toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Janssen, W.; Turner, S.; Sakr, G.; Jomard, F.; Barjon, J.; Degutis, G.; Lu, Y.G.; D'Haen, J.; Hardy, A.; Bael, M.V.; Verbeeck, J.; Van Tendeloo, G.; Haenen, K. pdf  doi
openurl 
  Title Substitutional phosphorus incorporation in nanocrystalline CVD diamond thin films Type A1 Journal article
  Year 2014 Publication Physica status solidi: rapid research letters Abbreviated Journal Phys Status Solidi-R  
  Volume 8 Issue 8 Pages 705-709  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) Nanocrystalline diamond (NCD) thin films were produced by chemical vapor deposition (CVD) and doped by the addition of phosphine to the gas mixture. The characterization of the films focused on probing the incorporation and distribution of the phosphorus (P) dopants. Electron microscopy evaluated the overall film morphology and revealed the interior structure of the nanosized grains. The homogeneous films with distinct diamond grains featured a notably low sp(2):sp(3)-ratio as confirmed by Raman spectroscopy. High resolution spectroscopy methods demonstrated a homogeneous P-incorporation, both in-depth and in-plane. The P concentration in the films was determined to be in the order of 10(19) cm(-3) with a significant fraction integrated at substitutional donor sites. (C) 2014 WILEY-VCH Verlag GmbH Co. KGaA, Weinheim  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000340484100007 Publication Date 2014-06-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1862-6254; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.032 Times cited 20 Open Access  
  Notes Fwo G055510n; G056810n; G.045612; 246791 Countatoms; 312483 Esteem2; esteem2_jra3 Approved Most recent IF: 3.032; 2014 IF: 2.142  
  Call Number UA @ lucian @ c:irua:119220 Serial 3346  
Permanent link to this record
 

 
Author Peters, J.L.; Altantzis, T.; Lobato, I.; Jazi, M.A.; van Overbeek, C.; Bals, S.; Vanmaekelbergh, D.; Sinai, S.B. url  doi
openurl 
  Title Mono- and Multilayer Silicene-Type Honeycomb Lattices by Oriented Attachment of PbSe Nanocrystals: Synthesis, Structural Characterization, and Analysis of the Disorder Type A1 Journal article
  Year 2018 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 30 Issue 30 Pages 4831-4837  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) Nanocrystal (NC) solids are commonly prepared from nonpolar organic NC suspensions. In many cases, the capping on the NC surface is preserved and forms a barrier between the NCs. More recently, superstructures with crystalline connections between the NCs, implying the removal of the capping, have been reported, too. Here, we present large-scale uniform superstructures of attached PbSe NCs with a silicene-type honeycomb geometry, resulting from solvent evaporation under nearly reversible conditions. We also prepared multilayered silicene honeycomb structures by using larger amounts of PbSe NCs. We show that the two-dimensional silicene superstructures can be seen as a crystallographic slice from a 3-D simple cubic structure. We describe the disorder in the silicene lattices in terms of the nanocrystals position and their atomic alignment. The silicene honeycomb sheets are large enough to be used in transistors and optoelectronic devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000440105500042 Publication Date 2018-07-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 33 Open Access OpenAccess  
  Notes The authors acknowledge funding from the European Commission (Grant EUSMI 731019). S.B. acknowledges funding from the European Research Council (Grant 335078 COLOURATOM). T.A. acknowledges a postdoctoral grant from the Research Foundation Flanders (FWO). The authors acknowledge financial support from the European Commission under the Horizon 2020 Programme by means of the Grant Agreement No. 731019 EUSMI. (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); ecas_sara Approved Most recent IF: 9.466  
  Call Number EMAT @ emat @c:irua:152997UA @ admin @ c:irua:152997 Serial 5011  
Permanent link to this record
 

 
Author Kirilenko, D.A.; Brunkov, P.N. pdf  doi
openurl 
  Title Measuring the height-to-height correlation function of corrugation in suspended graphene Type A1 Journal article
  Year 2016 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 165 Issue 165 Pages 1-7  
  Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);  
  Abstract (down) Nanocorrugation of 2D crystals is an important phenomenon since it affects their electronic and mechanical properties. The corrugation may have various sources; one of them is flexural phonons that, in particular, are responsible for the thermal conductivity of graphene. A study of corrugation of just the suspended graphene can reveal much of valuable information on the physics of this complicated phenomenon. At the same time, the suspended crystal nanorelief can hardly be measured directly because of high flexibility of the 2D crystal. Moreover, the relief portion related to rapid out-of-plane oscillations (flexural phonons) is also inaccessible by such measurements. Here we present a technique for measuring the Fourier components of the height-height correlation function H(q) of suspended graphene which includes the effect of flexural phonons. The technique is based on the analysis of electron diffraction patterns. The H(q) is measured in the range of wavevectors q approximately 0.4-4.5nm(-1). At the upper limit of this range H(q) does follow the T/kappaq(4) law. So, we measured the value of suspended graphene bending rigidity kappa=1.2+/-0.4eV at ambient temperature T approximately 300K. At intermediate wave vectors, H(q) follows a slightly weaker exponent than theoretically predicted q(-3.15) but is closer to the results of the molecular dynamics simulation. At low wave vectors, the dependence becomes even weaker, which may be a sign of influence of charge carriers on the dynamics of undulations longer than 10nm. The technique presented can be used for studying physics of flexural phonons in other 2D materials.  
  Address Ioffe Institute, Politekhnicheskaya ul. 26, 194021 St-Petersburg, Russia; ITMO University, Kronverksky pr. 49, 197101 St. Petersburg, Russia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000375946200001 Publication Date 2016-03-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links  
  Impact Factor 2.843 Times cited 3 Open Access  
  Notes D.K. thanks the RFBR (Grant no. 16-32-60165) for the partial support of this research. The work was carried out in part at the Joint Research Center “Material Science and Characterization in Advanced Technologies” (St-Petersburg, Russia) under the financial support from the Ministry of Education and Science of the Russian Federation (Agreement 14.621.21.0007, 04.12.2014, id RFMEFI62114X0007, the use of the Jeol JEM-2100F microscope) and at EMAT, Universiteit Antwerpen (Antwerpen, Belgium), (the use of the FEI Tecnai G2 microscope). Approved Most recent IF: 2.843  
  Call Number EMAT @ emat @ Serial 4124  
Permanent link to this record
 

 
Author Mooij, L.; Perkisas, T.; Palsson, G.; Schreuders, H.; Wolff, M.; Hjorvarsson, B.; Bals, S.; Dam, B. pdf  doi
openurl 
  Title The effect of microstructure on the hydrogenation of Mg/Fe thin film multilayers Type A1 Journal article
  Year 2014 Publication International journal of hydrogen energy Abbreviated Journal Int J Hydrogen Energ  
  Volume 39 Issue 30 Pages 17092-17103  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (down) Nanoconfined magnesium hydride can be simultaneously protected and thermodynamically destabilized when interfaced with materials such as Ti and Fe. We study the hydrogenation of thin layers of Mg (<14 nm) nanoconfined in one dimension within thin film Fe/Mg/Fe/Pd multilayers by the optical technique Hydrogenography. The hydrogenation of nanosized magnesium layers in Fe/Mg/Fe multilayers surprisingly shows the presence of multiple plateau pressures, whose nature is thickness dependent. In contrast, hydrogen desorption occurs via a single plateau which does not depend on the Mg layer thickness. From structural and morphological analyses with X-ray diffraction/reflectometry and cross-section TEM, we find that the Mg layer roughness is large when deposited on Fe and furthermore contains high-angle grain boundaries (GB's). When grown on Ti, the Mg layer roughness is low and no high-angle GB's are detected. From a Ti/Mg/Fe multilayer, in which the Mg layer is flat and has little or no GB's, we conclude that MgH2 is indeed destabilized by the interface with Fe. In this case, both the ab- and desorption plateau pressures are increased by a factor two compared to the hydrogenation of Mg within Ti/Mg/Ti multilayers. We hypothesize that the GB's in the Fe/Mg/Fe multilayer act as diffusion pathways for Pd, which is known to greatly alter the hydrogenation behavior of Mg when the two materials share an interface. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000343839000031 Publication Date 2014-09-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0360-3199; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.582 Times cited 15 Open Access Not_Open_Access  
  Notes COST Action MP1103 Approved Most recent IF: 3.582; 2014 IF: 3.313  
  Call Number UA @ lucian @ c:irua:121175 Serial 3575  
Permanent link to this record
 

 
Author Naberezhnyi, D.; Rumyantseva, M.; Filatova, D.; Batuk, M.; Hadermann, J.; Baranchikov, A.; Khmelevsky, N.; Aksenenko, A.; Konstantinova, E.; Gaskov, A. url  doi
openurl 
  Title Effects of Ag additive in low temperature CO detection with In2O3 based gas sensors Type A1 Journal article
  Year 2018 Publication Nanomaterials Abbreviated Journal  
  Volume 8 Issue 10 Pages 801  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (down) Nanocomposites In2O3/Ag obtained by ultraviolet (UV) photoreduction and impregnation methods were studied as materials for CO sensors operating in the temperature range 25-250 degrees C. Nanocrystalline In2O3 and In2O3/Ag nanocomposites were characterized by X-ray diffraction (XRD), single-point Brunauer-Emmet-Teller (BET) method, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) with energy dispersive X-ray (EDX) mapping. The active surface sites were investigated using Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR) spectroscopy and thermo-programmed reduction with hydrogen (TPR-H-2) method. Sensor measurements in the presence of 15 ppm CO demonstrated that UV treatment leads to a complete loss of In2O3 sensor sensitivity, while In2O3/Ag-UV nanocomposite synthesized by UV photoreduction demonstrates an increased sensor signal to CO at T < 200 degrees C. The observed high sensor response of the In2O3/Ag-UV nanocomposite at room temperature may be due to the realization of an additional mechanism of CO oxidation with participation of surface hydroxyl groups associated via hydrogen bonds.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000451174100057 Publication Date 2018-10-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:156335 Serial 7842  
Permanent link to this record
 

 
Author Vladimirova, S.A.; Rumyantseva, M.N.; Filatova, D.G.; Chizhov, A.S.; Khmelevsky, N.O.; Konstantinova, E.A.; Kozlovsky, V.F.; Marchevsky, A.V.; Karakulina, O.M.; Hadermann, J.; Gaskov, A.M. pdf  url
doi  openurl
  Title Cobalt location in p -CoO x / n -SnO 2 nanocomposites: Correlation with gas sensor performances Type A1 Journal Article
  Year 2017 Publication Journal Of Alloys And Compounds Abbreviated Journal J Alloy Compd  
  Volume 721 Issue Pages 249-260  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract (down) Nanocomposites CoOx/SnO2 based on tin oxide powders with different crystallinity have been prepared by wet chemical synthesis and characterized in detail by ICP-MS, XPS, EPR, XRD, HAADF-STEM imaging and EDX-STEM mapping. It was shown that cobalt is distributed differently between the bulk and surface of SnO2 nanocrystals, which depends on the crystallinity of the SnO2 matrix. The measurements of gas sensor properties have been carried out during exposure to CO (10 ppm), and H2S (2 ppm) in dry air. The decrease of sensor signal toward CO was attributed to high catalytic activity of Co3O4 leading to oxidation of carbon monoxide entirely on the surface of catalyst particles. The formation of a p-CoOx/n-SnO2 heterojunction results in high sensitivity of nanocomposites in H2S detection. The conductance significantly changed in the presence of H2S, which was attributed to the formation of metallic cobalt sulfide and removal of the p – n junction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000405252400030 Publication Date 2017-06-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-8388 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.133 Times cited Open Access Not_Open_Access  
  Notes This work was supported by ERA-Net.Plus grant N 096 FONSENS. EPR experiments were performed using the facilities of the Collective Use Center at the Moscow State University. Approved Most recent IF: 3.133  
  Call Number EMAT @ emat @ Serial 4711  
Permanent link to this record
 

 
Author Vladimirova, S.A.; Rumyantseva, M.N.; Filatova, D.G.; Chizhov, A.S.; Khmelevsky, N.O.; Konstantinova, E.A.; Kozlovsky, V.F.; Marchevsky, A.V.; Karakulina, O.M.; Hadermann, J.; Gaskov, A.M. pdf  doi
openurl 
  Title Cobalt location in p-CoOxIn-SnO2 nanocomposites : correlation with gas sensor performances Type A1 Journal article
  Year 2017 Publication Journal of alloys and compounds Abbreviated Journal J Alloy Compd  
  Volume 721 Issue Pages 249-260  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (down) Nanocomposites CoOx/SnO2 based on tin oxide powders with different crystallinity have been prepared by wet chemical synthesis and characterized in detail by ICP-MS, XPS, EPR, XRD, HAADF-STEM imaging and EDX-STEM mapping. It was shown that cobalt is distributed differently between the bulk and surface of SnO2 nanocrystals, which depends on the crystallinity of the SnO2 matrix. The measurements of gas sensor properties have been carried out during exposure to CO (10 ppm), and H2S (2 ppm) in dry air. The decrease of sensor signal toward CO was attributed to high catalytic activity of Co3O4 leading to oxidation of carbon monoxide entirely on the surface of catalyst particles. The formation of a p-CoOx/n-SnO2 heterojunction results in high sensitivity of nanocomposites in H2S detection. The conductance significantly changed in the presence of H2S, which was attributed to the formation of metallic cobalt sulfide and removal of the p – n junction. (C) 2017 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-8388 ISBN Additional Links UA library record; ; WoS full record; WoS citing articles  
  Impact Factor 3.133 Times cited Open Access Not_Open_Access: Available from 10.10.2019  
  Notes ; This work was supported by ERA-Net.Plus grant N 096 FON-SENS. EPR experiments were performed using the facilities of the Collective Use Center at the Moscow State University. ; Approved Most recent IF: 3.133  
  Call Number UA @ lucian @ c:irua:145142 Serial 4714  
Permanent link to this record
 

 
Author Cavaliere, E.; Benetti, G.; Van Bael, M.; Winckelmans, N.; Bals, S.; Gavioli, L. pdf  url
doi  openurl
  Title Exploring the Optical and Morphological Properties of Ag and Ag/TiO2 Nanocomposites Grown by Supersonic Cluster Beam Deposition Type A1 Journal article
  Year 2017 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel  
  Volume 7 Issue 7 Pages 442  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (down) Nanocomposite systems and nanoparticle (NP) films are crucial for many applications and research fields. The structure-properties correlation raises complex questions due to the collective structure of these systems, often granular and porous, a crucial factor impacting their effectiveness and performance. In this framework, we investigate the optical and morphological properties of Ag nanoparticles (NPs) films and of Ag NPs/TiO₂ porous matrix films, one-step grown by supersonic cluster beam deposition. Morphology and structure of the Ag NPs film and of the Ag/TiO₂ (Ag/Ti 50-50) nanocomposite are related to the optical properties of the film employing spectroscopic ellipsometry (SE). We employ a simple Bruggeman effective medium approximation model, corrected by finite size effects of the nano-objects in the film structure to gather information on the structure and morphology of the nanocomposites, in particular porosity and average NPs size for the Ag/TiO₂ NP film. Our results suggest that SE is a simple, quick and effective method to measure porosity of nanoscale films and systems, where standard methods for measuring pore sizes might not be applicable.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000419186800037 Publication Date 2017-12-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.553 Times cited 19 Open Access OpenAccess  
  Notes The authors thank Gabriele Ferrini for fruitful discussions on the spectroscopic ellipsometry model and Francesco Rossella from NEST for the optical profilometry data. The authors acknowledge financial support from the European Union through the 7th Framework Program (FP7) under a contract for an Integrated Infrastructure Initiative (Reference No. 312483 ESTEEM2). Luca Gavioli, Emanuele Cavaliere and Giulio Benetti acknowledge support from Università Cattolica del Sacro Cuore through D.1.1 and D.3.1 grants. Approved Most recent IF: 3.553  
  Call Number EMAT @ emat @c:irua:147862UA @ admin @ c:irua:147862 Serial 4802  
Permanent link to this record
 

 
Author Rouvière, J.-L.; Béché, A.; Martin, Y.; Denneulin, T.; Cooper, D. doi  openurl
  Title Improved strain precision with high spatial resolution using nanobeam precession electron diffraction Type A1 Journal article
  Year 2013 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 103 Issue Pages 241913  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) NanoBeam Electron Diffraction is a simple and efficient technique to measure strain in nanostructures. Here, we show that improved results can be obtained by precessing the electron beam while maintaining a few nanometer probe size, i.e., by doing Nanobeam Precession Electron Diffraction (N-PED). The precession of the beam makes the diffraction spots more uniform and numerous, making N-PED more robust and precise. In N-PED, smaller probe size and better precision are achieved by having diffraction disks instead of diffraction dots. Precision in the strain measurement better than 2 × 10−4 is obtained with a probe size approaching 1 nm in diameter.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000328706500031 Publication Date 2013-12-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 53 Open Access  
  Notes Approved Most recent IF: 3.411; 2013 IF: 3.515  
  Call Number UA @ lucian @ c:irua:136442 Serial 4502  
Permanent link to this record
 

 
Author Zhao, Z.X.; Ma, X.; Cao, S.; Li, Y.Y.; Zeng, C.Y.; Wang, D.X.; Yao, X.; Deng, Z.J.; Zhang, X.P. pdf  doi
openurl 
  Title Identification of nano-width variants in a fully monoclinic martensitic Ni50Ti50 alloy by scanning electron microscope-based transmission Kikuchi diffraction and improved groupoid structure approach Type A1 Journal article
  Year 2020 Publication Materials Letters Abbreviated Journal Mater Lett  
  Volume 281 Issue Pages 128624  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) Nano-width martensite plates in a fully martensitic Ni50Ti50 alloy are indexed successfully by using the off-axis transmission Kikuchi diffraction in scanning electron microscope (i.e., SEM-based TKD). The data obtained by SEM-TKD are effectively interpreted using an improved approach based on the framework of the theoretical groupoid structure method, where the equivalent variants transformed from the monoclinic variants are introduced to calculate all theoretical axis/angle pairs of rotation, and to formulate a complete list of source martensite to target martensite pairs. Consequently, B19' monoclinic martensite variants in NiTi alloys are identified unambiguously, by using numerical comparison between the experimental and theoretical rotation components, without the reference of retained parent phase. (C) 2020 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000581134200033 Publication Date 2020-09-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-577x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3 Times cited Open Access Not_Open_Access  
  Notes ; This work was supported by National Natural Science Foundation of China under Grant Nos. 51571092 and 51401081, and Guangdong Provincial Natural Science Foundation under Grant Nos. 2018B0303110012 and 2017A030313323. ; Approved Most recent IF: 3; 2020 IF: 2.572  
  Call Number UA @ admin @ c:irua:173509 Serial 6540  
Permanent link to this record
 

 
Author Turner, S.; Tavernier, S.M.F.; Huyberechts, G.; Bals, S.; Batenburg, K.J.; Van Tendeloo, G. pdf  doi
openurl 
  Title Assisted spray pyrolysis production and characterisation of ZnO nanoparticles with narrow size distribution Type A1 Journal article
  Year 2010 Publication Journal of nanoparticle research Abbreviated Journal J Nanopart Res  
  Volume 12 Issue 2 Pages 615-622  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract (down) Nano-sized ZnO particles with a narrow size distribution and high crystallinity were prepared from aqueous solutions with high concentrations of Zn2+ containing salts and citric acid in a conventional spray pyrolysis setup. Structure, morphology and size of the produced material were compared to ZnO material produced by simple spray pyrolysis of zinc nitrates in the same experimental setup. Using transmission electron microscopy and electron tomography it has been shown that citric acid-assisted spray pyrolysed material is made up of micron sized secondary particles comprising a shell of lightly agglomerated, monocrystalline primary ZnO nanoparticles with sizes in the 2030 nm range, separable by a simple ultrasonic treatment step.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication S.l. Editor  
  Language Wos 000275318700025 Publication Date 2009-04-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1388-0764;1572-896X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.02 Times cited 27 Open Access  
  Notes Esteem 026019 Approved Most recent IF: 2.02; 2010 IF: 3.253  
  Call Number UA @ lucian @ c:irua:81771 Serial 156  
Permanent link to this record
 

 
Author Berthold, T.; Castro, C.R.; Winter, M.; Hoerpel, G.; Kurttepeli, M.; Bals, S.; Antonietti, M.; Fechler, N. pdf  url
doi  openurl
  Title Tunable nitrogen-doped carbon nanoparticles from tannic acid and urea and their potential for sustainable soots Type A1 Journal article
  Year 2017 Publication ChemNanoMat : chemistry of nanomaterials for energy, biology and more Abbreviated Journal Chemnanomat  
  Volume 3 Issue 3 Pages 311-318  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (down) Nano-sized nitrogen-doped carbon spheres are synthesized from two cheap, readily available and sustainable precursors: tannic acid and urea. In combination with a polymer structuring agent, nitrogen content, sphere size and the surface (up to 400 m(2)g(-1)) can be conveniently tuned by the precursor ratio, temperature and structuring agent content. Because the chosen precursors allow simple oven synthesis and avoid harsh conditions, this carbon nanosphere platform offers a more sustainable alternative to classical soots, for example, as printing pigments or conduction soots. The carbon spheres are demonstrated to be a promising as conductive carbon additive in anode materials for lithium ion batteries.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000403299200006 Publication Date 2017-03-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2199-692x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.937 Times cited 14 Open Access OpenAccess  
  Notes ; S.B. is grateful for funding by the European Research Council (ERC starting grant # 335078-COLOURATOMS). ; ecas_Sara Approved Most recent IF: 2.937  
  Call Number UA @ lucian @ c:irua:144287UA @ admin @ c:irua:144287 Serial 4699  
Permanent link to this record
 

 
Author Jany, B.R.; Gauquelin, N.; Willhammar, T.; Nikiel, M.; van den Bos, K.H.W.; Janas, A.; Szajna, K.; Verbeeck, J.; Van Aert, S.; Van Tendeloo, G.; Krok, F. url  doi
openurl 
  Title Controlled growth of hexagonal gold nanostructures during thermally induced self-assembling on Ge(001) surface Type A1 Journal article
  Year 2017 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 7 Issue 7 Pages 42420  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) Nano-sized gold has become an important material in various fields of science and technology, where control over the size and crystallography is desired to tailor the functionality. Gold crystallizes in the face-centered cubic (fcc) phase, and its hexagonal closed packed (hcp) structure is a very unusual and rare phase. Stable Au hcp phase has been reported to form in nanoparticles at the tips of some Ge nanowires. It has also recently been synthesized in the form of thin graphene-supported sheets which are unstable under electron beam irradiation. Here, we show that stable hcp Au 3D nanostructures with well-defined crystallographic orientation and size can be systematically created in a process of thermally induced self-assembly of thin Au layer on Ge(001) monocrystal. The Au hcp crystallite is present in each Au nanostructure and has been characterized by different electron microscopy techniques. We report that a careful heat treatment above the eutectic melting temperature and a controlled cooling is required to form the hcp phase of Au on a Ge single crystal. This new method gives scientific prospects to obtain stable Au hcp phase for future applications in a rather simple manner as well as redefine the phase diagram of Gold with Germanium.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000393940700001 Publication Date 2017-02-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 25 Open Access OpenAccess  
  Notes The authors gratefully acknowledge the financial support from the Polish National Science Center, grant no. DEC-2012/07/B/ST5/00906. N.G., G.V.T. and J.V. acknowledge the European Union (EU) Council under the 7th Framework Program (FP7) ERC Starting Grant 278510 VORTEX for support. The Research Foundation Flanders is acknowledged through project fundings (G.0374.13N, G.0368.15N, G.0369.15N) and for a Ph.D. research grant to K.H.W.v.d.B. The microscope was partly funded by the Hercules Fund from the Flemish Government. T.W. acknowledges the Swedish Research Council for an international postdoc grant. The research leading to these results has received funding from the European Union Seventh Framework Programme under Grant Agreement 312483–ESTEEM2 (Integrated Infrastructure Initiative–I3). Part of the research was carried out with equipment purchased with financial support from the European Regional Development Fund in the framework of the Polish Innovation Economy Operational Program (Contract No. POIG.02.01.00-12-023/08). Approved Most recent IF: 4.259  
  Call Number EMAT @ emat @ c:irua:140846UA @ admin @ c:irua:140846 Serial 4423  
Permanent link to this record
 

 
Author Ghica, C.; Nistor, L.; Van Tendeloo, G. openurl 
  Title Revealing nanoscale structural TEM/HRTEM: application on ferroelectric ordering by PMN-PT relaxor ferroelectric Type A1 Journal article
  Year 2008 Publication Journal of optoelectronics and advanced materials Abbreviated Journal J Optoelectron Adv M  
  Volume 10 Issue 9 Pages 2328-2333  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) Nano-scale ordering may be revealed in transmission electron microscopy (TEM) by at least three techniques that will be presented in this work: selected area electron diffraction, conventional TEM and high-resolution TEM. Digital image processing is used to extract additional information from the high-resolution micrographs. The described methods are illustrated in a microstructural and compositional study of a 90%Pb(Mg1/3Nb2/3)O-3-10%PbTiO2 ceramic sample. High-resolution images reveal the presence of ordered compositional nano-domains, observable in two specific crystallographic orientations. Antiphase boundaries lying in the (111) planes separate them, while (100) and (111) facets separate the ordered domains from the disordered matrix.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bucharest Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1454-4164 ISBN Additional Links UA library record; WoS full record;  
  Impact Factor 0.449 Times cited Open Access  
  Notes Approved Most recent IF: 0.449; 2008 IF: 0.577  
  Call Number UA @ lucian @ c:irua:76520 Serial 2901  
Permanent link to this record
 

 
Author Grieb, T.; Krause, F.F.; Mahr, C.; Zillmann, D.; Müller-Caspary, K.; Schowalter, M.; Rosenauer, A. pdf  doi
openurl 
  Title Optimization of NBED simulations for disc-detection measurements Type A1 Journal article
  Year 2017 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 181 Issue Pages 50-60  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) Nano-beam electron diffraction (NBED) is a method which can be applied to measure lattice strain and polarisation fields in strained layer heterostructures and transistors. To investigate precision, accuracy and spatial resolution of such measurements in dependence of properties of the specimen as well as electron optical parameters, simulations of NBED patterns are required which allow to predict the result of common disc-detection algorithms. In this paper we demonstrate by focusing on the detection of the central disc in crystalline silicon that such simulations require to take several experimental characteristics into account in order to obtain results which are comparable to those from experimental NBED patterns. These experimental characteristics are the background intensity, the presence of Poisson noise caused by electron statistics and blurring caused by inelastic scattering and by the transfer quality of the microscope camera. By means of these optimized simulations, different effects of specimen properties on disc detection – such as strain, surface morphology and compositional changes on the nanometer scale – are investigated and discussed in the context of misinterpretation in experimental NBED evaluations. It is shown that changes in surface morphology and chemical composition lead to measured shifts of the central disc in the NBED pattern of tens to hundreds of grad. These shifts are of the same order of magnitude or even larger than shifts that could be caused by an electric polarisation field in the range of MV/cm. (C) 2017 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000411170800006 Publication Date 2017-05-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 6 Open Access Not_Open_Access  
  Notes ; This work was supported by the German Research Foundation (DFG) under Contract No. R02057/11-1, R02057/4-2 and MU3660/1-1. ; Approved Most recent IF: 2.843  
  Call Number UA @ lucian @ c:irua:146725 Serial 4792  
Permanent link to this record
 

 
Author Attri, P.; Park, J.-H.; De Backer, J.; Kim, M.; Yun, J.-H.; Heo, Y.; Dewilde, S.; Shiratani, M.; Choi, E.H.; Lee, W.; Bogaerts, A. pdf  url
doi  openurl
  Title Structural modification of NADPH oxidase activator (Noxa 1) by oxidative stress: An experimental and computational study Type A1 Journal article
  Year 2020 Publication International Journal Of Biological Macromolecules Abbreviated Journal Int J Biol Macromol  
  Volume 163 Issue Pages 2405-2414  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (down) NADPH oxidases 1 (NOX1) derived reactive oxygen species (ROS) play an important role in the progression of cancer through signaling pathways. Therefore, in this paper, we demonstrate the effect of cold atmospheric plasma (CAP) on the structural changes of Noxa1 SH3 protein, one of the regulatory subunits of NOX1. For this purpose, firstly we purified the Noxa1 SH3 protein and analyzed the structure using X-ray crystallography, and subsequently, we treated the protein with two types of CAP reactors such as pulsed dielectric barrier discharge (DBD) and Soft Jet for different time intervals. The structural deformation of Noxa1 SH3 protein was analyzed by various experimental methods (circular dichroism, fluorescence, and NMR spectroscopy) and by MD simulations. Additionally, we demonstrate the effect of CAP (DBD and Soft Jet) on the viability and expression of NOX1 in A375 cancer cells. Our results are useful to understand the structural modification/oxidation occur in protein due to reactive oxygen and nitrogen (RONS) species generated by CAP.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000579839600233 Publication Date 2020-09-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0141-8130 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.2 Times cited Open Access  
  Notes European Marie Skłodowska-Curie Individual Fellowship, 743546 ; JSPS, 20K14454 ; National Research Foundation of Korea, 2019M3A9F6021810 NRF-2017M3A9F6029753 NRF-2019M3E5D6063903 NRF-2016R1A6A3A04010213 ; Brain Korea 21; MSIT, NRF-2016K1A4A3914113 ; Hercules Foundation; Flemish Government; UA; We gratefully acknowledge the European Marie SkłodowskaCurie Individual Fellowship “Anticancer-PAM” within Horizon 2020 (grant number 743546). This work was also supported by JSPS-KAKENHI grant number 20K14454. Additionally, work was supported by several grants (2019M3A9F6021810, NRF2017M3A9F6029753, NRF-2019M3E5D6063903 to W. Lee), Basic Science Research Program (NRF-2016R1A6A3A04010213 to J.H. Yun) through the National Research Foundation of Korea and in part by the Brain Korea 21 (BK21) PLUS program (J.H.P.). EHC is thankful to National Research Foundation (NRF) of Korea, funded by the Korea government (MSIT) under the grant number (NRF2016K1A4A3914113). The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. Approved Most recent IF: 8.2; 2020 IF: 3.671  
  Call Number PLASMANT @ plasmant @c:irua:172451 Serial 6419  
Permanent link to this record
 

 
Author Bafekry, A.; Mortazavic, B.; Shayesteh, S.F. pdf  doi
openurl 
  Title Band gap and magnetism engineering in Dirac half-metallic Na2C nanosheet via layer thickness, strain and point defects Type A1 Journal article
  Year 2019 Publication Journal of magnetism and magnetic materials Abbreviated Journal J Magn Magn Mater  
  Volume 491 Issue 491 Pages 165565  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) Na2C is a novel two-dimensional material with Dirac Half-metal (DHM) characteristic, exhibiting a combination of single-spin massless Dirac fermions and half-semimetal. In this paper based on the first-principles calculations, we studied the mechanical, electronic, magnetic and optical properties of Na2C nanosheet. The elastic modulus of Na2C was measured to 18.5 N/m and isotropic, whereas it shows anisotropic tensile strengths of 2.85 and 2.04 N/m, for the loading along the zigzag and armchair directions, respectively. We found that Na2C, is a DHM with band gap of 0.7 eV in the up-spin channel and has 2 mu(B) magnetic moment per unit cell. In addition, we investigated the effects of number of atomic layers (thickness), electric field and strain on the possibility of further tuning of the electronic and magnetic properties of Na2C. Our calculations show that by increasing the number of layers from monolayer to bulk, a transition from DHM to ferromagnetic metal occurs with a high magnetic moments in the range of 16-30 mu(B). With applying an electric field on the Na2C bilayer (within the ferromagnetic and anti-ferromagnetic orders), energy band gap is slightly increased. In addition our results indicate that the electronic structure can be significantly modified by applying the mechanical straining. In this regard, under the biaxial strain (from 0% to – 8%) or large uniaxial strains (> – 6%), we observed the DHM to ferromagnetic-metal transition. Moreover, vacancy defects and atom substitutions can also effect the electronic and magnetic properties of Na2C nanosheet. Defective Na2C with single and double vacancies, was found to show the metallic response. With various atom substitutions this nanosheet exhibits; ferromagnetic-metal (Si and Be) with 5.2 and 3 mu(B); dilute-magnetic semiconductor (B and N) with 3 and 7 mu(B) magnetic moments, respectively. In the case of B or N atoms replacing the native C atom, the down-spin channel yields about 1 eV band gap. Interestingly, replacing the Na atoms in the native Na2C lattice with the Li can result in the formation of magnetic topological insulator phase with nontrivial band gap in the down-spin channel (25 meV and 0.15 eV) and up-spin channel (0.75 eV), in addition exhibit 8 mu(B) magnetic moment in the ground state.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000486396100010 Publication Date 2019-07-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-8853 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.63 Times cited 13 Open Access  
  Notes ; B. M. appreciates the funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germanys Excellence Strategy within the Cluster of Excellence PhoenixD (EXC 2122, Project ID 390833453). We acknowledge OpenMX team for OpenMX code. ; Approved Most recent IF: 2.63  
  Call Number UA @ admin @ c:irua:163697 Serial 5408  
Permanent link to this record
 

 
Author Gorbanev, Y.; Engelmann, Y.; van’t Veer, K.; Vlasov, E.; Ndayirinde, C.; Yi, Y.; Bals, S.; Bogaerts, A. pdf  url
doi  openurl
  Title Al2O3-Supported Transition Metals for Plasma-Catalytic NH3 Synthesis in a DBD Plasma: Metal Activity and Insights into Mechanisms Type A1 Journal article
  Year 2021 Publication Catalysts Abbreviated Journal Catalysts  
  Volume 11 Issue 10 Pages 1230  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Movement Antwerp (MOVANT)  
  Abstract (down) N2 fixation into NH3 is one of the main processes in the chemical industry. Plasma catalysis is among the environmentally friendly alternatives to the industrial energy-intensive Haber-Bosch process. However, many questions remain open, such as the applicability of the conventional catalytic knowledge to plasma. In this work, we studied the performance of Al2O3-supported Fe, Ru, Co and Cu catalysts in plasma-catalytic NH3 synthesis in a DBD reactor. We investigated the effects of different active metals, and different ratios of the feed gas components, on the concentration and production rate of NH3, and the energy consumption of the plasma system. The results show that the trend of the metal activity (common for thermal catalysis) does not appear in the case of plasma catalysis: here, all metals exhibited similar performance. These findings are in good agreement with our recently published microkinetic model. This highlights the virtual independence of NH3 production on the metal catalyst material, thus validating the model and indicating the potential contribution of radical adsorption and Eley-Rideal reactions to the plasma-catalytic mechanism of NH3 synthesis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000715656300001 Publication Date 2021-10-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-4344 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.082 Times cited 19 Open Access OpenAccess  
  Notes Catalisti, Moonshot P2C ; Research Foundation – Flanders, GoF9618n ; European Research Council, 810182 SCOPE 815128 REALNANO ; sygmaSB Approved Most recent IF: 3.082  
  Call Number EMAT @ emat @c:irua:183279 Serial 6815  
Permanent link to this record
 

 
Author Bogaerts, A. pdf  url
doi  openurl
  Title Special Issue on “Dielectric Barrier Discharges and their Applications” in Commemoration of the 20th Anniversary of Dr. Ulrich Kogelschatz’s Work Type A1 Journal Article
  Year 2023 Publication Plasma Chemistry and Plasma Processing Abbreviated Journal Plasma Chem Plasma Process  
  Volume 43 Issue 6 Pages 1281-1285  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract (down) n/a  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001110371000001 Publication Date 2023-11-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0272-4324 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.6 Times cited Open Access Not_Open_Access  
  Notes n/a Approved Most recent IF: 3.6; 2023 IF: 2.355  
  Call Number PLASMANT @ plasmant @c:irua:201387 Serial 8969  
Permanent link to this record
 

 
Author Kalidindi, S.B.; Wiktor, C.; Ramakrishnan, A.; Weßing, J.; Schneemann, A.; Van Tendeloo, G.; Fischer, R.A. pdf  doi
openurl 
  Title Lewis base mediated efficient synthesis and solvation-like host-guest chemistry of covalent organic framework-1 Type A1 Journal article
  Year 2013 Publication Chemical communications Abbreviated Journal Chem Commun  
  Volume 49 Issue 5 Pages 463-465  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) N-Lewis base mediated room temperature synthesis of covalent organic frameworks (COFs) starting from a solution of building blocks instead of partially soluble building blocks was developed. This protocol shifts COF synthetic chemistry from sealed tubes to open beakers. Non-conventional inclusion compounds of COF-1 were obtained by vapor phase infiltration of ferrocene and azobenzene, and solvation like effects were established.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000312193100007 Publication Date 2012-11-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-7345;1364-548X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.319 Times cited 17 Open Access  
  Notes 262348 Esmi Approved Most recent IF: 6.319; 2013 IF: 6.718  
  Call Number UA @ lucian @ c:irua:105953 Serial 1815  
Permanent link to this record
 

 
Author Vervloessem, E.; Gorbanev, Y.; Nikiforov, A.; De Geyter, N.; Bogaerts, A. pdf  url
doi  openurl
  Title Sustainable NOxproduction from air in pulsed plasma: elucidating the chemistry behind the low energy consumption Type A1 Journal article
  Year 2022 Publication Green Chemistry Abbreviated Journal Green Chem  
  Volume 24 Issue 2 Pages 916-929  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (down) N-Based fertilisers are paramount to support our still-growing world population. Current industrial N<sub>2</sub>fixation is heavily fossil fuel-dependent, therefore, a lot of work is put into the development of fossil-free pathways. Plasma technology offers a fossil-free and flexible method for N<sub>2</sub>fixation that is compatible with renewable energy sources. We present here a pulsed plasma jet for direct NO<sub><italic>x</italic></sub>production from air. The pulsed power allows for a record-low energy consumption (EC) of 0.42 MJ (mol N)<sup>−1</sup>. This is the lowest reported EC in plasma-based N<sub>2</sub>fixation at atmospheric pressure thus far. We compare our experimental data with plasma chemistry modelling, and obtain very good agreement. Hence, we can use our model to explain the underlying mechanisms responsible for this low EC. The pulsed power and the corresponding pulsed gas temperature are the reason for the very low EC: they provide a strong vibrational–translational non-equilibrium and promote the non-thermal Zeldovich mechanism. This insight is important for the development of the next generation of plasma sources for energy-efficient NO<sub><italic>x</italic></sub>production.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000739578400001 Publication Date 2021-12-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9262 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.8 Times cited Open Access Not_Open_Access  
  Notes H2020 European Research Council, grant agreement no. 810182 – SCOPE ERC Synergy project ; Herculesstichting; Fonds Wetenschappelijk Onderzoek, EOS ID 30505023 FWO grant ID GoF9618n ; Universiteit Antwerpen; This research was supported by the Excellence of Science FWO-FNRS project (NITROPLASM, FWO grant ID GoF9618n, EOS ID 30505023), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 810182 – SCOPE ERC Synergy project), and through long-term structural funding (Methusalem). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (Department EWI) and the UAntwerpen. We thank E. H. Choi and coworkers from the Plasma Bioscience Research Center (Korea) for providing the Soft Jet plasma source, as well as K. van’t Veer and C. Verheyen for the fruitful discussion on the electron loss fraction calculations. The graphical abstract was designed using resources from Flaticon.com. Approved Most recent IF: 9.8  
  Call Number PLASMANT @ plasmant @c:irua:185450 Serial 6906  
Permanent link to this record
 

 
Author Cui, W.; Hu, Z.-Y.; Unocic, R.R.; Van Tendeloo, G.; Sang, X. pdf  url
doi  openurl
  Title Atomic defects, functional groups and properties in MXenes Type A1 Journal article
  Year 2021 Publication Chinese Chemical Letters Abbreviated Journal Chinese Chem Lett  
  Volume 32 Issue 1 Pages 339-344  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) MXenes, a new family of functional two-dimensional (2D) materials, have shown great potential for an extensive variety of applications within the last decade. Atomic defects and functional groups in MXenes are known to have a tremendous influence on the functional properties. In this review, we focus on recent progress in the characterization of atomic defects and functional group chemistry in MXenes, and how to control them to directly influence various properties (e.g., electron transport, Li' adsorption, hydrogen evolution reaction (HER) activity, and magnetism) of 2D MXenes materials. Dynamic structural transformations such as oxidation and growth induced by atomic defects in MXenes are also discussed. The review thus provides perspectives on property optimization through atomic defect engineering, and bottom-up synthesis methods based on defect-assisted homoepitaxial growth of MXenes. (C) 2020 Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences. Published by Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000618541800057 Publication Date 2020-04-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1001-8417 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.932 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 1.932  
  Call Number UA @ admin @ c:irua:177568 Serial 6777  
Permanent link to this record
 

 
Author Aierken, Y.; Sevik, C.; Gulseren, O.; Peeters, F.M.; Çakir, D. pdf  doi
openurl 
  Title MXenes/graphene heterostructures for Li battery applications : a first principles study Type A1 Journal article
  Year 2018 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A  
  Volume 6 Issue 5 Pages 2337-2345  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract (down) MXenes are the newest class of two-dimensional (2D) materials, and they offer great potential in a wide range of applications including electronic devices, sensors, and thermoelectric and energy storage materials. In this work, we combined the outstanding electrical conductivity, that is essential for battery applications, of graphene with MXene monolayers (M2CX2 where M = Sc, Ti, V and X = OH, O) to explore its potential in Li battery applications. Through first principles calculations, we determined the stable stacking configurations of M2CX2/graphene bilayer heterostructures and their Li atom intercalation by calculating the Li binding energy, diffusion barrier and voltage. We found that: (1) for the ground state stacking, the interlayer binding is strong, yet the interlayer friction is small; (2) Li binds more strongly to the O-terminated monolayer, bilayer and heterostructure MXene systems when compared with the OHterminated MXenes due to the H+ induced repulsion to the Li atoms. The binding energy of Li decreases as the Li concentration increases due to enhanced repulsive interaction between the positively charged Li ions; (3) Ti2CO2/graphene and V2CO2/graphene heterostructures exhibit large Li atom binding energies making them the most promising candidates for battery applications. When fully loaded with Li atoms, the binding energy is -1.43 eV per Li atom and -1.78 eV per Li atom for Ti2CO2/graphene and V2CO2/graphene, respectively. These two heterostructures exhibit a nice compromise between storage capacity and kinetics. For example, the diffusion barrier of Li in Ti2CO2/graphene is around 0.3 eV which is comparable to that of graphite. Additionally, the calculated average voltages are 1.49 V and 1.93 V for Ti2CO2/graphene and V2CO2/graphene structures, respectively; (4) a small change in the in-plane lattice parameters (<1%), interatomic bond lengths and interlayer distances (<0.5 angstrom) proves the stability of the heterostructures against Li intercalation, and the impending phase separation into constituent layers and capacity fading during charge-discharge cycles in real battery applications; (5) as compared to bare M2CX2 bilayers, M2CX2/graphene heterostructures have lower molecular mass, offering high storage capacity; (6) the presence of graphene ensures good electrical conductivity that is essential for battery applications. Given these advantages, Ti2CO2/graphene and V2CO2/graphene heterostructures are predicted to be promising for lithium-ion battery applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000423981200049 Publication Date 2018-01-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.867 Times cited 131 Open Access  
  Notes ; This work was supported by the bilateral project between the Scientific and Technological Research Council of Turkey (TUBITAK) and FWO-Flanders, Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by the TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRGrid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. We acknowledge the support from the TUBITAK (Grant No. 115F024 and 116F080). Part of this work was supported by the BAGEP Award of the Science Academy. ; Approved Most recent IF: 8.867  
  Call Number UA @ lucian @ c:irua:149265UA @ admin @ c:irua:149265 Serial 4945  
Permanent link to this record
 

 
Author Bekaert, J.; Sevik, C.; Milošević, M.V. url  doi
openurl 
  Title First-principles exploration of superconductivity in MXenes Type A1 Journal article
  Year 2020 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 12 Issue Pages 17354-17361  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract (down) MXenes are an emerging class of two-dimensional materials, which in their thinnest limit consist of a monolayer of carbon or nitrogen (X) sandwiched between two transition metal (M) layers. We have systematically searched for superconductivity among MXenes for a range of transition metal elements, based on a full first-principles characterization in combination with the Eliashberg formalism. Thus, we identified six superconducting MXenes: three carbides (Mo2C, W2C and Sc2C) and three nitrides (Mo2N, W2N and Ta2N). The highest critical temperature of similar to 16 K is found in Mo2N, for which a successful synthesis method has been established [Urbankowskiet al.,Nanoscale, 2017,9, 17722-17730]. Moreover, W2N presents a novel case of competing superconducting and charge density wave phases.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000563481700017 Publication Date 2020-08-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.7 Times cited 15 Open Access  
  Notes ; This work is supported by The Scientific and Technological Research Council of Turkey (TUBITAK) under the contract number COST-118F187, the Air Force Office of Scientific Research under award number FA9550-19-1-7048, by Research Foundation-Flanders (FWO) and the University of Antwerp (BOF). The collaboration was fostered by COST action NANOCOHYBRI (CA16218). Computational resources were provided by the High Performance and Grid Computing Center (TRGrid e-Infrastructure) of TUBITAK ULAKBIM, the National Center for High Performance Computing (UHeM) of Istanbul Technical University, and by the VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government – department EWI. J. B. acknowledges support of a postdoctoral fellowship of the FWO. ; Approved Most recent IF: 6.7; 2020 IF: 7.367  
  Call Number UA @ admin @ c:irua:171988 Serial 6521  
Permanent link to this record
 

 
Author Deleu, N.; Hillen, M.; Steenackers, G.; Borms, G.; Janssens, K.; Van der Stighelen, K.; Van der Snickt, G. pdf  doi
openurl 
  Title Combined macro X-ray fluorescence (MA-XRF) and pulse phase thermography (PPT) imaging for the technical study of panel paintings Type A1 Journal article
  Year 2024 Publication Talanta : the international journal of pure and applied analytical chemistry Abbreviated Journal  
  Volume 270 Issue Pages 125533-11  
  Keywords A1 Journal article; Art; Antwerp Cultural Heritage Sciences (ARCHES); Antwerp X-ray Imaging and Spectroscopy (AXIS)  
  Abstract (down) Museum staff usually relies on a proven combination of X-ray radiography (XRR) and infrared reflectography (IRR) to study paintings in a non-destructive manner. In the last decades, however, the research toolbox of heritage scientists has expanded considerably, with a prime example being macro X-ray fluorescence (MA-XRF), producing element-specific images. The goal of this article is to illustrate the added value of augmenting MA-XRF with pulse phase thermography (PPT), a variant of active infrared thermographic imaging (IRT), which is an innovative diagnostic method that is able to reveal variations between or in materials, based on a different response to minor fluctuations in temperature when irradiated with optical radiation. By examining three 16thand 17th-century panel paintings we assess the extent in which combined MA-XRF and PPT contributes to a better understanding of two commonly encountered interventions to panel paintings: (a) Anstuckungen (enlargement of the panel) or (b) substitutions (replacement of part of the panel). Yielding information from different depths of the painting, these two techniques proved highly complementary with IRR and XRR, expanding the understanding of the build-up, genesis, and material history of the paintings. While MA-XRF documented the interventions to the wooden substrate indirectly by revealing variations in painting materials, paint handling and/ or layer sequence between the original part and the extended or replaced planks, PPT proved beneficial for the study of the wooden support itself, by providing a clear image of the wood structure quasi-free of distortion by the superimposed paint or cradling. XRR, on the other hand, revealed other features from the wood structure, not visible with PPT, and allowed looking through the wooden panels, revealing e.g. the dowels used for joining the planks. Additionally, IRR visualised dissimilarities in the underdrawings. In this way, the results indicate that PPT has the potential to become an acknowledged add-on to the expanding set of imaging methods for paintings, especially when used in combination with MA-XRF, IRR and XRR.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001144098200001 Publication Date 2023-12-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0039-9140; 1873-3573 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 6.1 Times cited Open Access  
  Notes Approved Most recent IF: 6.1; 2024 IF: 4.162  
  Call Number UA @ admin @ c:irua:203764 Serial 9193  
Permanent link to this record
 

 
Author Biró, L.P.; Khanh, N.Q.; Vértesy, Z.; Horváth, Z.E.; Osváth, Z.; Koós, A.; Gyulai, J.; Kocsonya, A.; Kónya, Z.; Zhang, X.B.; Van Tendeloo, G.; Fonseca, A.; Nagy, J.B.; pdf  doi
openurl 
  Title Catalyst traces and other impurities in chemically purified carbon nanotubes grown by CVD Type A1 Journal article
  Year 2002 Publication Materials science and engineering: part C: biomimetic materials T2 – EMRS Spring Meeting, JUN 05-08, 2001, STRASBOURG, FRANCE Abbreviated Journal Mat Sci Eng C-Mater  
  Volume 19 Issue 1-2 Pages 9-13  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) Multiwall carbon nanotubes grown by the catalytic decomposition of acetylene over supported Co catalyst were subjected to wet and dry oxidation in order to remove the unwanted products and the catalyst traces. The effects of the purification treatment on the Co content was monitored by physical methods: Rutherford Backscattering Spectrometry (RBS). Particle Induced X-Ray Emission (PIXE) and X-Ray Fluorescence (XRF). The purified products were investigated by microscopic methods: TEM. Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and STM. The KMnO4/H2SO4 aqueous oxidation procedure was found to be effective in reducing the Co content while damaging only moderately the outer wall of the nanotubes. Treatment in HNO3/H2SO4 yields a bucky-paper like product and produces the increase of the Si and S content of the sample. (C) 2002 Elsevier Science B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000173080700003 Publication Date 2002-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0928-4931; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.164 Times cited 36 Open Access  
  Notes Approved Most recent IF: 4.164; 2002 IF: 0.734  
  Call Number UA @ lucian @ c:irua:102835 Serial 289  
Permanent link to this record
 

 
Author Kneller, J.M.; Soto, R.J.; Surber, S.E.; Colomer, J.F.; Fonseca, A.; Nagy, J.B.; Van Tendeloo, G.; Pietrass, T. pdf  doi
openurl 
  Title TEM and laser-polarized 129Xe NMR characterization of oxidatively purified carbon nanotubes Type A1 Journal article
  Year 2000 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 122 Issue 43 Pages 10591-10597  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) Multiwall carbon nanotubes are produced by decomposition of acetylene at 600 degreesC on metal catalysts supported on NaY zeolite. The support and the metal are eliminated by dissolving them in aqueous hydrofluoric acid (HF). Two methods were used to eliminate the pyrolitic carbon: oxidation in air at 500 degreesC and oxidation by potassium permanganate in acidic solution at 70 degreesC. The progress and efficacy of the purification methods are verified by TEM. The properties of the purified multiwalled carbon nanotubes are probed using C-13 and Xe-129 NMR spectroscopy under continuous-flow optical-pumping conditions. Xenon is shown to penetrate the interior of the nanotubes. A distribution of inner tube diameters gives rise to chemical shift dispersion. When the temperature is lowered, an increasing fraction of xenon resides inside the nanotubes and is not capable of exchanging with xenon in the interparticle space. In the case of the permanganate-oxidized sample, rapid xenon relaxation is attributed to interaction with residual MnO2 nanoparticles in the interior of the tubes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000165205000011 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 53 Open Access  
  Notes Approved Most recent IF: 13.858; 2000 IF: 6.025  
  Call Number UA @ lucian @ c:irua:95741 Serial 3473  
Permanent link to this record
 

 
Author Van Renterghem, W.; Karthauser, S.; Schryvers, D.; van Landuyt, J.; De Keyzer, R.; Van Roost, C. openurl 
  Title The influence of the precipitation method on defect formation in multishell AgBrI (111) tabular crystals Type P1 Proceeding
  Year 2000 Publication Abbreviated Journal  
  Volume Issue Pages 167-171  
  Keywords P1 Proceeding; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (down) Multishell tabular grains have a higher speed than pure AgBr tabular grains. Usually the shells differ in size and iodide content, but also the precipitation method for the iodide containing shells has an influence on the iodide incorporation. A TEM investigation was performed to determine the defect structure of multishell AgBr (111) tabular crystals containing a shell with a low iodide concentration and one with a high iodide concentration. The twins that induce tabular growth and stacking fault contrast in the region of the iodide shells have been observed, similar to previously studied AgBr/Ag(Br,I) coreshell crystals. Moreover in some of the crystals dislocations have been observed, sometimes even an entire network. The number of dislocations formed varies for the different methods of iodide addition. Also variations in average thickness between the different iodide addition methods have been observed. A higher number of dislocations and thicker crystals point towards a higher local concentration of iodide. These observations allow deciding which iodide incorporation method is most useful for a preferred dislocation pattern.  
  Address  
  Corporate Author Thesis  
  Publisher Soc Imaging Science Technology Place of Publication Springfield Editor  
  Language Wos 000183315900046 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0-89208-229-1 ISBN Additional Links UA library record; WoS full record;  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:95774 Serial 3587  
Permanent link to this record
 

 
Author Bernaerts, D.; op de Beeck, M.; Amelinckx, S.; van Landuyt, J.; Van Tendeloo, G. pdf  doi
openurl 
  Title The chirality of carbon nanotubules determined by dark-field electron microscopy Type A1 Journal article
  Year 1996 Publication Philosophical magazine: A: physics of condensed matter: defects and mechanical properties Abbreviated Journal  
  Volume 74 Issue 3 Pages 723-740  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) Multishell carbon nanotubules are studied by means of diffraction contrast dark field images. This results in an electron microscopy method for the determination of the sign of the chiral angles in carbon nanotubes. The method is justified by a reasoning either in direct space or in diffraction space. We also investigate a carbon nanotubule exhibiting a bend and we confront the observations with the heptagon-pentagon pair model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos A1996VG17300010 Publication Date 2007-07-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0141-8610;1460-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 20 Open Access  
  Notes Approved PHYSICS, APPLIED 47/145 Q2 #  
  Call Number UA @ lucian @ c:irua:15456 Serial 359  
Permanent link to this record
 

 
Author Baelus, B.J.; Peeters, F.M. doi  openurl
  Title Multiply connected mesoscopic superconductors Type A1 Journal article
  Year 2003 Publication Modern physics letters B T2 – 3rd International Conference on Modern Problems in Superconductivity, SEP 09-14, 2002, YALTA, UKRAINE Abbreviated Journal Mod Phys Lett B  
  Volume 17 Issue 10-12 Pages 527-536  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) Multiply connected mesoscopic: superconductors are considered within the framework of the nonlinear Ginzburg-Landau theory. The two coupled nonlinear equations are solved numerically and we investigated the properties of a superconducting ring, two concentric rings, and an asymmetric ring. We find that (i) for a mesoscopic superconducting ring the flux through the hole is not quantized, (ii) two concentric mesoscopic superconducting rings are magnetically coupled and the interaction energy increases with increasing sample thickness, and (iii) in asymmetric rings, a stationary phase slip state is predicted.  
  Address  
  Corporate Author Thesis  
  Publisher World scientific publ co pte ltd Place of Publication Singapore Editor  
  Language Wos 000184303900016 Publication Date 2003-07-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0217-9849;1793-6640; ISBN Additional Links UA library record; WoS full record  
  Impact Factor 0.617 Times cited Open Access  
  Notes Approved Most recent IF: 0.617; 2003 IF: 0.461  
  Call Number UA @ lucian @ c:irua:103810 Serial 2236  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: