M. acknowledges support for materials synthesis from the Office of Naval Research Multidisciplinary University Research Initiative Award ONR N00014-18-1-2497. The authors acknowledge the EM square center at Utrecht University for the access to the microscopes. Approved (up) Most recent IF: 16.6
Call Number UA @ admin @ c:irua:191387 Serial 7214
Permanent link to this record
 

 
Author Cai, J.; Griffin, E.; Guarochico-Moreira, V.H.; Barry, D.; Xin, B.; Yagmurcukardes, M.; Zhang, S.; Geim, A.K.; Peeters, F.M.; Lozada-Hidalgo, M.
Title Wien effect in interfacial water dissociation through proton-permeable graphene electrodes Type A1 Journal article
Year 2022 Publication Nature communications Abbreviated Journal Nat Commun
Volume 13 Issue 1 Pages 5776-5777
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Strong electric fields can accelerate molecular dissociation reactions. The phenomenon known as the Wien effect was previously observed using high-voltage electrolysis cells that produced fields of about 10(7) V m(-1), sufficient to accelerate the dissociation of weakly bound molecules (e.g., organics and weak electrolytes). The observation of the Wien effect for the common case of water dissociation (H2O reversible arrow H+ + OH-) has remained elusive. Here we study the dissociation of interfacial water adjacent to proton-permeable graphene electrodes and observe strong acceleration of the reaction in fields reaching above 10(8) V m(-1). The use of graphene electrodes allows measuring the proton currents arising exclusively from the dissociation of interfacial water, while the electric field driving the reaction is monitored through the carrier density induced in graphene by the same field. The observed exponential increase in proton currents is in quantitative agreement with Onsager's theory. Our results also demonstrate that graphene electrodes can be valuable for the investigation of various interfacial phenomena involving proton transport.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000862552600012 Publication Date 2022-10-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 16.6 Times cited 3 Open Access OpenAccess
Notes Approved (up) Most recent IF: 16.6
Call Number UA @ admin @ c:irua:191575 Serial 7228
Permanent link to this record
 

 
Author Zhou, Z.; Tan, Y.; Yang, Q.; Bera, A.; Xiong, Z.; Yagmurcukardes, M.; Kim, M.; Zou, Y.; Wang, G.; Mishchenko, A.; Timokhin, I.; Wang, C.; Wang, H.; Yang, C.; Lu, Y.; Boya, R.; Liao, H.; Haigh, S.; Liu, H.; Peeters, F.M.; Li, Y.; Geim, A.K.; Hu, S.
Title Gas permeation through graphdiyne-based nanoporous membranes Type A1 Journal article
Year 2022 Publication Nature communications Abbreviated Journal Nat Commun
Volume 13 Issue 1 Pages 4031-4036
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Nanoporous membranes based on two dimensional materials are predicted to provide highly selective gas transport in combination with extreme permeance. Here we investigate membranes made from multilayer graphdiyne, a graphene-like crystal with a larger unit cell. Despite being nearly a hundred of nanometers thick, the membranes allow fast, Knudsen-type permeation of light gases such as helium and hydrogen whereas heavy noble gases like xenon exhibit strongly suppressed flows. Using isotope and cryogenic temperature measurements, the seemingly conflicting characteristics are explained by a high density of straight-through holes (direct porosity of similar to 0.1%), in which heavy atoms are adsorbed on the walls, partially blocking Knudsen flows. Our work offers important insights into intricate transport mechanisms playing a role at nanoscale.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000918423100001 Publication Date 2022-07-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 16.6 Times cited 10 Open Access OpenAccess
Notes Approved (up) Most recent IF: 16.6
Call Number UA @ admin @ c:irua:194402 Serial 7308
Permanent link to this record
 

 
Author Smith, J.D.; Bladt, E.; Burkhart, J.A.C.; Winckelmans, N.; Koczkur, K.M.; Ashberry, H.M.; Bals, S.; Skrabalak, S.E.
Title Defect-directed growth of symmetrically branched metal nanocrystals Type A1 Journal article
Year 2020 Publication Angewandte Chemie-International Edition Abbreviated Journal Angew Chem Int Edit
Volume 59 Issue 59 Pages 943-950
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Branched plasmonic nanocrystals (NCs) have attracted much attention due to electric field enhancements at their tips. Seeded growth provides routes to NCs with defined branching patterns and, in turn, near-field distributions with defined symmetries. Here, a systematic analysis was undertaken in which seeds containing different distributions of planar defects were used to grow branched NCs in order to understand how their distributions direct the branching. Characterization of the products by multimode electron tomography and analysis of the NC morphologies at different overgrowth stages indicate that the branching patterns are directed by the seed defects, with the emergence of branches from the seed faces consistent with minimizing volumetric strain energy at the expense of surface energy. These results contrast with growth of branched NCs from single-crystalline seeds and provide a new platform for the synthesis of symmetrically branched plasmonic NCs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000498760200001 Publication Date 2019-11-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 16.6 Times cited 23 Open Access OpenAccess
Notes ; The authors thank Samantha Harvey for her initial observations of branched structures, Alexander Chen for his help with SAED, the staff of the Nanoscale Characterization Facility (Dr. Yi Yi), Electron Microscopy Center (Dr. David Morgan and Dr. Barry Stein), and Molecular Structure Center at Indiana University. J.S. recognizes a fellowship provided by the Indiana Space Grant Consortium. E.B. acknowledges a post-doctoral grant from the Research Foundation Flanders (FWO, Belgium). This project has received funding to S.E.S. from the U.S. National Science Foundation (award numbers: 1602476 and 1904499) and Research Corporation for Scientific Advancement (2017 Frontiers in Research Excellence and Discovery Award) as well as to S.B. from the European Union's Horizon 2020 research and innovation program under grant agreement No 731019 (EUSMI) and No 815128 (REALNANO). ; sygma Approved (up) Most recent IF: 16.6; 2020 IF: 11.994
Call Number UA @ admin @ c:irua:165124 Serial 6293
Permanent link to this record
 

 
Author Paul, S.; Bladt, E.; Richter, A.F.; Döblinger, M.; Tong, Y.; Huang, H.; Dey, A.; Bals, S.; Debnath, T.; Polavarapu, L.; Feldmann, J.
Title Manganese‐Doping‐Induced Quantum Confinement within Host Perovskite Nanocrystals through Ruddlesden–Popper Defects Type A1 Journal article
Year 2020 Publication Angewandte Chemie-International Edition Abbreviated Journal Angew Chem Int Edit
Volume 59 Issue 17 Pages 6794-6799
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The concept of doping Mn2+ ions into II–VI semiconductor nanocrystals (NCs) was recently extended to perovskite NCs. To date, most studies on Mn2+ doped NCs focus on enhancing the emission related to the Mn2+ dopant via an energy transfer mechanism. Herein, we found that the doping of Mn2+ ions into CsPbCl3 NCs not only results in a Mn2+‐related orange emission, but also strongly influences the excitonic properties of the host NCs. We observe for the first time that Mn2+ doping leads to the formation of Ruddlesden–Popper (R.P.) defects and thus induces quantum confinement within the host NCs. We find that a slight doping with Mn2+ ions improves the size distribution of the NCs, which results in a prominent excitonic peak. However, with increasing the Mn2+ concentration, the number of R.P. planes increases leading to smaller single‐crystal domains. The thus enhanced confinement and crystal inhomogeneity cause a gradual blue shift and broadening of the excitonic transition, respectively.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000525279800024 Publication Date 2020-04-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-7851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 16.6 Times cited 64 Open Access OpenAccess
Notes Deutsche Forschungsgemeinschaft, EXC 2089/1-390776260 ; H2020 European Research Council, 815128-REALNANO ; Horizon 2020 Framework Programme, 839042 731019 ; Alexander von Humboldt-Stiftung; We acknowledge financial support by the Bavarian State Ministry of Science, Research, and Arts through the grant “Solar Technologies go Hybrid (SolTech)”, the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germanys Excellence Strategy—EXC 2089/1‐390776260 (“e‐conversion”), the Alexander von Humboldt Foundation (A.D. and T.D.), the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska‐Curie grant agreement No. 839042 (H.H.). E.B. acknowledges a postdoctoral grant 12T2719N from the Research Foundation Flanders (FWO, Belgium). E.B. and S.B. acknowledge the financial support from the European Research Council ERC Consolidator Grants #815128‐REALNANO. L.P. thanks the EU Infrastructure Project EUSMI (European Union's Horizon 2020, grant No 731019). We thank local research center “Center for NanoScience (CeNS)” for providing communicative networking structure. We acknowledge the funding of Nanosystems Initiative Munich (NIM) for color figures.; sygma Approved (up) Most recent IF: 16.6; 2020 IF: 11.994
Call Number EMAT @ emat @c:irua:168535 Serial 6399
Permanent link to this record
 

 
Author Dooley, K.A.; Chieli, A.; Romani, A.; Legrand, S.; Miliani, C.; Janssens, K.; Delaney, J.K.
Title Molecular fluorescence imaging spectroscopy for mapping low concentrations of red lake pigments : Van Gogh's painting The Olive Orchard Type A1 Journal article
Year 2020 Publication Angewandte Chemie-International Edition Abbreviated Journal Angew Chem Int Edit
Volume Issue Pages
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Vincent van Gogh used fugitive red lake pigments that have faded in some paintings. Mapping their distribution is key to understanding how his paintings have changed with time. While red lake pigments can be identified from microsamples, in situ identification and mapping remain challenging. This paper explores the ability of molecular fluorescence imaging spectroscopy to identify and, more importantly, map residual non-degraded red lakes. The high sensitivity of this method enabled identification of the emission spectra of eosin (tetrabromine fluorescein) lake mixed with lead or zinc white at lower concentrations than elemental X-ray fluorescence (XRF) spectroscopy used on account of bromine. The molecular fluorescence mapping of residual eosin and two carmine red lakes in van Gogh's The Olive Orchard is demonstrated and compared with XRF imaging spectroscopy. The red lakes are consistent with the composition of paint tubes known to have been used by van Gogh.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000512477200001 Publication Date 2020-01-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 16.6 Times cited 2 Open Access
Notes ; We thank Damon Conover and Roxanne Radpour for help with the fluorescence self-absorption correction, and Ella Hendricks for discussions about van Gogh~s letters and materials. K.J. and S.L. thank the Research Council of the University of Antwerp for financial support (ID grant 25805 to S.L. and GOA project SolarPaint). Also FWO, Brussels provided financial support (grants G056619N and G054719N). The European research project IPERION-CH, funded by the European Commission, H2020-INFRAIA-2014-2015 (Grant agreement n. 654028) is also acknowledged. ; Approved (up) Most recent IF: 16.6; 2020 IF: 11.994
Call Number UA @ admin @ c:irua:166490 Serial 6563
Permanent link to this record
 

 
Author Hollevoet, L.; Jardali, F.; Gorbanev, Y.; Creel, J.; Bogaerts, A.; Martens, J.A.
Title Towards green ammonia synthesis through plasma-driven nitrogen oxidation and catalytic reduction Type A1 Journal article
Year 2020 Publication Angewandte Chemie-International Edition Abbreviated Journal Angew Chem Int Edit
Volume Issue Pages
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Ammonia is an industrial large-volume chemical, with its main application in fertilizer production. It also attracts increasing attention as a green-energy vector. Over the past century, ammonia production has been dominated by the Haber-Bosch process, in which a mixture of nitrogen and hydrogen gas is converted to ammonia at high temperatures and pressures. Haber-Bosch processes with natural gas as the source of hydrogen are responsible for a significant share of the global CO(2)emissions. Processes involving plasma are currently being investigated as an alternative for decentralized ammonia production powered by renewable energy sources. In this work, we present the PNOCRA process (plasma nitrogen oxidation and catalytic reduction to ammonia), combining plasma-assisted nitrogen oxidation and lean NO(x)trap technology, adopted from diesel-engine exhaust gas aftertreatment technology. PNOCRA achieves an energy requirement of 4.6 MJ mol(-1)NH(3), which is more than four times less than the state-of-the-art plasma-enabled ammonia synthesis from N(2)and H(2)with reasonable yield (>1 %).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000580489400001 Publication Date 2020-09-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 16.6 Times cited 1 Open Access
Notes ; We gratefully acknowledge the financial support by the Flemish Government through the Moonshot cSBO project P2C (HBC.2019.0108). J.A.M. and A.B. acknowledge the Flemish Government for long-term structural funding (Methusalem). ; Approved (up) Most recent IF: 16.6; 2020 IF: 11.994
Call Number UA @ admin @ c:irua:173589 Serial 6634
Permanent link to this record
 

 
Author Quan, L.N.; Ma, D.; Zhao, Y.; Voznyy, O.; Yuan, H.; Bladt, E.; Pan, J.; de Arquer, F.P.G.; Sabatini, R.; Piontkowski, Z.; Emwas, A.-H.; Todorovic, P.; Quintero-Bermudez, R.; Walters, G.; Fan, J.Z.; Liu, M.; Tan, H.; Saidaminov, M., I; Gao, L.; Li, Y.; Anjum, D.H.; Wei, N.; Tang, J.; McCamant, D.W.; Roeffaers, M.B.J.; Bals, S.; Hofkens, J.; Bakr, O.M.; Lu, Z.-H.; Sargent, E.H.
Title Edge stabilization in reduced-dimensional perovskites Type A1 Journal article
Year 2020 Publication Nature Communications Abbreviated Journal Nat Commun
Volume 11 Issue 1 Pages 170
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Reduced-dimensional perovskites are attractive light-emitting materials due to their efficient luminescence, color purity, tunable bandgap, and structural diversity. A major limitation in perovskite light-emitting diodes is their limited operational stability. Here we demonstrate that rapid photodegradation arises from edge-initiated photooxidation, wherein oxidative attack is powered by photogenerated and electrically-injected carriers that diffuse to the nanoplatelet edges and produce superoxide. We report an edge-stabilization strategy wherein phosphine oxides passivate unsaturated lead sites during perovskite crystallization. With this approach, we synthesize reduced-dimensional perovskites that exhibit 97 +/- 3% photoluminescence quantum yields and stabilities that exceed 300 h upon continuous illumination in an air ambient. We achieve green-emitting devices with a peak external quantum efficiency (EQE) of 14% at 1000 cd m(-2); their maximum luminance is 4.5 x 10(4) cd m(-2) (corresponding to an EQE of 5%); and, at 4000 cd m(-2), they achieve an operational half-lifetime of 3.5 h.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000551458200001 Publication Date 2020-01-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 16.6 Times cited 147 Open Access OpenAccess
Notes ; This publication is based in part on work supported by an award (KUS-11-009-21) from the King Abdullah University of Science and Technology (KAUST), by the Ontario Research Fund Research Excellence Program, by the Ontario Research Fund (ORF), by the Natural Sciences and Engineering Research Council (NSERC) of Canada, and by the US Department of Navy, Office of Naval Research (Grant Award No. N00014-17-12524). H.Y. acknowledges the Research Foundation-Flanders (FWO Vlaanderen) for a postdoctoral fellowship. E.B. gratefully acknowledges financial support by the Research Foundation-Flanders (FWO Vlaanderen). S.B. acknowledges financial support from European Research Council (ERC Starting Grant #815128-REALNANO). M.B.J.R. and J.H. acknowledge the Research Foundation-Flanders (FWO, Grants G.0962.13, G.0B39.15, AKUL/11/14 and G0H6316N), KU Leuven Research Fund (C14/15/053) and the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013)/ ERC Grant Agreement No. [307523], ERC-Stg LIGHT to M.B.J.R. DFT calculations were performed on the IBM BlueGene Q supercomputer with support from the Southern Ontario Smart Computing Innovation Platform (SOSCIP). M.I.S. acknowledges the Banting Postdoctoral Fellowship program from the Natural Sciences and Engineering Research Council of Canada (NSERC). H.T. acknowledges the Netherlands Organisation for Scientific Research (NWO) for a Rubicon grant (680-50-1511). ; sygma Approved (up) Most recent IF: 16.6; 2020 IF: 12.124
Call Number UA @ admin @ c:irua:171327 Serial 6496
Permanent link to this record
 

 
Author Choisez, L.; Ding, L.; Marteleur, M.; Idrissi, H.; Pardoen, T.; Jacques, P.J.
Title High temperature rise dominated cracking mechanisms in ultra-ductile and tough titanium alloy Type A1 Journal article
Year 2020 Publication Nature Communications Abbreviated Journal Nat Commun
Volume 11 Issue 1 Pages 2110
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Extensive use of titanium alloys is partly hindered by a lack of ductility, strain hardening, and fracture toughness. Recently, several beta -metastable titanium alloys were designed to simultaneously activate both transformation-induced plasticity and twinning-induced plasticity effects, resulting in significant improvements to their strain hardening capacity and resistance to plastic localization. Here, we report an ultra-large fracture resistance in a Ti-12Mo alloy (wt.%), that results from a high resistance to damage nucleation, with an unexpected fracture phenomenology under quasi-static loading. Necking develops at a large uniform true strain of 0.3 while fracture initiates at a true fracture strain of 1.0 by intense through-thickness shear within a thin localized shear band. Transmission electron microscopy reveals that dynamic recrystallization occurs in this band, while local partial melting is observed on the fracture surface. Shear band temperatures of 1250-2450 degrees C are estimated by the fusible coating method. The reported high ductility combined to the unconventional fracture process opens alternative avenues toward Ti alloys toughening. Specific titanium alloys combine transformation-induced plasticity and twinning-induced plasticity for improved work hardening. Here, the authors show that these alloys also have an ultra-large fracture resistance and an unexpected fracture mechanism via dynamic recrystallization and local melting in a deformation band.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000558816700010 Publication Date 2020-04-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 16.6 Times cited 1 Open Access OpenAccess
Notes ; The Fonds National de Recherche Scientifique FNRS is gratefully acknowledged for the grant no. T.0127.19, the research grant of L.C. and the research mandate of H.I. The authors are thankful to J. Adrien and E. Maire for their help with the X-ray tomography analysis, to J.D. Embury for the fruitful discussions and to F. Prima for provisioning the material. ; Approved (up) Most recent IF: 16.6; 2020 IF: 12.124
Call Number UA @ admin @ c:irua:171318 Serial 6536
Permanent link to this record