toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Proost, K.; Janssens, K.; Wagner, B.; Bulska, E.; Schreiner, M. pdf  doi
openurl 
  Title Determination of localized Fe2+/Fe3+ ratios in inks of historic documents by means of \mu-XANES Type A1 Journal article
  Year 2004 Publication Nuclear instruments and methods in physics research: B: beam interactions with materials and atoms Abbreviated Journal Nucl Instrum Meth B  
  Volume 213 Issue Pages 723-728  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract (down) An important part of the European cultural heritage is composed of hand-written documents. Many of these documents were drawn up with iron-gall ink. This type of ink present a serious conservation problem, as it slowly oxidizes ('burns') the paper it is written on, thereby gradually disintegrating the historic document. Acid hydrolysis of the cellulose and/or the oxidation of organic compounds promoted by radical intermediates that are formed due to the presence of Fe2+ ions are considered to be the cause of the disintegration. mu-XANES measurements were performed with a lateral resolution of 30-50 mum in order to determine the local Fe2+/Fe3+ ratio in 19th C. documents from the Austrian National Archives and fragments of 16th C documents from the Polish National Library. In the 19th C documents, no significant amount of Fe2+ was detected. On the other hand, in the 16th C fragments, significant amounts of Fe2+ and appreciable differences in distribution of Fe2+ and Fe3+ within individual letters/ink stains were observed. (C) 2003 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000187020700144 Publication Date 2003-06-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-583x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.109 Times cited Open Access  
  Notes Approved Most recent IF: 1.109; 2004 IF: 0.997  
  Call Number UA @ admin @ c:irua:45378 Serial 5573  
Permanent link to this record
 

 
Author Vodolazov, D.Y.; Peeters, F.M.; Dubonos, S.V.; Geim, A.K. url  doi
openurl 
  Title Multiple flux jumps and irreversible behavior of thin Al superconducting rings Type A1 Journal article
  Year 2003 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 67 Issue 5 Pages 054506-6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) An experimental and theoretical investigation was made of flux jumps and irreversible magnetization curves of mesoscopic Al superconducting rings. In the small magnetic-field region the change of vorticity with magnetic field can be larger than unity. This behavior is connected with the existence of several metastable states of different vorticities. The intentional introduction of a defect in the ring has a large effect on the size of the flux jumps. Calculations based on the time-dependent Ginzburg-Landau model allows us to explain the experimental results semiquantitatively.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000181360300061 Publication Date 2003-02-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 49 Open Access  
  Notes Approved Most recent IF: 3.836; 2003 IF: NA  
  Call Number UA @ lucian @ c:irua:102812 Serial 2227  
Permanent link to this record
 

 
Author Roet, D.; van Espen, P. doi  openurl
  Title Monte Carlo simulation of X-ray spectra from low energy electrons using optical data Type A1 Journal article
  Year 2010 Publication Nuclear instruments and methods in physics research: B: beam interactions with materials and atoms Abbreviated Journal  
  Volume 268 Issue 17/18 Pages 2794-2800  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract (down) An approach using optical data to simulate both the bremsstrahlung continuum and characteristic K and L X-ray lines generated by low energy electrons (cfr. electron microscopy) in solids is discussed in this paper. The necessary analytical expressions together with the data to calculate the relevant cross sections for elastic and inelastic interactions at these energies along with variance reduction techniques are given. The results of the Monte Carlo simulation are compared to experimental data measured with a JEOL 6300 electron microscope.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000281498900039 Publication Date 2010-07-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-583x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:84261 Serial 8281  
Permanent link to this record
 

 
Author Grujić, M.; Zarenia, M.; Chaves, A.; Tadić, M.; Farias, G.A.; Peeters, F.M. url  doi
openurl 
  Title Electronic and optical properties of a circular graphene quantum dot in a magnetic field : influence of the boundary conditions Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 84 Issue 20 Pages 205441-205441,12  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) An analytical approach, using the Dirac-Weyl equation, is implemented to obtain the energy spectrum and optical absorption of a circular graphene quantum dot in the presence of an external magnetic field. Results are obtained for the infinite-massand zigzag boundary conditions. We found that the energy spectrum of a dot with the zigzag boundary condition exhibits a zero-energy band regardless of the value of the magnetic field, while for the infinite-mass boundary condition, the zero-energy states appear only for high magnetic fields. The analytical results are compared to those obtained from the tight-binding model: (i) we show the validity range of the continuum model and (ii) we find that the continuum model with the infinite-mass boundary condition describes rather well its tight-binding analog, which can be partially attributed to the blurring of the mixed edges by the staggered potential.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000297295400011 Publication Date 2011-11-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 78 Open Access  
  Notes ; This work was supported by the EuroGraphene programme of the ESF (project CONGRAN), the Ministry of Education and Science of Serbia, the Belgian Science Policy (IAP), the bilateral projects between Flanders and Brazil, the Flemish Science Foundation (FWO-Vl), and the Brazilian Research Council (CNPq). ; Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:94025 Serial 997  
Permanent link to this record
 

 
Author Cassiers, K.; van der Voort, P.; Linssen, T.; Vansant, E.F.; Lebedev, O.; van Landuyt, J. doi  openurl
  Title A counterion-catalyzed (S0H+)(X-I+) pathway toward heat- and steam-stable mesostructured silica assembled from amines in acidic conditions Type A1 Journal article
  Year 2003 Publication The journal of physical chemistry : B : condensed matter, materials, surfaces, interfaces and biophysical Abbreviated Journal J Phys Chem B  
  Volume 107 Issue 16 Pages 3690-3696  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract (down) An alternative pathway to assemble mesoporous molecular sieve silicas is developed using nonionic alkylamines and N,N-dimethylalkylamines (SO) as structure-directing agents in acidic conditions. The synthesized mesostructures possess wormhole-like frameworks with pore sizes and pore volumes in the range of 20-90 Angstrom and 0.5-1.3 cm(3)/g, respectively. The formation of the mesophase is controlled by a counterion-mediated mechanism of the type (S(0)H(+))(X(-)I(+)), where S(0)H(+) are protonated water molecules that are hydrogen bonded to the lone electron pairs on the amine surfactant headgroups (S(0)H(+)), X(-) is the counteranion originating from the acid, and I(+) are the positively charged (protonated) silicate species. We found that the stronger the ion X(-) is bonded to S(0)H(+), the more it catalyzes the silica condensation into (S(0)H(+))(X(-)I(+)). Br(-) is shown to be a strong binding anion and therefore a fast silica polymerization promoter compared to Cl(-) resulting in the formation of a higher quality mesophase for the Br(-) syntheses. We also showed that the polymerization rate of the silica, dictated by the counterion, controls the morphology of the mesostructures from nonuniform agglomerated blocks in the case of Br(-) syntheses to spherical particles for the Cl(-) syntheses. Next to many benefits such as low temperature, short synthesis time, and the use of inexpensive, nontoxic, and easily extractable amine templates, the developed materials have a remarkable higher thermal and hydrothermal stability compared to hexagonal mesoporous silica, which is also prepared with nonionic amines but formed through the S(0)I(0) mechanism.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000182350200005 Publication Date 2003-04-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1520-6106;1520-5207; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.177 Times cited 9 Open Access  
  Notes Approved Most recent IF: 3.177; 2003 IF: 3.679  
  Call Number UA @ lucian @ c:irua:103300 Serial 24  
Permanent link to this record
 

 
Author Petrov, M.; Bekaert, J.; Milošević, M.V. pdf  url
doi  openurl
  Title Superconductivity in gallenene Type A1 Journal article
  Year 2021 Publication 2d Materials Abbreviated Journal 2D Mater  
  Volume 8 Issue 3 Pages 035056  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) Among the large variety of two-dimensional (2D) materials discovered to date, elemental monolayers that host superconductivity are very rare. Using ab initio calculations we show that recently synthesized gallium monolayers, coined gallenene, are intrinsically superconducting through electron-phonon coupling. We reveal that Ga-100 gallenene, a planar monolayer isostructural with graphene, is the structurally simplest 2D superconductor to date, furthermore hosting topological edge states due to its honeycomb structure. Our anisotropic Eliashberg calculations show distinctly three-gap superconductivity in Ga-100, in contrast to the alternative buckled Ga-010 gallenene which presents a single anisotropic superconducting gap. Strikingly, the critical temperature (T ( c )) of gallenene is in the range of 7-10 K, exceeding the T ( c ) of bulk gallium from which it is exfoliated. Finally we explore chemical functionalization of gallenene with hydrogen, and report induced multigap superconductivity with an enhanced T ( c ) in the resulting gallenane compound.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000667458500001 Publication Date 2021-06-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.937 Times cited 8 Open Access OpenAccess  
  Notes Approved Most recent IF: 6.937  
  Call Number UA @ admin @ c:irua:179623 Serial 7025  
Permanent link to this record
 

 
Author Verdierre, G.; Gauquelin, N.; Jannis, D.; Birkhölzer, Y.A.; Mallik, S.; Verbeeck, J.; Bibes, M.; Koster, G. url  doi
openurl 
  Title Epitaxial growth of the candidate ferroelectric Rashba material SrBiO3by pulsed laser deposition Type A1 Journal article
  Year 2023 Publication APL materials Abbreviated Journal  
  Volume 11 Issue 3 Pages 031109  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (down) Among oxides, bismuthates have been gaining much interest due to their unique features. In addition to their superconducting properties, they show potential for applications as topological insulators and as possible spin-to-charge converters. After being first investigated in their bulk form in the 1980s, bismuthates have been successfully grown as thin films. However, most efforts have focused on BaBiO<sub>3</sub>, with SrBiO<sub>3</sub>receiving only little attention. Here, we report the growth of epitaxial films of SrBiO<sub>3</sub>on both TiO<sub>2</sub>-terminated SrTiO<sub>3</sub>and NdO-terminated NdScO<sub>3</sub>substrates by pulsed laser deposition. SrBiO<sub>3</sub>has a pseudocubic lattice constant of ∼4.25 Å and grows relaxed on NdScO<sub>3</sub>. Counter-intuitively, it grows with a slight tensile strain on SrTiO<sub>3</sub>despite a large lattice mismatch, which should induce compressive strain. High-resolution transmission electron microscopy reveals that this occurs as a consequence of structural domain matching, with blocks of 10 SrBiO<sub>3</sub>unit planes matching blocks of 11 SrTiO<sub>3</sub>unit planes. This work provides a framework for the synthesis of high quality perovskite bismuthates films and for the understanding of their interface interactions with homostructural substrates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000953363800004 Publication Date 2023-03-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2166-532X ISBN Additional Links UA library record; WoS full record  
  Impact Factor 6.1 Times cited Open Access OpenAccess  
  Notes This work received support from the ERC Advanced grant (Grant No. 833973) “FRESCO” and funding from the European Union’s Horizon 2020 Research and Innovation Program under Grant Agreement No. 823717—ESTEEM3, Van Gogh travel grant, Nuffic, The Netherlands (CF No. 42582SB).; esteem3reported; esteem3TA Approved Most recent IF: 6.1; 2023 IF: 4.335  
  Call Number EMAT @ emat @c:irua:196135 Serial 7377  
Permanent link to this record
 

 
Author Meng, X.; Chen, S.; Peng, H.; Bai, H.; Zhang, S.; Su, X.; Tan, G.; Van Tendeloo, G.; Sun, Z.; Zhang, Q.; Tang, X.; Wu, J. pdf  doi
openurl 
  Title Ferroelectric engineering : enhanced thermoelectric performance by local structural heterogeneity Type A1 Journal article
  Year 2022 Publication Science China : materials Abbreviated Journal Sci China Mater  
  Volume Issue Pages  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) Although traditional ferroelectric materials are usually dielectric and nonconductive, GeTe is a typical ferroelectric semiconductor, possessing both ferroelectric and semiconducting properties. GeTe is also a widely studied thermoelectric material, whose performance has been optimized by doping with various elements. However, the impact of the ferroelectric domains on the thermoelectric properties remains unclear due to the difficulty to directly observe the ferroelectric domains and their evolutions under actual working conditions where the material is exposed to high temperatures and electric currents. Herein, based on in-situ investigations of the ferroelectric domains and domain walls in both pure and Sb-doped GeTe crystals, we have been able to analyze the dynamic evolution of the ferroelectric domains and domain walls, exposed to an electric field and temperature. Local structural heterogeneities and nano-sized ferroelectric domains are generated due to the interplay of the Sb3+ dopant and the Ge-vacancies, leading to the increased number of charged domain walls and a much improved thermoelectric performance. This work reveals the fundamental mechanism of ferroelectric thermoelectrics and provides insights into the decoupling of previously interdependent properties such as thermo-power and electrical conductivity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000749973500001 Publication Date 2022-02-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2095-8226; 2199-4501 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.1 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 8.1  
  Call Number UA @ admin @ c:irua:186429 Serial 6959  
Permanent link to this record
 

 
Author Verheyen, E.; Joos, L.; Van Havenbergh, K.; Breynaert, E.; Kasian, N.; Gobechiya, E.; Houthoofd, K.; Martineau, C.; Hinterstein, M.; Taulelle, F.; Van Speybroeck, V.; Waroquier, M.; Bals, S.; Van Tendeloo, G.; Kirschhock, C.E.A.; Martens, J.A.; pdf  doi
openurl 
  Title Design of zeolite by inverse sigma transformation Type A1 Journal article
  Year 2012 Publication Nature materials Abbreviated Journal Nat Mater  
  Volume 11 Issue 12 Pages 1059-1064  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) Although the search for new zeolites has traditionally been based on trial and error, more rational methods are now available. The theoretical concept of inverse transformation of a zeolite framework to generate a new structure by removal of a layer of framework atoms and contraction has for the first time been achieved experimentally. The reactivity of framework germanium atoms in strong mineral acid was exploited to selectively remove germanium-containing four-ring units from an UTL type germanosilicate zeolite. Annealing of the leached framework through calcination led to the new all-silica COK-14 zeolite with intersecting 12- and 10-membered ring channel systems. An intermediate stage of this inverse transformation with dislodged germanate four-rings still residing in the pores could be demonstrated. Inverse transformation involving elimination of germanium-containing structural units opens perspectives for the synthesis of many more zeolites.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000311432600025 Publication Date 2012-10-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1476-1122;1476-4660; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 39.737 Times cited 140 Open Access  
  Notes Fwo Approved Most recent IF: 39.737; 2012 IF: 35.749  
  Call Number UA @ lucian @ c:irua:101783 Serial 661  
Permanent link to this record
 

 
Author Sathiya, M.; Abakumov, A.M.; Foix, D.; Rousse, G.; Ramesha, K.; Saubanère, M.; Doublet, M. .; Vezin, H.; Laisa, C.P.; Prakash, A.S.; Gonbeau, D.; Van Tendeloo, G.; Tarascon, J.M. pdf  url
doi  openurl
  Title Origin of voltage decay in high-capacity layered oxide electrodes Type A1 Journal article
  Year 2015 Publication Nature materials Abbreviated Journal Nat Mater  
  Volume 14 Issue 14 Pages 230-238  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) Although Li-rich layered oxides (Li1+xNiyCozMn1−x−y−zO2 > 250 mAh g−1) are attractive electrode materials providing energy densities more than 15% higher than todays commercial Li-ion cells, they suffer from voltage decay on cycling. To elucidate the origin of this phenomenon, we employ chemical substitution in structurally related Li2RuO3 compounds. Li-rich layered Li2Ru1−yTiyO3 phases with capacities of ~240 mAh g−1 exhibit the characteristic voltage decay on cycling. A combination of transmission electron microscopy and X-ray photoelectron spectroscopy studies reveals that the migration of cations between metal layers and Li layers is an intrinsic feature of the chargedischarge process that increases the trapping of metal ions in interstitial tetrahedral sites. A correlation between these trapped ions and the voltage decay is established by expanding the study to both Li2Ru1−ySnyO3 and Li2RuO3; the slowest decay occurs for the cations with the largest ionic radii. This effect is robust, and the finding provides insights into new chemistry to be explored for developing high-capacity layered electrodes that evade voltage decay.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000348600200024 Publication Date 2014-12-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1476-1122;1476-4660; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 39.737 Times cited 395 Open Access  
  Notes 246791 Countatoms; 312483 Esteem2; esteem2_ta Approved Most recent IF: 39.737; 2015 IF: 36.503  
  Call Number c:irua:132555 c:irua:132555 Serial 2528  
Permanent link to this record
 

 
Author Poulain, R.; Lumbeeck, G.; Hunka, J.; Proost, J.; Savolainen, H.; Idrissi, H.; Schryvers, D.; Gauquelin, N.; Klein, A. pdf  doi
openurl 
  Title Electronic and chemical properties of nickel oxide thin films and the intrinsic defects compensation mechanism Type A1 Journal article
  Year 2022 Publication ACS applied electronic materials Abbreviated Journal  
  Volume 4 Issue 6 Pages 2718-2728  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) Although largely studied, contradictory results on nickel oxide (NiO) properties can be found in the literature. We herein propose a comprehensive study that aims at leveling contradictions related to NiO materials with a focus on its conductivity, surface properties, and the intrinsic charge defects compensation mechanism with regards to the conditions preparation. The experiments were performed by in situ photo-electron spectroscopy, electron energy loss spectroscopy, and optical as well as electrical measurements on polycrystalline NiO thin films prepared under various preparation conditions by reactive sputtering. The results show that surface and bulk properties were strongly related to the deposition temperature with in particular the observation of Fermi level pinning, high work function, and unstable oxygen-rich grain boundaries for the thin films produced at room temperature but not at high temperature (>200 degrees C). Finally, this study provides substantial information about surface and bulk NiO properties enabling to unveil the origin of the high electrical conductivity of room temperature NiO thin films and also for supporting a general electronic charge compensation mechanism of intrinsic defects according to the deposition temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000819431200001 Publication Date 2022-06-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2637-6113 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:189555 Serial 7081  
Permanent link to this record
 

 
Author De Keukeleere, K.; Cayado, P.; Meledin, A.; Vallès, F.; De Roo, J.; Rijckaert, H.; Pollefeyt, G.; Bruneel, E.; Palau, A.; Coll, M.; Ricart, S.; Van Tendeloo, G.; Puig, T.; Obradors, X.; Van Driessche, I. url  doi
openurl 
  Title Superconducting YBa2Cu3O7-δNanocomposites Using Preformed ZrO2Nanocrystals: Growth Mechanisms and Vortex Pinning Properties Type A1 Journal article
  Year 2016 Publication Advanced Electronic Materials Abbreviated Journal  
  Volume 2 Issue 2 Pages 1600161  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (down) Although high temperature superconductors are promising for power applications, the production of low-cost coated conductors with high current densities—at high magnetic fields—remains challenging. A superior superconducting YBa2Cu3O7–δ nanocomposite is fabricated via chemical solution deposition (CSD) using preformed nanocrystals (NCs). Preformed, colloidally stable ZrO2 NCs are added to the trifluoroacetic acid based precursor solution and the NCs' stability is confirmed up to 50 mol% for at least 2.5 months. These NCs tend to disrupt the epitaxial growth of YBa2Cu3O7–δ, unless a thin seed layer is applied. A 10 mol% ZrO2 NC addition proved to be optimal, yielding a critical current density JC of 5 MA cm−2 at 77 K in self-field. Importantly, this new approach results in a smaller magnetic field decay of JC(H//c) for the nanocomposite compared to a pristine film. Furthermore, microstructural analysis of the YBa2Cu3O7–δ nanocomposite films reveals that different strain generation mechanisms may occur compared to the spontaneous segregation approach. Yet, the generated nanostrain in the YBa2Cu3O7–δ nanocomposite results in an improvement of the superconducting properties similar to the spontaneous segregation approach. This new approach, using preformed NCs in CSD coatings, can be of great potential for high magnetic field applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000386624100003 Publication Date 2016-09-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2199160X ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 26 Open Access  
  Notes This work was financially supported by a BOF research fund of Ghent University (BOF11/DOC/286), FWO Flanders (F08512), and Eurotapes, a collaborative project funded by the European Community’s Seven Framework Program (EU-FP7 NMP-LA-2012-280432). We also acknowledge MINECO and FEDER funds for MAT2014-51778-C2-1-R and the Center of Excellence award Severo Ochoa SEV-2015-0496, and SGR753 from the Generalitat of Catalunya. MC acknowledges RyC contract 2013-12448 Approved Most recent IF: NA  
  Call Number EMAT @ emat @ c:irua:135171 Serial 4118  
Permanent link to this record
 

 
Author Fang, C.M.; van Huis, M.A.; Jansen, J.; Zandbergen, H.W. url  doi
openurl 
  Title Role of carbon and nitrogen in Fe2C and Fe2N from first-principles calculations Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 84 Issue 9 Pages 094102-094102,10  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) Although Fe2C and Fe2N are technologically important materials, the exact nature of the chemical bonding of C and N atoms and the related impact on the electronic properties are at present unclear. Here, results of first-principles electronic structure calculations for Fe2X (X = C, N) phases are presented. The electronic structure calculations show that the roles of N and C in iron nitrides and carbides are comparable, and that the X-X interactions have significant impact on electronic properties. Accurate analysis of the spatially resolved differences in electron densities reveals a subtle distinction between the chemical bonding and charge transfer of N and C ions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000294772800003 Publication Date 2011-09-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 24 Open Access  
  Notes Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:92327 Serial 2912  
Permanent link to this record
 

 
Author Billet, J.; Vandewalle, S.; Meire, M.; Blommaerts, N.; Lommens, P.; Verbruggen, S.W.; De Buysser, K.; Du Prez, F.; Van Driesche, I. url  doi
openurl 
  Title Mesoporous TiO2 from poly(N,N-dimethylacrylamide)-b-polystyrene block copolymers for long-term acetaldehyde photodegradation Type A1 Journal article
  Year 2019 Publication Journal of materials science Abbreviated Journal J Mater Sci  
  Volume 55 Issue 55 Pages 1933-1945  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract (down) Although already some mesoporous (2–50 nm) sol–gel TiO2 synthesis strategies exist, no pore size control beyond the 12 nm range is possible without using specialized organic structure-directing agents synthetized via controlled anionic/radical polymerizations. Here, we present the use of reversible addition–fragmentation chain transfer (RAFT) polymerization as a straightforward and industrial applicable alternative to the existing controlled polymerization methods for structure-directing agent synthesis. Poly(N,N-dimethylacrylamide)-block-polystyrene (PDMA-b-PS) block copolymer, synthesized via RAFT, was chosen as structure-directing agent for the formation of the mesoporous TiO2. Crack-free thin layers TiO2 with tunable pores from 8 to 45 nm could be acquired. For the first time, in a detailed and systematic approach, the influence of the block size and dispersity of the block copolymer is experimentally screened for their influence on the final meso-TiO2 layers. As expected, the mesoporous TiO2 pore sizes showed a clear correlation to the polystyrene block size and the dispersity of the PDMA-b-PS block copolymer. Surprisingly, the dispersity of the polymer was shown not to be affecting the standard deviation of the pores. As a consequence, RAFT could be seen as a viable alternative to the aforementioned controlled polymerization reactions for the synthesis of structure-directing agents enabling the formation of mesoporous pore size-controlled TiO2. To examine the photocatalytic activity of the mesoporous TiO2 thin layers, the degradation of acetaldehyde, a known indoor pollutant, was studied. Even after 3 years of aging, the TiO2 thin layer retained most of its activity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000494929300001 Publication Date 2019-11-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2461 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.599 Times cited 2 Open Access  
  Notes ; Ghent University is acknowledged for funding the research presented in this paper. M. Meire and S. W. Verbruggen acknowledge the FWO-Flanders (Fund for Scientific Research-Flanders) for financial support. The authors thank Bernhard De Meyer for the SEC analysis, Hannes Rijckaert for the cross-sectional analysis, Tom Planckaert for BET analysis of the meso-TiO<INF>2</INF> powders, Jeroen Kint for the porosiellipsometry tests and Frank Driessen for the MALDI-TOF analysis. ; Approved Most recent IF: 2.599  
  Call Number UA @ admin @ c:irua:163842 Serial 5969  
Permanent link to this record
 

 
Author Pandey, T.; Du, M.-H.; Parker, D.S.; Lindsay, L. pdf  doi
openurl 
  Title Origin of ultralow phonon transport and strong anharmonicity in lead-free halide perovskites Type A1 Journal article
  Year 2022 Publication Materials Today Physics Abbreviated Journal  
  Volume 28 Issue Pages 100881-10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) All-inorganic lead-free halide double perovskites offer a promising avenue toward non-toxic, stable optoelec-tronic materials, properties that are missing in their prominent lead-containing counterparts. Their large ther-mopowers and high carrier mobilities also make them promising for thermoelectric applications. Here, we present a first-principles study of the lattice vibrations and thermal transport behaviors of Cs2SnI6 and gamma-CsSnI3, two prototypical compounds in this materials class. We show that conventional static zero temperature density functional theory (DFT) calculations severely underestimate the lattice thermal conductivities (kappa l) of these compounds, indicating the importance of dynamical effects. By calculating anharmonic renormalized phonon dispersions, we show that some optic phonons significantly harden with increasing temperature (T), which reduces the scattering of heat carrying phonons and enhances calculated kappa l values when compared with standard zero temperature DFT. Furthermore, we demonstrate that coherence contributions to kappa l, arising from wave like phonon tunneling, are important in both compounds. Overall, calculated kappa l with temperature-dependent inter-atomic force constants, built from particle and coherence contributions, are in good agreement with available measured data, for both magnitude and temperature dependence. Large anharmonicity combined with low phonon group velocities yield ultralow kappa l values, with room temperature values of 0.26 W/m-K and 0.72 W/m-K predicted for Cs2SnI6 and gamma-CsSnI3, respectively. We further show that the lattice dynamics of these compounds are highly anharmonic, largely mediated by rotation of the SnI6 octahedra and localized modes originating from Cs rattling motion. These thermal characteristics combined with their previously computed excellent electronic properties make these perovskites promising candidates for optoelectronic and room temperature thermoelectric applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000876484300002 Publication Date 2022-10-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2542-5293 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.5 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 11.5  
  Call Number UA @ admin @ c:irua:192139 Serial 7329  
Permanent link to this record
 

 
Author Gkanatsiou, A.; Lioutas, C.B.; Frangis, N.; Polychroniadis, E.K.; Prystawko, P.; Leszczynski, M.; Altantzis, T.; Van Tendeloo, G. url  doi
openurl 
  Title Influence of 4H-SiC substrate miscut on the epitaxy and microstructure of AlGaN/GaN heterostructures Type A1 Journal article
  Year 2019 Publication Materials science in semiconductor processing Abbreviated Journal Mat Sci Semicon Proc  
  Volume 91 Issue Pages 159-166  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) AlGaN/GaN heterostructures were grown on “on-axis” and 2° off (0001) 4H-SiC substrates by metalorganic vapor phase epitaxy (MOVPE). Structural characterization was performed by transmission electron microscopy. The dislocation density, being greater in the on-axis case, is gradually reduced in the GaN layer and is forming

dislocation loops in the lower region. Steps aligned along [11̅00] in the off-axis case give rise to simultaneous defect formation. In the on-axis case, an almost zero density of steps is observed, with the main origin of defects probably being the orientation mismatch at the grain boundaries between the small not fully coalesced AlN grains. V-shaped formations are observed in the AlN nucleation layer, but are more frequent in the off-axis case, probably enhanced by the presence of steps. These V-shaped formations are completely overgrown by the GaN layer, during the subsequent deposition, presenting AlGaN areas in the walls of the defect, indicating an interdiffusion between the layers. Finally, at the AlGaN/GaN heterostructure surface in the on-axis case, V-shapes are observed, with the AlN spacer and AlGaN (21% Al) thickness on relaxed GaN exceeding the critical thickness for relaxation. On the other hand, no relaxation in the form of V-shape creation is observed in the off-axis case, probably due to the smaller AlGaN thickness (less than 21% Al). The AlN spacer layer, grown in between the heterostructure, presents a uniform thickness and clear interfaces.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000454537700022 Publication Date 2018-11-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1369-8001 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.359 Times cited 1 Open Access Not_Open_Access  
  Notes Funding: This work was supported by the IKY Fellowships of Excellence for Postgraduate Studies in Greece-SIEMENS Program; the Greek General Secretariat for Research and Technology, contract SAE 013/8–2009SE 01380012; and the JU ENIAC Project LAST POWER Large Area silicon carbide Substrates and heteroepitaxial GaN for POWER device applications [grant number 120218]. Also part of the research leading to these results has received funding from the European Union Seventh Framework Program under Grant Agreement 312483 – ESTEEM2 (Integrated Infrastructure Initiative–I3). T.A. acknowledges financial support from the Research Foundation Flanders (FWO, Belgium) through a post-doctoral grant. Approved Most recent IF: 2.359  
  Call Number EMAT @ emat @UA @ admin @ c:irua:156200 Serial 5149  
Permanent link to this record
 

 
Author Morozov, V.; Deyneko, D.; Basoyich, O.; Khaikina, E.G.; Spassky, D.; Morozov, A.; Chernyshev, V.; Abakumov, A.; Hadermann, J. pdf  doi
openurl 
  Title Incommensurately modulated structures and luminescence properties of the AgxSm(2-x)/3WO4 (x=0.286, 0.2) scheelites as thermographic phosphors Type A1 Journal article
  Year 2018 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 30 Issue 14 Pages 4788-4798  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) Ag+ for Sm3+ substitution in the scheelite-type AgxSm(2-x)/3 square(1-2x)/3WO4 tungstates has been investigated for its influence on the cation-vacancy ordering and luminescence properties. A solid state method was used to synthesize the x = 0.286 and x = 0.2 compounds, which exhibited (3 + 1)D incommensurately modulated structures in the transmission electron microscopy study. Their structures were refined using high resolution synchrotron powder X-ray diffraction data. Under near-ultraviolet light, both compounds show the characteristic emission lines for (4)G(5/2) -> H-6(J) (J = 5/2, 7/2, 9/2, and 11/2) transitions of the Sm3+ ions in the range 550-720 nm, with the J = 9/2 transition at the similar to 648 nm region being dominant for all photoluminescence spectra. The intensities of the (4)G(5/2) -> H-6(9/2) and (4)G(5/2) -> H-6(7/2) bands have different temperature dependencies. The emission intensity ratios (R) for these bands vary reproducibly with temperature, allowing the use of these materials as thermographic phosphors.  
  Address  
  Corporate Author Thesis  
  Publisher American Chemical Society Place of Publication Washington, D.C Editor  
  Language Wos 000440105500037 Publication Date 2018-06-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 2 Open Access Not_Open_Access  
  Notes ; This research was supported by FWO (Project G039211N), Flanders Research Foundation. The research was carried out within the state assignment of FASO of Russia (Themes No. 0339-2016-0007). V.M. thanks the Russian Foundation for Basic Research (Grant 18-03-00611) for financial support. E.G.K. and O.B. acknowledge financial support from the Russian Foundation for Basic Research (Grant 16-03-00510). D.D. thanks the Foundation of the Russian Federation President (Grant MK-3502.2018.5) for financial support. We are grateful to the ESRF for granting the beamtime. V.C. is grateful for the financial support of the Russian Ministry of Science and Education (Project No. RFMEFI61616X0069). We are grateful to the ESRF for the access to ID22 station (experiment MA-3313). ; Approved Most recent IF: 9.466  
  Call Number UA @ lucian @ c:irua:153156 Serial 5107  
Permanent link to this record
 

 
Author Schattschneider, P.; Verbeeck, J.; Mauchamp, V.; Jaouen, M.; Hamon, A.-L. url  doi
openurl 
  Title Real-space simulations of spin-polarized electronic transitions in iron Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 82 Issue 14 Pages 144418-144418,11  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) After the advent of energy-loss magnetic chiral dichroism (EMCD) in 2006, rapid progress in theoretical understanding and in experimental performance was achieved, recently demonstrating a spatial resolution of better than 2 nm. Similar to the x-ray magnetic circular dichroism technique, EMCD is used to study atom specific magnetic moments. The latest generation of electron microscopes opens the road to the mapping of spin moments on the atomic scale with this method. Here the theoretical background to reach this challenging aim is elaborated. Numerical simulations of the L3 transition in an Fe specimen, based on a combination of the density-matrix approach for inelastic electron scattering with the propagation of the probe electron in the lattice potential indicate the feasibility of single spin mapping in the electron microscope.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000282678900006 Publication Date 2010-10-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 11 Open Access  
  Notes P.S. acknowledges the support of the Austrian Science Fund, Project No. I543-N20. Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:85029UA @ admin @ c:irua:85029 Serial 2832  
Permanent link to this record
 

 
Author Schryvers, D.; Cao, S.; Tirry, W.; Idrissi, H.; Van Aert, S. pdf  url
doi  openurl
  Title Advanced three-dimensional electron microscopy techniques in the quest for better structural and functional materials Type A1 Journal article
  Year 2013 Publication Science and technology of advanced materials Abbreviated Journal Sci Technol Adv Mat  
  Volume 14 Issue 1 Pages 014206-14213  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) After a short review of electron tomography techniques for materials science, this overview will cover some recent results on different shape memory and nanostructured metallic systems obtained by various three-dimensional (3D) electron imaging techniques. In binary NiTi, the 3D morphology and distribution of Ni4Ti3 precipitates are investigated by using FIB/SEM slice-and-view yielding 3D data stacks. Different quantification techniques will be presented including the principal ellipsoid for a given precipitate, shape classification following a Zingg scheme, particle distribution function, distance transform and water penetration. The latter is a novel approach to quantifying the expected matrix transformation in between the precipitates. The different samples investigated include a single crystal annealed with and without compression yielding layered and autocatalytic precipitation, respectively, and a polycrystal revealing different densities and sizes of the precipitates resulting in a multistage transformation process. Electron tomography was used to understand the interaction between focused ion beam-induced Frank loops and long dislocation structures in nanobeams of Al exhibiting special mechanical behaviour measured by on-chip deposition. Atomic resolution electron tomography is demonstrated on Ag nanoparticles in an Al matrix.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Sendai Editor  
  Language Wos 000316463800008 Publication Date 2013-03-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1468-6996;1878-5514; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.798 Times cited 6 Open Access  
  Notes Fwo; Iap; Esteem Approved Most recent IF: 3.798; 2013 IF: 2.613  
  Call Number UA @ lucian @ c:irua:107343 Serial 77  
Permanent link to this record
 

 
Author Lobato, I.; Friedrich, T.; Van Aert, S. pdf  url
doi  openurl
  Title Deep convolutional neural networks to restore single-shot electron microscopy images Type A1 Journal article
  Year 2024 Publication N P J Computational Materials Abbreviated Journal npj Comput Mater  
  Volume 10 Issue 1 Pages 10  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) Advanced electron microscopy techniques, including scanning electron microscopes (SEM), scanning transmission electron microscopes (STEM), and transmission electron microscopes (TEM), have revolutionized imaging capabilities. However, achieving high-quality experimental images remains a challenge due to various distortions stemming from the instrumentation and external factors. These distortions, introduced at different stages of imaging, hinder the extraction of reliable quantitative insights. In this paper, we will discuss the main sources of distortion in TEM and S(T)EM images, develop models to describe them, and propose a method to correct these distortions using a convolutional neural network. We validate the effectiveness of our method on a range of simulated and experimental images, demonstrating its ability to significantly enhance the signal-to-noise ratio. This improvement leads to a more reliable extraction of quantitative structural information from the images. In summary, our findings offer a robust framework to enhance the quality of electron microscopy images, which in turn supports progress in structural analysis and quantification in materials science and biology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001138183000001 Publication Date 2024-01-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2057-3960 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access OpenAccess  
  Notes This work was supported by the European Research Council (Grant 770887 PICOMETRICS to S.V.A.). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G034621N, G0A7723N and EOS 40007495). S.V.A. acknowledges funding from the University of Antwerp Research Fund (BOF). The authors thank Lukas Grünewald for data acquisition and support for Fig. 7. Approved Most recent IF: NA  
  Call Number EMAT @ emat @c:irua:202714 Serial 8994  
Permanent link to this record
 

 
Author Marikutsa, A.; Rumyantseva, M.; Gaskov, A.; Batuk, M.; Hadermann, J.; Sarmadian, N.; Saniz, R.; Partoens, B.; Lamoen, D. url  doi
openurl 
  Title Effect of zinc oxide modification by indium oxide on microstructure, adsorbed surface species, and sensitivity to CO Type A1 Journal article
  Year 2019 Publication Frontiers in materials Abbreviated Journal  
  Volume 6 Issue 6 Pages  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract (down) Additives in semiconductor metal oxides are commonly used to improve sensing behavior of gas sensors. Due to complicated effects of additives on the materials microstructure, adsorption sites and reactivity to target gases the sensing mechanism with modified metal oxides is a matter of thorough research. Herein, we establish the promoting effect of nanocrystalline zinc oxide modification by 1-7 at.% of indium on the sensitivity to CO gas due to improved nanostructure dispersion and concentration of active sites. The sensing materials were synthesized via an aqueous coprecipitation route. Materials composition, particle size and BET area were evaluated using X-ray diffraction, nitrogen adsorption isotherms, high-resolution electron microscopy techniques and EDX-mapping. Surface species of chemisorbed oxygen, OH-groups, and acid sites were characterized by probe molecule techniques and infrared spectroscopy. It was found that particle size of zinc oxide decreased and the BET area increased with the amount of indium oxide. The additive was observed as amorphous indium oxide segregated on agglomerated ZnO nanocrystals. The measured concentration of surface species was higher on In2O3-modified zinc oxide. With the increase of indium oxide content, the sensor response of ZnO/In2O3 to CO was improved. Using in situ infrared spectroscopy, it was shown that oxidation of CO molecules was enhanced on the modified zinc oxide surface. The effect of modifier was attributed to promotion of surface OH-groups and enhancement of CO oxidation on the segregated indium ions, as suggested by DFT in previous work.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000461540600001 Publication Date 2019-03-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-8016 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 11 Open Access OpenAccess  
  Notes ; Research was supported by the grant from Russian Science Foundation (project No. 18-73-00071). ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:158540 Serial 5205  
Permanent link to this record
 

 
Author Basile, F.; Benito, P.; Bugani, S.; de Nolf, W.; Fornasari, G.; Janssens, K.; Morselli, L.; Scavetta, E.; Tonelli, D.; Vaccari, A. doi  openurl
  Title Combined use of synchrotron-radiation-based imaging techniques for the characterization of structured catalysts Type A1 Journal article
  Year 2010 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater  
  Volume 20 Issue 23 Pages 4117-4126  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract (down) Active-phase-coated metallic supports as structured catalysts are gaining attention in endothermic and exothermic processes because they improve heat transfer. The deposition of a well-adhered and stable catalyst layer on the metallic support constitutes an important feature for the successful application of the final material. In this work, coating of FeCrAlY foams is performed by a one-step electrosynthesis-deposition of hydrotalcite-type compounds, precursors of catalysts active in endothermic steam methane reforming. The catalysts are studied at different length scales by using, for the first time, a combination of several techniques: SEM/EDS and X-ray fluorescence, X-ray powder diffraction and absorption-tomography experiments on the micro- and nanoscales at a synchrotron facility. The results show that the morphology of the coating depends on the synthesis conditions and that the catalyst may be described as Ni metal crystallites dispersed on γ-Al2O3, homogeneously coating the FeCrAlY foam.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000285392900010 Publication Date 2010-09-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 24 Open Access  
  Notes ; The authors give thanks to Dr. Cloetens, for helping during the absorption tomography experiments, performed at ID19 of the ESRF; and P. Blauet and R. Toucolou, for helping during the mu-XRF/XRPD and nano-XRF experiments at ID22 and ID22-NI of the ESRF. The financial support from the Ministero per l'Istruzione, l'Universita e la Ricerca (MIUR, Roma, Italy) is gratefully acknowledged. ; Approved Most recent IF: 12.124; 2010 IF: 8.508  
  Call Number UA @ admin @ c:irua:85834 Serial 5525  
Permanent link to this record
 

 
Author Turner, S.; Shenderova, O.; da Pieve, F.; Lu, Y.-G.; Yücelen, E.; Verbeeck, J.; Lamoen, D.; Van Tendeloo, G. pdf  doi
openurl 
  Title Aberration-corrected microscopy and spectroscopy analysis of pristine, nitrogen containing detonation nanodiamond Type A1 Journal article
  Year 2013 Publication Physica status solidi : A : applications and materials science Abbreviated Journal Phys Status Solidi A  
  Volume 210 Issue 10 Pages 1976-1984  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) Aberration-corrected transmission electron microscopy, electron energy-loss spectroscopy, and density functional theory (DFT) calculations are used to solve several key questions about the surface structure, the particle morphology, and the distribution and nature of nitrogen impurities in detonation nanodiamond (DND) cleaned by a recently developed ozone treatment. All microscopy and spectroscopy measurements are performed at a lowered acceleration voltage (80/120kV), allowing prolonged and detailed experiments to be carried out while minimizing the risk of knock-on damage or surface graphitization of the nanodiamond. High-resolution TEM (HRTEM) demonstrates the stability of even the smallest nanodiamonds under electron illumination at low voltage and is used to image the surface structure of pristine DND. High resolution electron energy-loss spectroscopy (EELS) measurements on the fine structure of the carbon K-edge of nanodiamond demonstrate that the typical * pre-peak in fact consists of three sub-peaks that arise from the presence of, amongst others, minimal fullerene-like reconstructions at the nanoparticle surfaces and deviations from perfect sp(3) coordination at defects in the nanodiamonds. Spatially resolved EELS experiments evidence the presence of nitrogen within the core of DND particles. The nitrogen is present throughout the whole diamond core, and can be enriched at defect regions. By comparing the fine structure of the experimental nitrogen K-edge with calculated energy-loss near-edge structure (ELNES) spectra from DFT, the embedded nitrogen is most likely related to small amounts of single substitutional and/or A-center nitrogen, combined with larger nitrogen clusters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000329299700025 Publication Date 2013-10-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1862-6300; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.775 Times cited 37 Open Access  
  Notes 262348 ESMI; 246791 COUNTATOMS; FWO; Hercules; GOA XANES meets ELNES Approved Most recent IF: 1.775; 2013 IF: 1.525  
  Call Number UA @ lucian @ c:irua:110821UA @ admin @ c:irua:110821 Serial 41  
Permanent link to this record
 

 
Author Sivek, J.; Sahin, H.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title Adsorption and absorption of boron, nitrogen, aluminum, and phosphorus on silicene : stability and electronic and phonon properties Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 8 Pages 085444-85448  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) Ab initio calculations within the density-functional theory formalism are performed to investigate the chemical functionalization of a graphene-like monolayer of siliconsilicenewith B, N, Al, or P atoms. The structural, electronic, magnetic, and vibrational properties are reported. The most preferable adsorption sites are found to be valley, bridge, valley and hill sites for B, N, Al, and P adatoms, respectively. All the relaxed systems with adsorbed/substituted atoms exhibit metallic behavior with strongly bonded B, N, Al, and P atoms accompanied by an appreciable electron transfer from silicene to the B, N, and P adatom/substituent. The Al atoms exhibit opposite charge transfer, with n-type doping of silicene and weaker bonding. The adatoms/substituents induce characteristic branches in the phonon spectrum of silicene, which can be probed by Raman measurements. Using molecular dynamics, we found that the systems under study are stable up to at least T=500 K. Our results demonstrate that silicene has a very reactive and functionalizable surface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000315482900007 Publication Date 2013-02-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 169 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. H.S. is supported by a FWO Pegasus Marie Curie Fellowship. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:107071 Serial 60  
Permanent link to this record
 

 
Author Sivek, J.; Leenaerts, O.; Partoens, B.; Peeters, F.M. doi  openurl
  Title First-principles investigation of bilayer fluorographene Type A1 Journal article
  Year 2012 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 116 Issue 36 Pages 19240-19245  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract (down) Ab initio calculations within the density functional theory formalism are performed to investigate the stability and electronic properties of fluorinated bilayer graphene (bilayer fluorographene). A comparison is made to previously investigated graphane, bilayer graphane, and fluorographene. Bilayer fluorographene is found to be a much more stable material than bilayer graphane. Its electronic band structure is similar to that of monolayer fluorographene, but its electronic band gap is significantly larger (about 1 eV). We also calculate the effective masses around the Gamma-point for fluorographene and bilayer fluorographene and find that they are isotropic, in contrast to earlier reports. Furthermore, it is found that bilayer fluorographene is almost as strong as graphene, as its 2D Young's modulus is approximately 300 N m(-1).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000308631300022 Publication Date 2012-08-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 39 Open Access  
  Notes ; This work is supported by the ESF-Eurocores program EuroGRAPHENE (project CONERAN) and the Flemish Science Foundation (FWO-V1). ; Approved Most recent IF: 4.536; 2012 IF: 4.814  
  Call Number UA @ lucian @ c:irua:101842 Serial 1211  
Permanent link to this record
 

 
Author Kahraman, Z.; Yagmurcukardes, M.; Sahin, H. pdf  doi
openurl 
  Title Functionalization of single-layer TaS₂ and formation of ultrathin Janus structures Type A1 Journal article
  Year 2020 Publication Journal Of Materials Research Abbreviated Journal J Mater Res  
  Volume 35 Issue 11 Pages 1397-1406  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) Ab initio calculations are performed to investigate the structural, vibrational, electronic, and piezoelectric properties of functionalized single layers of TaS2. We find that single-layer TaS2 is a suitable host material for functionalization via fluorination and hydrogenation. The one-side fluorinated (FTaS2) and hydrogenated (HTaS2) single layers display indirect gap semiconducting behavior in contrast to bare metallic TaS2. On the other hand, it is shown that as both surfaces of TaS2 are saturated anti-symmetrically, the formed Janus structure is a dynamically stable metallic single layer. In addition, it is revealed that out-of-plane piezoelectricity is created in all anti-symmetric structures. Furthermore, the Janus-type single-layer has the highest specific heat capacity to which longitudinal and transverse acoustical phonon modes have contribution at low temperatures. Our findings indicate that single-layer TaS2 is suitable for functionalization via H and F atoms that the formed, anti-symmetric structures display distinctive electronic, vibrational, and piezoelectric properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000540764300005 Publication Date 2020-04-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0884-2914 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.7 Times cited 1 Open Access  
  Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. Acknowledges financial support from the TUBITAK under the project number 117F095. H.S. acknowledges support from Turkish Academy of Sciences under the GEBIP program. This work is supported by the Flemish Science Foundation (FWO-Vl) by a post-doctoral fellowship (M.Y.). ; Approved Most recent IF: 2.7; 2020 IF: 1.673  
  Call Number UA @ admin @ c:irua:170185 Serial 6525  
Permanent link to this record
 

 
Author Michel, K.H.; Verberck, B. url  doi
openurl 
  Title Phonon dispersions and piezoelectricity in bulk and multilayers of hexagonal boron nitride Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 83 Issue 11 Pages 115328-115328,14  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) A unified theory of phonon dispersions and piezoelectricity in bulk and multilayers of hexagonal boron nitride (h-BN) is derived. The dynamical matrix is calculated on the basis of an empirical force constant model of intralayer valence and interlayer van der Waals interactions. Coulomb interactions are calculated by Ewalds method, adapted for the three-dimensional (3D) and the multilayer case. The deformation of the ionic charge distribution with long-wave lattice displacements is taken into account. Special attention is devoted to the nonanalytic long-range Coulomb contribution to the dynamical matrix which is different for the 3D crystal and the multilayer case. Consequently there is a splitting of the transverse optical (TO) and longitudinal optical (LO) phonon branches of E1u symmetry and a discontinuity of the A2u branch at the Γ point in 3D h-BN. No such splitting and discontinuity at Γ are present in multilayer crystals with a finite number N of layers. There a diverging bundle of N overbending optical phonon branches emerges from Γ. Borns long-wave theory is applied and extended for the study of piezoelectricity in layered crystals. While 3D h-BN and h-BN multilayers with an even number of layers (symmetry D6h) are not piezoelectric, multilayers with an uneven number of Nu layers (symmetry D3h) are piezoelectric; the piezoelectric coefficient e1,11 is inversely proportional to Nu.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000288783700005 Publication Date 2011-03-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 82 Open Access  
  Notes ; Discussions with G. Heger, B. Partoens, and F. M. Peeters are gratefully acknowledged. This work has been supported by the Flemish Science Foundation (FWO-V1) and the Bijzonder Onderzoeksfonds, Universiteit Antwerpen (BOF-UA). ; Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:89602 Serial 2603  
Permanent link to this record
 

 
Author Chaves, A.; Covaci, L.; Peeters, F.M.; Milošević, M.V. url  doi
openurl 
  Title Topologically protected moiré exciton at a twist-boundary in a van der Waals heterostructure Type A1 Journal article
  Year 2022 Publication 2D materials Abbreviated Journal 2D Mater  
  Volume 9 Issue 2 Pages 025012  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract (down) A twin boundary in one of the layers of a twisted van der Waals heterostructure separates regions with near opposite inter-layer twist angles. In a MoS<sub>2</sub>/WSe<sub>2</sub>bilayer, the regions with<inline-formula><tex-math><?CDATA $Rh^h$?></tex-math><math overflow=“scroll”><msubsup><mi>R</mi><mi>h</mi><mi>h</mi></msubsup></math><inline-graphic href=“tdmac529dieqn1.gif” type=“simple” /></inline-formula>and<inline-formula><tex-math><?CDATA $Rh^X$?></tex-math><math overflow=“scroll”><msubsup><mi>R</mi><mi>h</mi><mi>X</mi></msubsup></math><inline-graphic href=“tdmac529dieqn2.gif” type=“simple” /></inline-formula>stacking registry that defined the sub-lattices of the moiré honeycomb pattern would be mirror-reflected across such a twist boundary. In that case, we demonstrate that topologically protected chiral moiré exciton states are confined at the twist boundary. These are one-dimensional and uni-directional excitons with opposite velocities for excitons composed by electronic states with opposite valley/spin character, enabling intrinsic, guided, and far reaching valley-polarized exciton currents.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000760518100001 Publication Date 2022-04-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.5 Times cited 3 Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek; Conselho Nacional de Desenvolvimento Científico e Tecnológico, PQ ; Approved Most recent IF: 5.5  
  Call Number CMT @ cmt @c:irua:187124 Serial 7046  
Permanent link to this record
 

 
Author Tan, X.; McCabe, E.E.; Orlandi, F.; Manuel, P.; Batuk, M.; Hadermann, J.; Deng, Z.; Jin, C.; Nowik, I.; Herber, R.; Segre, C.U.; Liu, S.; Croft, M.; Kang, C.-J.; Lapidus, S.; Frank, C.E.; Padmanabhan, H.; Gopalan, V.; Wu, M.; Li, M.-R.; Kotliar, G.; Walker, D.; Greenblatt, M. pdf  doi
openurl 
  Title MnFe0.5Ru0.5O3 : an above-room-temperature antiferromagnetic semiconductor Type A1 Journal article
  Year 2019 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C  
  Volume 7 Issue 3 Pages 509-522  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) A transition-metal-only MnFe0.5Ru0.5O3 polycrystalline oxide was prepared by a reaction of starting materials MnO, MnO2, Fe2O3, RuO2 at 6 GPa and 1873 K for 30 minutes. A combination of X-ray and neutron powder diffraction refinements indicated that MnFe0.5Ru0.5O3 adopts the corundum (alpha-Fe2O3) structure type with space group R (3) over barc, in which all metal ions are disordered. The centrosymmetric nature of the MnFe0.5Ru0.5O3 structure is corroborated by transmission electron microscopy, lack of optical second harmonic generation, X-ray absorption near edge spectroscopy, and Mossbauer spectroscopy. X-ray absorption near edge spectroscopy of MnFe0.5Ru0.5O3 showed the oxidation states of Mn, Fe, and Ru to be 2+/3+, 3+, and similar to 4+, respectively. Resistivity measurements revealed that MnFe0.5Ru0.5O3 is a semiconductor. Magnetic measurements and magnetic structure refinements indicated that MnFe0.5Ru0.5O3 orders antiferromagnetically around 400 K, with magnetic moments slightly canted away from the c axis. Fe-57 Mossbauer confirmed the magnetic ordering and Fe3+ (S = 5/2) magnetic hyperfine splitting. First principles calculations are provided to understand the electronic structure more thoroughly. A comparison of synthesis and properties of MnFe0.5Ru0.5O3 and related corundum Mn2BB'O-6 derivatives is discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000458780300004 Publication Date 2018-11-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7526; 2050-7534 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.256 Times cited 1 Open Access Not_Open_Access  
  Notes ; M. G. thanks the NSF-DMR-1507252 grant of the United States. X. T. was supported by the “Center for Computational Design of Functional Strongly Correlated Materials and Theoretical Spectroscopy'' under DOE Grant No. DE-FOA-0001276. G. K. and C. J. K. were supported by the Air Force Office of Scientific Research. MRCAT operations are supported by the Department of Energy and the MRCAT member institutions. EEM is grateful to the Leverhulme Trust (RPG-2017-362). M. R. Li and M. X. Wu are supported by the ”One Thousand Youth Talents'' Program of China. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Part of this research used the ISS, 8-ID and TES, 8-BM beamlines at the National Synchrotron Light Source II (NSLS-II), a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory under Contract No. DE-SC0012704. Without the valuable aid/support of the NSLS-II staff scientists Eli Stavitski, Klaus Attenkofer, and Paul Northrup this phase of the work could not have been performed. The work at IOPCAS was supported by NSF & MOST of China through research projects. H. R. and V. G. acknowledge NSF-MRSEC Center for Nanoscale Science at Penn State through the grant number DMR-1420620. The authors would like to thank Ms Jean Hanley at Lamont-Doherty Earth Observatory in Columbia University for making the high-pressure assemblies. The authors acknowledge the science and technology facility council (STFC) UK for the provision of neutron beam time. The authors would like to thank Daniel Nye for help on the Rigaku SmartLab X-ray diffractometer instrument in the Materials Characterization Laboratory at the ISIS Neutron and Muon Source. ; Approved Most recent IF: 5.256  
  Call Number UA @ admin @ c:irua:157564 Serial 5264  
Permanent link to this record
 

 
Author Muñoz, W.A.; Covaci, L.; Peeters, F.M. pdf  url
doi  openurl
  Title Disordered graphene Josephson junctions Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 91 Issue 91 Pages 054506  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) A tight-binding approach based on the Chebyshev-Bogoliubov-de Gennes method is used to describe disordered single-layer graphene Josephson junctions. Scattering by vacancies, ripples, or charged impurities is included. We compute the Josephson current and investigate the nature of multiple Andreev reflections, which induce bound states appearing as peaks in the density of states for energies below the superconducting gap. In the presence of single-atom vacancies, we observe a strong suppression of the supercurrent, which is a consequence of strong intervalley scattering. Although lattice deformations should not induce intervalley scattering, we find that the supercurrent is still suppressed, which is due to the presence of pseudomagnetic barriers. For charged impurities, we consider two cases depending on whether the average doping is zero, i.e., existence of electron-hole puddles, or finite. In both cases, short-range impurities strongly affect the supercurrent, similar to the vacancies scenario.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000349436500001 Publication Date 2015-02-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 7 Open Access  
  Notes This work was supported by the Flemish Science Foundation (FWO-Vlaanderen) and the Methusalem funding of the Flemish Government. Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number c:irua:129192 Serial 3961  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: