|   | 
Details
   web
Records
Author Cai, Y.; Mei, D.; Chen, Y.; Bogaerts, A.; Tu, X.
Title Machine learning-driven optimization of plasma-catalytic dry reforming of methane Type A1 Journal Article
Year 2024 Publication Journal of Energy Chemistry Abbreviated Journal Journal of Energy Chemistry
Volume 96 Issue Pages 153-163
Keywords A1 Journal Article; Plasma catalysis Machine learning Process optimization Dry reforming of methane Syngas production; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract (up) This study investigates the dry reformation of methane (DRM) over Ni/Al2O3 catalysts in a dielectric barrier discharge (DBD) non-thermal plasma reactor. A novel hybrid machine learning (ML) model is developed to optimize the plasma-catalytic DRM reaction with limited experimental data. To address the non-linear and complex nature of the plasma-catalytic DRM process, the hybrid ML model integrates three well-established algorithms: regression trees, support vector regression, and artificial neural networks. A genetic algorithm (GA) is then used to optimize the hyperparameters of each algorithm within the hybrid ML model. The ML model achieved excellent agreement with the experimental data, demonstrating its efficacy in accurately predicting and optimizing the DRM process. The model was subsequently used to investigate the impact of various operating parameters on the plasma-catalytic DRM performance. We found that the optimal discharge power (20 W), CO2/CH4 molar ratio (1.5), and Ni loading (7.8 wt%) resulted in the maximum energy yield at a total flow rate of 51 mL/min. Furthermore, we investigated the relative significance of each operating parameter on the performance of the plasmacatalytic DRM process. The results show that the total flow rate had the greatest influence on the conversion, with a significance exceeding 35% for each output, while the Ni loading had the least impact on the overall reaction performance. This hybrid model demonstrates a remarkable ability to extract valuable insights from limited datasets, enabling the development and optimization of more efficient and selective plasma-catalytic chemical processes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2024-04-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2095-4956 ISBN Additional Links
Impact Factor 13.1 Times cited Open Access
Notes This project received funding from the European Union’s Hori- zon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No. 813393. Approved Most recent IF: 13.1; 2024 IF: 2.594
Call Number PLASMANT @ plasmant @ Serial 9124
Permanent link to this record
 

 
Author Wang, J.; Zhang, K.; Mertens, M.; Bogaerts, A.; Meynen, V.
Title Plasma-based dry reforming of methane in a dielectric barrier discharge reactor: Importance of uniform (sub)micron packings/catalysts to enhance the performance Type A1 Journal Article
Year 2023 Publication APPLIED CATALYSIS B-ENVIRONMENTAL Abbreviated Journal
Volume 337 Issue Pages 122977
Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract (up) This study presents new insights on the effect of (sub)micrometer particle sized materials in plasma-based CO2-

CH4 reforming by investigating the performance of SiO2 spheres (with/without supported metal) of varying

particle sizes. (Sub)micron particles synthesized through the St¨ober method were used instead of (sub)millimeter

particles employed in previous studies. Increasing particle size (from 120 nm to 2390 nm) was found to first

increase and then decrease conversion and energy yield, with optimal performance achieved using 740 nm 5 wt%

Ni loaded SiO2, which improved CO2 and CH4 conversion, and energy yield to 44%, 55%, and 0.271 mmol/kJ,

respectively, compared to 20%, 27%, and 0.116 mmol/kJ in an empty reactor at the same flow rate. This is the

first to achieve significant performance improvement in a fully packed reactor, highlighting the importance of

selecting a suitable particle size. The findings can offer guidance towards rational design of catalysts for plasmabased

reactions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001056527600001 Publication Date 2023-06-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record
Impact Factor 22.1 Times cited Open Access Not_Open_Access
Notes This work is supported by the China Scholarship Council (No. 201806060123); and the VLAIO Catalisti transition project CO2PERATE (HBC.2017.0692). K.Z acknowledges the EASiCHEM project funded by the Flemish Strategic Basic Research Program of the Catalisti cluster and Flanders Innovation & Entrepreneurship (HBC.2018.0484). Approved Most recent IF: 22.1; 2023 IF: 9.446
Call Number PLASMANT @ plasmant @c:irua:196955 Serial 8797
Permanent link to this record
 

 
Author Wang, J.; Zhang, K.; Mertens, M.; Bogaerts, A.; Meynen, V.
Title Plasma-based dry reforming of methane in a dielectric barrier discharge reactor: Importance of uniform (sub)micron packings/catalysts to enhance the performance Type A1 Journal Article
Year 2023 Publication APPLIED CATALYSIS B-ENVIRONMENTAL Abbreviated Journal
Volume 337 Issue Pages 122977
Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract (up) This study presents new insights on the effect of (sub)micrometer particle sized materials in plasma-based CO2-

CH4 reforming by investigating the performance of SiO2 spheres (with/without supported metal) of varying

particle sizes. (Sub)micron particles synthesized through the St¨ober method were used instead of (sub)millimeter

particles employed in previous studies. Increasing particle size (from 120 nm to 2390 nm) was found to first

increase and then decrease conversion and energy yield, with optimal performance achieved using 740 nm 5 wt%

Ni loaded SiO2, which improved CO2 and CH4 conversion, and energy yield to 44%, 55%, and 0.271 mmol/kJ,

respectively, compared to 20%, 27%, and 0.116 mmol/kJ in an empty reactor at the same flow rate. This is the

first to achieve significant performance improvement in a fully packed reactor, highlighting the importance of

selecting a suitable particle size. The findings can offer guidance towards rational design of catalysts for plasmabased

reactions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001056527600001 Publication Date 2023-06-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record
Impact Factor 22.1 Times cited Open Access Not_Open_Access
Notes This work is supported by the China Scholarship Council (No. 201806060123); and the VLAIO Catalisti transition project CO2PERATE (HBC.2017.0692). K.Z acknowledges the EASiCHEM project funded by the Flemish Strategic Basic Research Program of the Catalisti cluster and Flanders Innovation & Entrepreneurship (HBC.2018.0484). Approved Most recent IF: 22.1; 2023 IF: 9.446
Call Number PLASMANT @ plasmant @c:irua:196955 Serial 8798
Permanent link to this record
 

 
Author Khosravian, N.; Kamaraj, B.; Neyts, E.C.; Bogaerts, A.
Title Structural modification of P-glycoprotein induced by OH radicals: Insights from atomistic simulations Type A1 Journal article
Year 2016 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
Volume 6 Issue 6 Pages 19466
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (up) This study reports on the possible effects of OH radical impact on the transmembrane domain 6 of P-glycoprotein, TM6, which plays a crucial role in drug binding in human cells. For the first time, we employ molecular dynamics (MD) simulations based on the self-consistent charge density functional tight binding (SCC-DFTB) method to elucidate the potential sites of fragmentation and mutation in this domain upon impact of OH radicals, and to obtain fundamental information about the underlying reaction mechanisms. Furthermore, we apply non-reactive MD simulations to investigate the long-term effect of this mutation, with possible implications for drug binding. Our simulations indicate that the interaction of OH radicals with TM6 might lead to the breaking of C-C and C-N peptide bonds, which eventually cause fragmentation of TM6. Moreover, according to our simulations, the OH radicals can yield mutation in the aromatic ring of phenylalanine in TM6, which in turn affects its structure. As TM6 plays an important role in the binding of a range of cytotoxic drugs with P-glycoprotein, any changes in its structure are likely to affect the response of the tumor cell in chemotherapy. This is crucial for cancer therapies based on reactive oxygen species, such as plasma treatment.
Address Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000369573900001 Publication Date 2016-02-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited 7 Open Access
Notes The authors acknowledge financial support from the Fund for Scientific Research (FWO) Flanders, grant number G012413N. The calculations were performed in part using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the Universiteit Antwerpen.” Approved Most recent IF: 4.259
Call Number c:irua:131610 Serial 4031
Permanent link to this record
 

 
Author Belov, I.; Paulussen, S.; Bogaerts, A.
Title Appearance of a conductive carbonaceous coating in a CO2dielectric barrier discharge and its influence on the electrical properties and the conversion efficiency Type A1 Journal article
Year 2016 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 25 Issue 25 Pages 015023
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (up) This work examines the properties of a dielectric barrier discharge (DBD) reactor, built for CO2 decomposition, by means of electrical characterization, optical emission spectroscopy and gas chromatography. The discharge, formed in an electronegative gas (such as CO2, but also O2), exhibits clearly different electrical characteristics, depending on the surface conductivity of the reactor walls. An asymmetric current waveform is observed in the metaldielectric (MD) configuration, with sparse high-current pulses in the positive half-cycle (HC) and a more uniform regime in the negative HC. This indicates that the discharge is operating in two alternating regimes with rather different properties. At high CO2 conversion regimes, a conductive coating is deposited on the dielectric. This so-called coated MD configuration yields a symmetric current waveform, with current peaks in both the positive and negative HCs. In a double-dielectric (DD) configuration, the current waveform is also symmetric, but without current peaks in both the positive and negative HC. Finally, the DD configuration with conductive coating on the inner surface of the outer dielectric, i.e. so-called coated DD, yields again an asymmetric current waveform, with current peaks in the negative HC. These different electrical characteristics are related to the presence of the conductive coating on the dielectric wall of the reactor and can be explained by an increase of the local barrier capacitance available for charge transfer. The different discharge regimes affect the CO2 conversion, more specifically, the CO2 conversion is lowest in the clean DD configuration. It is somewhat higher in the coated DD configuration, and still higher in the MD configuration. The clean and coated MD configuration, however, gave similar CO2 conversion. These results indicate that the conductivity of the dielectric reactor walls can highly promote the development of the high-amplitude discharge current pulses and subsequently the CO2 conversion.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000370974800030 Publication Date 2016-01-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 25 Open Access
Notes The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7-PEOPLE-2013-ITN) under Grant Agreement № 606889 (RAPID—Reactive Atmospheric Plasma processIng—eDucation network). Approved Most recent IF: 3.302
Call Number c:irua:130790 Serial 4006
Permanent link to this record
 

 
Author Alves, L.L.; Bogaerts, A.; Guerra, V.; Turner, M.M.
Title Foundations of modelling of nonequilibrium low-temperature plasmas Type A1 Journal article
Year 2018 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 27 Issue 2 Pages 023002
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (up) This work explains the need for plasma models, introduces arguments for choosing the type of model that better fits the purpose of each study, and presents the basics of the most common nonequilibrium low-temperature plasma models and the information available from each one, along with an extensive list of references for complementary in-depth reading. The paper presents the following models, organised according to the level of multi-dimensional description of the plasma: kinetic models, based on either a statistical particle-in-cell/Monte-Carlo approach or the solution to the Boltzmann equation (in the latter case, special focus is given to the description of the electron kinetics); multi-fluid models, based on the solution to the hydrodynamic equations; global (spatially-average) models, based on the solution to the particle and energy rate-balance equations for the main plasma species, usually including a very complete reaction chemistry; mesoscopic models for plasma–surface interaction, adopting either a deterministic approach or a stochastic dynamical Monte-Carlo approach. For each plasma model, the paper puts forward the physics context, introduces the fundamental equations, presents advantages and limitations, also from a numerical perspective, and illustrates its application with some examples. Whenever pertinent, the interconnection between models is also discussed, in view of multi-scale hybrid approaches.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000425688600001 Publication Date 2018-02-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 17 Open Access OpenAccess
Notes The authors would like to thank A Tejero-Del-Caz and A Berthelot for their technical contributions in writing the manuscript. This work was partially funded by Portuguese FCT —Fundação para a Ciência e a Tecnologia, under projects UID/ FIS/50010/2013, PTDC/FISPLA/1243/2014 (KIT-PLAS- MEBA) and PTDC/FIS-PLA/1420/2014 (PREMiERE). Approved Most recent IF: 3.302
Call Number PLASMANT @ plasmant @c:irua:149391 Serial 4810
Permanent link to this record
 

 
Author Uytdenhouwen, Y.; Meynen, V.; Cool, P.; Bogaerts, A.
Title The Potential Use of Core-Shell Structured Spheres in a Packed-Bed DBD Plasma Reactor for CO2 Conversion Type A1 Journal article
Year 2020 Publication Catalysts Abbreviated Journal Catalysts
Volume 10 Issue 5 Pages 530
Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (up) This work proposes to use core-shell structured spheres to evaluate whether it allows to individually optimize bulk and surface effects of a packing material, in order to optimize conversion and energy efficiency. Different core-shell materials have been prepared by spray coating, using dense spheres (as core) and powders (as shell) of SiO2, Al2O3, and BaTiO3. The materials are investigated for their performance in CO2 dissociation and compared against a benchmark consisting of a packed-bed reactor with the pure dense spheres, as well as an empty reactor. The results in terms of CO2 conversion and energy efficiency show various interactions between the core and shell material, depending on their combination. Al2O3 was found as the best core material under the applied conditions here, followed by BaTiO3 and SiO2, in agreement with their behaviour for the pure spheres. Applying a thin shell layer on the cores showed equal performance between the different shell materials. Increasing the layer thickness shifts this behaviour, and strong combination effects were observed depending on the specific material. Therefore, this method of core-shell spheres has the potential to allow tuning of the packing properties more closely to the application by designing an optimal combination of core and shell.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000546007000092 Publication Date 2020-05-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-4344 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.9 Times cited Open Access
Notes Interreg, Project EnOp ; Fonds Wetenschappelijk Onderzoek, G.0254.14N ; Universiteit Antwerpen, Project SynCO2Chem ; We want to thank Jasper Lefevre (VITO) for assistance in the development of the coating suspension for the core-shell spheres. Approved Most recent IF: 3.9; 2020 IF: 3.082
Call Number PLASMANT @ plasmant @c:irua:169222 Serial 6364
Permanent link to this record
 

 
Author Lin, A.; Sahun, M.; Biscop, E.; Verswyvel, H.; De Waele, J.; De Backer, J.; Theys, C.; Cuypers, B.; Laukens, K.; Berghe, W.V.; Smits, E.; Bogaerts, A.
Title Acquired non-thermal plasma resistance mediates a shift towards aerobic glycolysis and ferroptotic cell death in melanoma Type A1 Journal article
Year 2023 Publication Drug resistance updates Abbreviated Journal
Volume 67 Issue Pages 100914
Keywords A1 Journal article; Pharmacology. Therapy; ADReM Data Lab (ADReM); Center for Oncological Research (CORE); Proteinscience, proteomics and epigenetic signaling (PPES); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (up) To gain insights into the underlying mechanisms of NTP therapy sensitivity and resistance, using the firstever

NTP-resistant cell line derived from sensitive melanoma cells (A375).

Methods: Melanoma cells were exposed to NTP and re-cultured for 12 consecutive weeks before evaluation

against the parental control cells. Whole transcriptome sequencing analysis was performed to identify differentially

expressed genes and enriched molecular pathways. Glucose uptake, extracellular lactate, media acidification,

and mitochondrial respiration was analyzed to determine metabolic changes. Cell death inhibitors were

used to assess the NTP-induced cell death mechanisms, and apoptosis and ferroptosis was further validated via

Annexin V, Caspase 3/7, and lipid peroxidation analysis.

Results: Cells continuously exposed to NTP became 10 times more resistant to NTP compared to the parental cell

line of the same passage, based on their half-maximal inhibitory concentration (IC50). Sequencing and metabolic

analysis indicated that NTP-resistant cells had a preference towards aerobic glycolysis, while cell death analysis

revealed that NTP-resistant cells exhibited less apoptosis but were more vulnerable to lipid peroxidation and

ferroptosis.

Conclusions: A preference towards aerobic glycolysis and ferroptotic cell death are key physiological changes in

NTP-resistance cells, which opens new avenues for further, in-depth research into other cancer types.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000925156500001 Publication Date 2022-12-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1368-7646 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 24.3 Times cited Open Access OpenAccess
Notes The authors would like to thank Dr. Christophe Deben and Ms. Hannah Zaryouh (Center for Oncological Research, University of Antwerp) for the use and their help with the D300e Digital Dispenser and Spark® Cyto, as well as Ms. Rapha¨elle Corremans (Laboratory Pathophysiology, University of Antwerp) for the use of their lactate meter. The authors would also like to acknowledge the help from Ms. Tias Verhezen and Mr. Cyrus Akbari, who was involved at the start of the project but could not continue due to the COVID-19 pandemic. The authors also acknowledge the resources and services provided by the VSC (Flemish Supercomputer Center). This work was funded in part by the Research Foundation – Flanders (FWO) and the Flemish Government. The FWO fellowships and grants that funded this work also include: 12S9221N (Abraham Lin), G044420N (Abraham Lin, Annemie Bogaerts), and 1S67621N (Hanne Verswyvel). We would also like to thank several patrons, as part of this research was funded by donations from different donors, including Dedert Schilde vzw, Mr. Willy Floren, and the Vereycken family. We would also like to acknowledge the support from the European Cooperation in Science & Technology (COST) Action on Therapeutical applications of Cold Plasmas (CA20114; PlasTHER). Approved Most recent IF: 24.3; 2023 IF: 10.906
Call Number PLASMANT @ plasmant @c:irua:193167 Serial 7240
Permanent link to this record
 

 
Author Bogaerts, A.; Aghaei, M.
Title What modeling reveals about the properties of an inductively coupled plasma Type A1 Journal article
Year 2016 Publication Spectroscopy Abbreviated Journal Spectroscopy-Us
Volume 31 Issue 1 Pages 52-59
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (up) To get better performance from inductively coupled plasma (ICP)-based methods, it is informative to study the properties of the ICP under different conditions. Annemie Bogaerts and Maryam Aghaei at the University of Antwerp, Belgium, are using computational modeling to examine how various properties of the ICP, such as gas flow path lines and velocity, temperature changes, and ionization effects, are affected by numerous factors, such as the gas flow rates of injector and auxiliary gas, applied power, and even the very presence of a mass spectrometry (MS) sampler. They have also applied their models to study particle transport through the ICP. Using their developed model, it is now possible to predict optimum conditions for specific analyses. Bogaerts and Aghaei spoke to us about this work.
Address
Corporate Author Thesis
Publisher Place of Publication Springfield, Or. Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0887-6703 ISBN Additional Links UA library record; WoS full record
Impact Factor 0.466 Times cited Open Access
Notes Approved Most recent IF: 0.466
Call Number UA @ lucian @ c:irua:131601 Serial 4278
Permanent link to this record
 

 
Author Maerivoet, S.; Tsonev, I.; Slaets, J.; Reniers, F.; Bogaerts, A.
Title Coupled multi-dimensional modelling of warm plasmas: Application and validation for an atmospheric pressure glow discharge in CO2/CH4/O2 Type A1 Journal Article
Year 2024 Publication Chemical Engineering Journal Abbreviated Journal Chemical Engineering Journal
Volume 492 Issue Pages 152006
Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract (up) To support experimental research into gas conversion by warm plasmas, models should be developed to explain the experimental observations. These models need to describe all physical and chemical plasma properties in a coupled way. In this paper, we present a modelling approach to solve the complete set of assumed relevant equations, including gas flow, heat balance and species transport, coupled with a rather extensive chemistry set, consisting of 21 species, obtained by reduction of a more detailed chemistry set, consisting of 41 species. We apply this model to study the combined CO2 and CH4 conversion in the presence of O2, in a direct current atmospheric pressure glow discharge. Our model can predict the experimental trends, and can explain why higher O2 fractions result in higher CH4 conversion, namely due to the higher gas temperature, rather than just by additional chemical reactions. Indeed, our model predicts that when more O2 is added, the energy required to reach any set temperature (i.e., the enthalpy) drops, allowing the system to reach higher temperatures with similar amounts of energy. This is in turn related to the higher H2O fraction and lower H2 fraction formed in the plasma, as demonstrated by our model. Altogether, our new self-consistent model can capture the main physics and chemistry occurring in this warm plasma, which is an important step towards predictive modelling for plasma-based gas conversion.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2024-05-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947 ISBN Additional Links
Impact Factor 15.1 Times cited Open Access
Notes This research was supported by the Excellence of Science FWO-FNRS project (FWO grant ID G0I1822N; EOS ID 40007511) and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 810182–SCOPE ERC Synergy project, and grant agreement No. 101081162–PREPARE ERC Proof of Concept project). computational resources and services used in this work were provided by the HPC core facility CalcUA of the Universiteit Antwerpen, and VSC (Flemish Supercomputer Center), funded by the Research Foundation – Flanders (FWO) and the Flemish Government. Approved Most recent IF: 15.1; 2024 IF: 6.216
Call Number PLASMANT @ plasmant @ Serial 9132
Permanent link to this record
 

 
Author Mercer, Er.; Van Alphen, S.; van Deursen, Cf.a.m.; Righart, Tw.h.; Bongers, Wa.; Snyders, R.; Bogaerts, A.; van de Sanden, Mc.m.; Peeters, Fj.j.
Title Post-plasma quenching to improve conversion and energy efficiency in a CO2 microwave plasma Type A1 Journal article
Year 2023 Publication Fuel Abbreviated Journal
Volume 334 Issue Pages 126734
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (up) Transforming CO2 into value-added chemicals is crucial to realizing a carbon–neutral economy, and plasma-based conversion, a Power-2-X technology, offers a promising route to realizing an efficient and scalable process. This paper investigates the effects of post-plasma placement of a converging–diverging nozzle in a vortex-stabilized 2.45 GHz CO2 microwave plasma reactor to increase energy efficiency and conversion. The CDN leads to a 21 % relative increase in energy efficiency (31 %) and CO2 conversion (13 %) at high flow rates and near-atmospheric conditions. The most significant performance improvement was seen at low flow rates and sub-atmospheric pressure (300 mbar), where energy efficiency was 23 % and conversion was 28 %, a 71 % relative increase over conditions without the CDN. Using CFD simulations, we found that the CDN produces a change in the flow geometry, leading to a confined temperature profile at the height of the plasma, and forced extraction of CO to the post-CDN region.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000891307400008 Publication Date 2022-11-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0016-2361 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.4 Times cited Open Access OpenAccess
Notes This research was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No 810182 – SCOPE ERC Synergy project) and the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023). The computational resources and services used in this work were provided by the HPC core facility CalcUA of the Universiteit Antwerpen, and VSC (Flemish Supercomputer Center), funded by the Research Foundation – Flanders (FWO) and the Flemish Government. In addition, this work has been carried out as part of the Plasma Power to Gas research program with reference 15325, which is by the Netherlands Organization for Scientific Research (NWO) and Alliander N.V. Approved Most recent IF: 7.4; 2023 IF: 4.601
Call Number PLASMANT @ plasmant @c:irua:192784 Serial 7235
Permanent link to this record
 

 
Author Privat-Maldonado, A.; Bengtson, C.; Razzokov, J.; Smits, E.; Bogaerts, A.
Title Modifying the Tumour Microenvironment: Challenges and Future Perspectives for Anticancer Plasma Treatments Type A1 Journal article
Year 2019 Publication Cancers Abbreviated Journal Cancers
Volume 11 Issue 12 Pages 1920
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)
Abstract (up) Tumours are complex systems formed by cellular (malignant, immune, and endothelial cells, fibroblasts) and acellular components (extracellular matrix (ECM) constituents and secreted factors). A close interplay between these factors, collectively called the tumour microenvironment, is required to respond appropriately to external cues and to determine the treatment outcome. Cold plasma (here referred as ‘plasma’) is an emerging anticancer technology that generates a unique cocktail of reactive oxygen and nitrogen species to eliminate cancerous cells via multiple mechanisms of action. While plasma is currently regarded as a local therapy, it can also modulate the mechanisms of cell-to-cell and cell-to-ECM communication, which could facilitate the propagation of its effect in tissue and distant sites. However, it is still largely unknown how the physical interactions occurring between cells and/or the ECM in the tumour microenvironment affect the plasma therapy outcome. In this review, we discuss the effect of plasma on cell-to-cell and cell-to-ECM communication in the context of the tumour microenvironment and suggest new avenues of research to advance our knowledge in the field. Furthermore, we revise the relevant state-of-the-art in three-dimensional in vitro models that could be used to analyse cell-to-cell and cell-to-ECM communication and further strengthen our understanding of the effect of plasma in solid tumours.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000507382100097 Publication Date 2019-12-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-6694 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Figure 4 was created using resources from the ‘Mind the Graph’ platform, free trial version. Spheroid image obtained in collaboration with Sander Bekeschus (INP Greifswald, Germany); organoid image kindly provided by Christophe Deben (Center for Oncological Research, University of Antwerp, Belgium). Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @c:irua:164892 Serial 5437
Permanent link to this record
 

 
Author Zhang, Y.-R.; Van Laer, K.; Neyts, E.C.; Bogaerts, A.
Title Can plasma be formed in catalyst pores? A modeling investigation Type A1 Journal article
Year 2016 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ
Volume 185 Issue 185 Pages 56-67
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (up) tWe investigate microdischarge formation inside catalyst pores by a two-dimensional fluid model forvarious pore sizes in the m-range and for various applied voltages. Indeed, this is a poorly understoodphenomenon in plasma catalysis. The calculations are performed for a dielectric barrier discharge inhelium, at atmospheric pressure. The electron and ion densities, electron temperature, electric field andpotential, as well as the electron impact ionization and excitation rate and the densities of excited plasmaspecies, are examined for a better understanding of the characteristics of the plasma inside a pore. Theresults indicate that the pore size and the applied voltage are critical parameters for the formation of amicrodischarge inside a pore. At an applied voltage of 20 kV, our calculations reveal that the ionizationmainly takes place inside the pore, and the electron density shows a significant increase near and inthe pore for pore sizes larger than 200m, whereas the effect of the pore on the total ion density isevident even for 10m pores. When the pore size is fixed at 30m, the presence of the pore has nosignificant influence on the plasma properties at an applied voltage of 2 kV. Upon increasing the voltage,the ionization process is enhanced due to the strong electric field and high electron temperature, andthe ion density shows a remarkable increase near and in the pore for voltages above 10 kV. These resultsindicate that the plasma species can be formed inside pores of structured catalysts (in the m range),and they may interact with the catalyst surface, and affect the plasma catalytic process.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000369452000006 Publication Date 2015-12-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.446 Times cited 75 Open Access
Notes This work was supported by the Fund for Scientific ResearchFlanders (FWO) (Grant no. G.0217.14N), the National Natural Sci-ence Foundation of China (Grant no. 11405019), and the ChinaPostdoctoral Science Foundation (Grant no. 2015T80244). Theauthors are very grateful to V. Meynen for the useful discussions oncatalysts. This work was carried out in part using the Turing HPCinfrastructure at the CalcUA core facility of the Universiteit Antwer-pen, a division of the Flemish Supercomputer Center VSC, fundedby the Hercules Foundation, the Flemish Government (departmentEWI) and the University of Antwerp. Approved Most recent IF: 9.446
Call Number c:irua:129808 Serial 3984
Permanent link to this record
 

 
Author Shirazi, M.; Neyts, E.C.; Bogaerts, A.
Title DFT study of Ni-catalyzed plasma dry reforming of methane Type A1 Journal article
Year 2017 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ
Volume 205 Issue 205 Pages 605-614
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (up) tWe investigated the plasma-assisted catalytic reactions for the production of value-added chemicalsfrom Ni-catalyzed plasma dry reforming of methane by means of density functional theory (DFT). Weinspected many activation barriers, from the early stage of adsorption of the major chemical fragmentsderived fromCH4andCO2molecules up to the formation of value-added chemicals at the surface, focusingon the formation of methanol, as well as the hydrogenation of C1and C2hydrocarbon fragments. Theactivation barrier calculations show that the presence of surface-bound H atoms and in some cases alsoremaining chemical fragments at the surface facilitates the formation of products. This implies that thehydrogenation of a chemical fragment on the hydrogenated crystalline surface is energetically favouredcompared to the simple hydrogenation of the chemical fragment at the bare Ni(111) surface. Indeed, thepresence of hydrogen modifies the electronic structure of the surface and the course of the reactions.We therefore conclude that surface-bound H atoms, and to some extent also the remaining chemicalfragments at the crystalline surface, induce the following effects: they facilitate associative desorption ofmethanol and ethane by increasing the rate of H-transfer to the adsorbed fragments while they impedehydrogenation of ethylene to ethane, thus promoting again the desorption of ethylene. Overall, they thusfacilitate the catalytic conversion of the formed fragments from CH4and CO2, into value-added chemicals.Finally, we believe that the retention of methane fragments, especially CH3, in the presence of surface-boundHatoms (as observed here for Ni) can be regarded as an identifier for the proper choice of a catalystfor the production of value-added chemicals.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000393931000063 Publication Date 2017-01-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.446 Times cited 26 Open Access OpenAccess
Notes Financial support from the Reactive Atmospheric Plasmaprocessing –eDucation network (RAPID), through the EU 7thFramework Programme (grant agreement no. 606889) is grate-fully acknowledged. The calculations were performed using theTuring HPC infrastructure at the CalcUA core facility of the Univer-siteit Antwerpen, a division of the Flemish Supercomputer CenterVSC, funded by the Hercules Foundation, the Flemish Approved Most recent IF: 9.446
Call Number PLASMANT @ plasmant @ c:irua:139514 Serial 4343
Permanent link to this record
 

 
Author Attri, P.; Razzokov, J.; Yusupov, M.; Koga, K.; Shiratani, M.; Bogaerts, A.
Title Influence of osmolytes and ionic liquids on the Bacteriorhodopsin structure in the absence and presence of oxidative stress: A combined experimental and computational study Type A1 Journal article
Year 2020 Publication International Journal Of Biological Macromolecules Abbreviated Journal Int J Biol Macromol
Volume 148 Issue Pages 657-665
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (up) Understanding the folding and stability of membrane proteins is of great importance in protein science. Recently, osmolytes and ionic liquids (ILs) are increasingly being used as drug delivery systems in the biopharmaceutical industry. However, the stability of membrane proteins in the presence of osmolytes and ILs is not yet fully understood. Besides, the effect of oxidative stress on membrane proteins with osmolytes or ILs has not been investigated. Therefore, we studied the influence of osmolytes and ILs as co-solvents on the stability of a model membrane protein (i.e., Bacteriorhodopsin in purple membrane of Halobacterium salinarum), using UV–Vis spectroscopy and molecular dynamics (MD) simulations. The MD simulations allowed us to determine the flexibility and solvent accessible surface area (SASA) of Bacteriorhodopsin protein in the presence and/or absence of cosolvents, as well as to carry out principal component analysis (PCA) to identify the most important movements in this protein. In addition, by means of UV–Vis spectroscopy we studied the effect of oxidative stress generated by cold atmospheric plasma on the stability of Bacteriorhodopsin in the presence and/or absence of co-solvents. This study is important for a better understanding of the stability of proteins in the presence of oxidative stress.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000522094600066 Publication Date 2020-01-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0141-8130 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.2 Times cited Open Access
Notes Horizon2020, 743546 ; JSPS, 19H05462 16H03895 ; Nagoya University; We gratefully acknowledge the European Marie Skłodowska-Curie Individual Fellowship “Anticancer-PAM” within Horizon2020 (grant number 743546). This work was also supported by JSPS-KAKENHI 19H05462 and 16H03895, the joint usage/research program of Center for Low-temperature Plasma Science, Nagoya University and also supported by JSPS and RCL under the Japan-Lithuania Research Cooperative Program. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. Approved Most recent IF: 8.2; 2020 IF: 3.671
Call Number PLASMANT @ plasmant @c:irua:165585 Serial 5444
Permanent link to this record
 

 
Author Neyts, E.; Shibuta, Y.; Bogaerts, A.
Title Bond switching regimes in nickel and nickel-carbon nanoclusters Type A1 Journal article
Year 2010 Publication Chemical physics letters Abbreviated Journal Chem Phys Lett
Volume 488 Issue 4/6 Pages 202-205
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (up) Understanding the fundamental dynamics in carbon nanotube (CNT) catalysts is of primary importance to understand CNT nucleation. This Letter reports on calculated bond switching (BS) rates in pure and carbon containing nickel nanoclusters. The rates are analyzed in terms of their temperature dependent spatial distribution and the mobility of the cluster atoms. The BS mechanism is found to change from vibrational to diffusional at around 900 K, with a corresponding strong increase in activation energy. Furthermore, the BS activation energy is observed to decrease as the carbon content in the cluster increases, resulting in an effective liquification of the cluster.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000275751900020 Publication Date 2010-02-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0009-2614; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.815 Times cited 20 Open Access
Notes Approved Most recent IF: 1.815; 2010 IF: 2.282
Call Number UA @ lucian @ c:irua:80998 Serial 248
Permanent link to this record
 

 
Author Bal, K.M.; Huygh, S.; Bogaerts, A.; Neyts, E.C.
Title Effect of plasma-induced surface charging on catalytic processes: application to CO2activation Type A1 Journal article
Year 2018 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 27 Issue 2 Pages 024001
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (up) Understanding the nature and effect of the multitude of plasma–surface interactions in plasma catalysis is a crucial requirement for further process development and improvement. A particularly intriguing and rather unique property of a plasma-catalytic setup is the ability of the plasma to modify the electronic structure, and hence chemical properties, of the catalyst through charging, i.e. the absorption of excess electrons. In this work, we develop a quantum chemical model based on density functional theory to study excess negative surface charges in a heterogeneous catalyst exposed to a plasma. This method is specifically applied to investigate plasma-catalytic CO2 activation on supported M/Al2O3 (M=Ti, Ni, Cu) single atom catalysts. We find that (1) the presence of a negative surface charge dramatically improves the reductive power of the catalyst, strongly promoting the splitting of CO2 to CO and oxygen, and (2) the relative activity of the investigated transition metals is also changed upon charging, suggesting that controlled surface charging is a powerful additional parameter to tune catalyst activity and selectivity. These results strongly point to plasma-induced surface charging of the catalyst as an important factor contributing to the plasma-catalyst synergistic effects frequently reported for plasma catalysis.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000424520100001 Publication Date 2018-02-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 19 Open Access OpenAccess
Notes KMB is funded as PhD fellow (aspirant) of the FWO-Flanders (Research Foundation—Flanders), Grant 11V8915N. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government— department EWI. Approved Most recent IF: 3.302
Call Number PLASMANT @ plasmant @c:irua:149285 Serial 4813
Permanent link to this record
 

 
Author Khalilov, U.; Bogaerts, A.; Xu, B.; Kato, T.; Kaneko, T.; Neyts, E.C.
Title How the alignment of adsorbed ortho H pairs determines the onset of selective carbon nanotube etching Type A1 Journal article
Year 2017 Publication Nanoscale Abbreviated Journal Nanoscale
Volume 9 Issue 9 Pages 1653-1661
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (up) Unlocking the enormous technological potential of carbon nanotubes strongly depends on our ability to specifically produce metallic or semiconducting tubes. While selective etching of both has already been demonstrated, the underlying reasons, however, remain elusive as yet. We here present computational and experimental evidence on the operative mechanisms at the atomic scale. We demonstrate that during the adsorption of H atoms and their coalescence, the adsorbed ortho hydrogen pairs on single-walled carbon nanotubes induce higher shear stresses than axial stresses, leading to the elongation of HC–CH bonds as a function of their alignment with the tube chirality vector, which we denote as the γ-angle. As a result, the C–C cleavage occurs more rapidly in nanotubes containing ortho H-pairs with a small γ-angle. This phenomenon can explain the selective etching of small-diameter semiconductor nanotubes with a similar curvature. Both theoretical and experimental results strongly indicate the important role of the γ-angle in the selective etching mechanisms of carbon nanotubes, in addition to the nanotube curvature and metallicity effects and lead us to clearly understand the onset of selective synthesis/removal of CNT-based materials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000395422800036 Publication Date 2016-12-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.367 Times cited 6 Open Access OpenAccess
Notes U. K. gratefully acknowledges financial support from the Fund of Scientific Research Flanders (FWO), Belgium (Grant No. 12M1315N). This work was also supported in part by Grant-in- Aid for Young Scientists A (Grant No. 25706028), Grant-in-Aid for Scientific Research on Innovative Areas (Grant No. 26107502) from JSPS KAKENHI. This work was carried out in part using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. The authors also thank Prof. A. C. T. van Duin for sharing the ReaxFF code and J. Razzokov for his assistance to perform the DFT calculations. Approved Most recent IF: 7.367
Call Number PLASMANT @ plasmant @ c:irua:140091 Serial 4417
Permanent link to this record
 

 
Author Biswas, A.N.; Winter, L.R.; Loenders, B.; Xie, Z.; Bogaerts, A.; Chen, J.G.
Title Oxygenate Production from Plasma-Activated Reaction of CO2and Ethane Type A1 Journal article
Year 2021 Publication Acs Energy Letters Abbreviated Journal Acs Energy Lett
Volume Issue Pages 236-241
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (up) Upgrading ethane with CO2 as a soft oxidant represents a desirable means of obtaining oxygenated hydrocarbons. This reaction is not thermodynamically feasible under mild conditions and has not been previously achieved as a one-step process. Nonthermal plasma was implemented as an alternative means of supplying energy to overcome activation barriers, leading to the production of alcohols, aldehydes, and acids as well as C1−C5+ hydrocarbons under ambient pressure, with a maximum total oxygenate selectivity of 12%. A plasma chemical kinetic computational model was developed and found to be in good agreement with the experimental trends. Results from this study illustrate the potential to use plasma for the direct synthesis of value-added alcohols, acids, and aldehydes from ethane and CO2 under mild conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000732435700001 Publication Date 2021-12-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2380-8195 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Basic Energy Sciences, DE-SC0012704 ; Fonds Wetenschappelijk Onderzoek, S001619N ; H2020 European Research Council, 810182 ; National Science Foundation, DGE 16-44869 ; This research was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Catalysis Science Program (grant no. DE-SC0012704). L.R.W. acknowledges the U.S. National Science Foundation Graduate Research Fellowship Program grant number DGE 16-44869. B.L. and A.B. acknowledge support from the FWO-SBO project PLASMA240 Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @c:irua:184812 Serial 6897
Permanent link to this record
 

 
Author Georgieva, V.; Saraiva, M.; Jehanathan, N.; Lebelev, O.I.; Depla, D.; Bogaerts, A.
Title Sputter-deposited Mg-Al-O thin films: linking molecular dynamics simulations to experiments Type A1 Journal article
Year 2009 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 42 Issue 6 Pages 065107,1-065107,8
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (up) Using a molecular dynamics model the crystallinity of MgxAlyOz thin films with a variation in the stoichiometry of the thin film is studied at operating conditions similar to the experimental operating conditions of a dual magnetron sputter deposition system. The films are deposited on a crystalline or amorphous substrate. The Mg metal content in the film ranged from 100% (i.e. MgO film) to 0% (i.e. Al2O3 film). The radial distribution function and density of the films are calculated. The results are compared with x-ray diffraction and transmission electron microscopy analyses of experimentally deposited thin films by the dual magnetron reactive sputtering process. Both simulation and experimental results show that the structure of the MgAlO film varies from crystalline to amorphous when the Mg concentration decreases. It seems that the crystalline MgAlO films have a MgO structure with Al atoms in between.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000263824200024 Publication Date 2009-03-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 37 Open Access
Notes Iwt Approved Most recent IF: 2.588; 2009 IF: 2.083
Call Number UA @ lucian @ c:irua:73246 Serial 3110
Permanent link to this record
 

 
Author Engelmann; Bogaerts, A.; Neyts, E.C.
Title Thermodynamics at the nanoscale: phase diagrams of nickel-carbon nanoclusters and equilibrium constants for phase transitions Type A1 Journal article
Year 2014 Publication Nanoscale Abbreviated Journal Nanoscale
Volume 6 Issue 20 Pages 11981-11987
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (up) Using reactive molecular dynamics simulations, the melting behavior of nickel-carbon nanoclusters is examined. The phase diagrams of icosahedral and Wulff polyhedron clusters are determined using both the Lindemann index and the potential energy. Formulae are derived for calculating the equilibrium constants and the solid and liquid fractions during a phase transition, allowing more rational determination of the melting temperature with respect to the arbitrary Lindemann value. These results give more insight into the properties of nickel-carbon nanoclusters in general and can specifically be very useful for a better understanding of the synthesis of carbon nanotubes using the catalytic chemical vapor deposition method.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000343000800049 Publication Date 2014-07-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.367 Times cited 20 Open Access
Notes Approved Most recent IF: 7.367; 2014 IF: 7.394
Call Number UA @ lucian @ c:irua:121106 Serial 3637
Permanent link to this record
 

 
Author Engelmann, Y.; Bogaerts, A.; Neyts, E.C.
Title Thermodynamics at the nanoscale : phase diagrams of nickel-carbon nanoclusters and equilibrium constants for face transitions Type A1 Journal article
Year 2014 Publication Nanoscale Abbreviated Journal Nanoscale
Volume 6 Issue Pages 11981-11987
Keywords A1 Journal article; PLASMANT
Abstract (up) Using reactive molecular dynamics simulations, the melting behavior of nickelcarbon nanoclusters is examined. The phase diagrams of icosahedral and Wulff polyhedron clusters are determined using both the Lindemann index and the potential energy. Formulae are derived for calculating the equilibrium constants and the solid and liquid fractions during a phase transition, allowing more rational determination of the melting temperature with respect to the arbitrary Lindemann value. These results give more insight into the properties of nickelcarbon nanoclusters in general and can specifically be very useful for a better understanding of the synthesis of carbon nanotubes using the catalytic chemical vapor deposition method.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000343000800049 Publication Date 2014-07-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.367 Times cited 20 Open Access
Notes Approved Most recent IF: 7.367; 2014 IF: 7.394
Call Number UA @ lucian @ c:irua:119408 Serial 3636
Permanent link to this record
 

 
Author Neyts, E.; Maeyens, A.; Pourtois, G.; Bogaerts, A.
Title A density-functional theory simulation of the formation of Ni-doped fullerenes by ion implantation Type A1 Journal article
Year 2011 Publication Carbon Abbreviated Journal Carbon
Volume 49 Issue 3 Pages 1013-1017
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (up) Using self-consistent KohnSham density-functional theory molecular dynamics simulations, we demonstrate the theoretical possibility to synthesize NiC60, the incarfullerene Ni@C60 and the heterofullerene C59Ni in an ion implantation setup. The corresponding formation mechanisms of all three complexes are elucidated as a function of the ion implantation energy and impact location, suggesting possible routes for selectively synthesizing these complexes.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000286683500032 Publication Date 2010-11-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.337 Times cited 13 Open Access
Notes Approved Most recent IF: 6.337; 2011 IF: 5.378
Call Number UA @ lucian @ c:irua:85139 Serial 639
Permanent link to this record
 

 
Author Andersen, Ja.; van 't Veer, K.; Christensen, Jm.; Østberg, M.; Bogaerts, A.; Jensen, Ad.
Title Ammonia decomposition in a dielectric barrier discharge plasma: Insights from experiments and kinetic modeling Type A1 Journal article
Year 2023 Publication Chemical engineering science Abbreviated Journal
Volume 271 Issue Pages 118550
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (up) Utilizing ammonia as a storage medium for hydrogen is currently receiving increased attention. A possible method to retrieve the hydrogen is by plasma-catalytic decomposition. In this work, we combined an experimental study, using a dielectric barrier discharge plasma reactor, with a plasma kinetic model, to get insights into the decomposition mechanism. The experimental results revealed a similar effect on the ammonia conversion when changing the flow rate and power, where increasing the specific energy input (higher power or lower flow rate) gave an increased conversion. A conversion as high as 82 % was achieved at a specific energy input of 18 kJ/Nl. Furthermore, when changing the discharge volume from 31 to 10 cm3, a change in the plasma distribution factor from 0.2 to 0.1 was needed in the model to best describe the conversions of the experiments. This means that a smaller plasma volume caused a higher transfer of energy through micro-discharges (non-uniform plasma), which was found to promote the decomposition of ammonia. These results indicate that it is the collisions between NH3 and the high-energy electrons that initiate the decomposition. Moreover, the rate of ammonia destruction was found by the model to be in the order of 1022 molecules/(cm3 s) during the micro-discharges, which is 5 to 6 orders of magnitude higher than in the afterglows. A considerable re-formation of ammonia was found to take place in the afterglows, limiting the overall conversion. In addition, the model revealed that implementation of packing material in the plasma introduced high concentrations of surface-bound hydrogen atoms, which introduced an additional ammonia re-formation pathway through an Eley-Rideal reaction with gas phase NH2. Furthermore, a more uniform plasma is predicted in the presence of MgAl2O4, which leads to a lower average electron energy during micro-discharges and a lower conversion (37 %) at a comparable residence time for the plasma alone (51 %).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000946293200001 Publication Date 2023-02-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0009-2509 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.7 Times cited Open Access OpenAccess
Notes We thank Topsoe A/S for providing the packing material used, the research group PLASMANT (UAntwerpen) for sharing their plasma kinetic model and allowing us to perform the calculations on their clusters, and the Department of Chemical and Biochemical Engineering, Technical University of Denmark, for funding this project. Approved Most recent IF: 4.7; 2023 IF: 2.895
Call Number PLASMANT @ plasmant @c:irua:195204 Serial 7237
Permanent link to this record
 

 
Author Biondo, O.; Fromentin, C.; Silva, T.; Guerra, V.; van Rooij, G.; Bogaerts, A.
Title Insights into the limitations to vibrational excitation of CO2: validation of a kinetic model with pulsed glow discharge experiments Type A1 Journal article
Year 2022 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T
Volume 31 Issue 7 Pages 074003
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (up) Vibrational excitation represents an efficient channel to drive the dissociation of CO<sub>2</sub>in a non-thermal plasma. Its viability is investigated in low-pressure pulsed discharges, with the intention of selectively exciting the asymmetric stretching mode, leading to stepwise excitation up to the dissociation limit of the molecule. Gas heating is crucial for the attainability of this process, since the efficiency of vibration–translation (V–T) relaxation strongly depends on temperature, creating a feedback mechanism that can ultimately thermalize the discharge. Indeed, recent experiments demonstrated that the timeframe of V–T non-equilibrium is limited to a few milliseconds at ca. 6 mbar, and shrinks to the<italic>μ</italic>s-scale at 100 mbar. With the aim of backtracking the origin of gas heating in pure CO<sub>2</sub>plasma, we perform a kinetic study to describe the energy transfers under typical non-thermal plasma conditions. The validation of our kinetic scheme with pulsed glow discharge experiments enables to depict the gas heating dynamics. In particular, we pinpoint the role of vibration–vibration–translation relaxation in redistributing the energy from asymmetric to symmetric levels of CO<sub>2</sub>, and the importance of collisional quenching of CO<sub>2</sub>electronic states in triggering the heating feedback mechanism in the sub-millisecond scale. This latter finding represents a novelty for the modelling of low-pressure pulsed discharges and we suggest that more attention should be paid to it in future studies. Additionally, O atoms convert vibrational energy into heat, speeding up the feedback loop. The efficiency of these heating pathways, even at relatively low gas temperature and pressure, underpins the lifetime of V–T non-equilibrium and suggests a redefinition of the optimal conditions to exploit the ‘ladder-climbing’ mechanism in CO<sub>2</sub>discharges.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000839466500001 Publication Date 2022-07-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.8 Times cited Open Access OpenAccess
Notes Fundação para a Ciência e a Tecnologia, PLA/0076/2021 ; H2020 Marie Skłodowska-Curie Actions, 813393 ; This research was supported by the European Union’s Horizon 2020 Research and Innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 813393 (PIONEER). V Guerra and T Silva were partially funded by the Portuguese ‘FCT-Fundação para a Ciência e a Tecnologia’, under Projects UIDB/50010/2020, UIDP/50010/2020, PTDC/FISPLA/1616/2021 and EXPL/FIS-PLA/0076/2021. The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 3.8
Call Number PLASMANT @ plasmant @c:irua:190008 Serial 7106
Permanent link to this record
 

 
Author Wang, K.; Ceulemans, S.; Zhang, H.; Tsonev, I.; Zhang, Y.; Long, Y.; Fang, M.; Li, X.; Yan, J.; Bogaerts, A.
Title Inhibiting recombination to improve the performance of plasma-based CO2 conversion Type A1 Journal Article
Year 2024 Publication Chemical Engineering Journal Abbreviated Journal Chemical Engineering Journal
Volume 481 Issue Pages 148684
Keywords A1 Journal Article; Plasma-based CO2 splitting Recombination reactions In-situ gas sampling Fluid dynamics modeling Kinetics modeling Afterglow quenching; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract (up) Warm plasma offers a promising route for CO2 splitting into valuable CO, yet recombination reactions of CO with oxygen, forming again CO2, have recently emerged as critical limitation. This study combines experiments and fluid dynamics + chemical kinetics modelling to comprehensively analyse the recombination reactions upon CO2 splitting in an atmospheric plasmatron. We introduce an innovative in-situ gas sampling technique, enabling 2D spatial mapping of gas product compositions and temperatures, experimentally confirming for the first time the substantial limiting effect of CO recombination reactions in the afterglow region. Our results show that the CO mole fraction at a 5 L/min flow rate drops significantly from 11.9 % at a vertical distance of z = 20 mm in the afterglow region to 8.6 % at z = 40 mm. We constructed a comprehensive 2D model that allows for spatial reaction rates analysis incorporating crucial reactions, and we validated it to kinetically elucidate this phenomenon. CO2 +M⇌O+CO+M and CO2 +O⇌CO+O2 are the dominant reactions, with the forward reactions prevailing in the plasma region and the backward reactions becoming prominent in the afterglow region. These results allow us to propose an afterglow quenching strategy for performance enhancement, which is further demonstrated through a meticulously developed plasmatron reactor with two-stage cooling. Our approach substantially increases the CO2 conversion (e.g., from 6.6 % to 19.5 % at 3 L/min flow rate) and energy efficiency (from 13.5 % to 28.5 %, again at 3 L/min) and significantly shortens the startup time (from ~ 150 s to 25 s). Our study underscores the critical role of inhibiting recombination reactions in plasma-based CO2 conversion and offers new avenues for performance enhancement.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001168999200001 Publication Date 2024-01-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record
Impact Factor 15.1 Times cited Open Access Not_Open_Access
Notes Key Research and Development Program of Zhejiang Province, 2023C03129 ; Vlaamse regering; European Research Council; National Natural Science Foundation of China, 51976191 52276214 ; Horizon 2020 Framework Programme; Fonds De La Recherche Scientifique – FNRS; Fonds Wetenschappelijk Onderzoek, 1101524N ; Vlaams Supercomputer Centrum; Horizon 2020, 101081162 810182 ; European Research Council; Approved Most recent IF: 15.1; 2024 IF: 6.216
Call Number PLASMANT @ plasmant @c:irua:204352 Serial 8993
Permanent link to this record
 

 
Author Zhang, Y.; Jiang, W.; Zhang, Q.Z.; Bogaerts, A.
Title Computational study of plasma sustainability in radio frequency micro-discharges Type A1 Journal article
Year 2014 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 115 Issue 19 Pages 193301-193311
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (up) We apply an implicit particle-in-cell Monte-Carlo (PIC-MC) method to study a radio-frequency argon microdischarge at steady state in the glow discharge limit, in which the microdischarge is sustained by secondary electron emission from the electrodes. The plasma density, electron energy distribution function (EEDF), and electron temperature are calculated in a wide range of operating conditions, including driving voltage, microdischarge gap, and pressure. Also, the effect of gap size scaling (in the range of 50-1000 μm) on the plasma sustaining voltage and peak electron density at atmospheric pressure is examined, which has not been explored before. In our simulations, three different EEDFs, i.e., a so-called three temperature hybrid mode, a two temperature α mode, and a two temperature γ mode distribution, are identified at different gaps and voltages. The maximum sustaining voltage to avoid a transition from the glow mode to an arc is predicted, as well as the minimum sustaining voltage for a steady glow discharge. Our calculations elucidate that secondary electrons play an essential role in sustaining the discharge, and as a result the relationship between breakdown voltage and gap spacing is far away from the Paschen law at atmospheric pressure.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000336920200010 Publication Date 2014-05-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979;1089-7550; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 11 Open Access
Notes Approved Most recent IF: 2.068; 2014 IF: 2.183
Call Number UA @ lucian @ c:irua:116948 Serial 458
Permanent link to this record
 

 
Author Aghaei, M.; Bogaerts, A.
Title Flowing Atmospheric Pressure Afterglow for Ambient Ionization: Reaction Pathways Revealed by Modeling Type A1 Journal article
Year 2021 Publication Analytical Chemistry Abbreviated Journal Anal Chem
Volume 93 Issue 17 Pages 6620-6628
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (up) We describe the plasma chemistry in a helium flowing atmospheric pressure afterglow (FAPA) used for analytical spectrometry, by means of a quasione-dimensional (1D) plasma chemical kinetics model. We study the effect of typical impurities present in the feed gas, as well as the afterglow in ambient humid air. The model provides the species density profiles in the discharge and afterglow regions and the chemical pathways. We demonstrate that H, N, and O atoms are formed in the discharge region, while the dominant reactive neutral species in the afterglow are O3 and NO. He* and He2* are responsible for Penning ionization of O2, N2, H2O, H2, and N, and especially O and H atoms. Besides, He2+ also contributes to ionization of N2, O2, H2O, and O through charge transfer reactions. From the pool of ions created in the discharge, NO+ and (H2O)3H+ are the dominant ions in the afterglow. Moreover, negatively charged clusters, such as NO3H2O− and NO2H2O−, are formed and their pathway is discussed as well. Our model predictions are in line with earlier observations in the literature about the important reagent ions and provide a comprehensive overview of the underlying pathways. The model explains in detail why helium provides a high analytical sensitivity because of high reagent ion formation by both Penning ionization and charge transfer. Such insights are very valuable for improving the analytical performance of this (and other) ambient desorption/ionization source(s).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000648505900008 Publication Date 2021-05-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.32 Times cited Open Access OpenAccess
Notes Fonds Wetenschappelijk Onderzoek, 6713 ; The authors gratefully acknowledge financial support from the Fonds voor Wetenschappelijk Onderzoek (FWO) grant number 6713. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (Department EWI), and the UA. The authors also thank J. T. Shelley for providing experimental data for the gas velocity behind the anode disk and before the mass spectrometer interface, to validate our model. Approved Most recent IF: 6.32
Call Number PLASMANT @ plasmant @c:irua:178126 Serial 6762
Permanent link to this record
 

 
Author Michiels, R.; Engelmann, Y.; Bogaerts, A.
Title Plasma Catalysis for CO2Hydrogenation: Unlocking New Pathways toward CH3OH Type A1 Journal article
Year 2020 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
Volume 124 Issue 47 Pages 25859-25872
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Movement Antwerp (MOVANT)
Abstract (up) We developed a microkinetic model to reveal the effects of plasma-generated radicals, intermediates, and vibrationally excited species on the catalytic hydrogenation of CO2 to CH3OH on a Cu(111) surface. As a benchmark, we first present the mechanisms of thermal catalytic CH3OH formation. Our model predicts that the reverse water-gas shift reaction followed by CO hydrogenation, together with the formate path, mainly contribute to CH3OH formation in thermal catalysis. Adding plasma-generated radicals and intermediates results in a higher CH3OH turnover frequency (TOF) by six to seven orders of magnitude, showing the potential of plasma-catalytic CO2 hydrogenation into CH3OH, in accordance with the literature. In addition, CO2 vibrational excitation further increases the CH3OH TOF, but the effect is limited due to relatively low vibrational temperatures under typical plasma catalysis conditions. The predicted increase in CH3OH formation by plasma catalysis is mainly attributed to the increased importance of the formate path. In addition, the conversion of plasma-generated CO to HCO* and subsequent HCOO* or H2CO* formation contribute to CH3OH formation. Both pathways bypass the HCOO* formation from CO2, which is the main bottleneck in the process. Hence, our model points toward the important role of CO, but also O, OH, and H radicals, as they influence the reactions that consume CO2 and CO. In addition, our model reveals that the H pressure should not be smaller than ca. half of the O pressure in the plasma as this would cause O* poisoning, which would result in very small product TOFs. Thus, plasma conditions should be targeted with a high CO and H content as this is favorable for CH3OH formation, while the O content should be minimized.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000595545800023 Publication Date 2020-11-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited Open Access Not_Open_Access: Available from 15.07.2021
Notes Universiteit Antwerpen; Fonds Wetenschappelijk Onderzoek, 1114921N ; H2020 European Research Council, 810182 ; We acknowledge the financial support from the Fund for Scientific Research (FWO-Vlaanderen; grant ID 1114921N) and from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 810182 − SCOPE ERC Synergy project) as well as from the DOC-PRO3 and the TOPBOF projects of the University of Antwerp. Approved Most recent IF: 3.7; 2020 IF: 4.536
Call Number PLASMANT @ plasmant @c:irua:173864 Serial 6443
Permanent link to this record
 

 
Author Van Turnhout, J.; Aceto, D.; Travert, A.; Bazin, P.; Thibault-Starzyk, F.; Bogaerts, A.; Azzolina-Jury, F.
Title Observation of surface species in plasma-catalytic dry reforming of methane in a novel atmospheric pressure dielectric barrier discharge in situ IR cell Type A1 Journal article
Year 2022 Publication Catalysis Science & Technology Abbreviated Journal Catal Sci Technol
Volume 12 Issue 22 Pages 6676-6686
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (up) We developed a novel in situ (i.e. inside plasma and during operation) IR dielectric barrier discharge cell allowing investigation of plasma catalysis in transmission mode, atmospheric pressure, flow conditions (WHSV similar to 0-50 000 mL g(-1) h(-1)), at relevant discharge voltages (similar to 0-50 kV) and frequencies (similar to 0-5 kHz). We applied it to study the IR-active surface species formed on a SiO2 support and on a 3 wt% Ru/SiO2 catalyst, which can help to reveal the important surface reaction mechanisms during the plasma-catalytic dry reforming of methane (DRM). Moreover, we present a technique for the challenging task of estimating the temperature of a catalyst sample in a plasma-catalytic system in situ and during plasma operation. We found that during the reaction, water is immediately formed at the SiO2 surface, and physisorbed formic acid is formed with a delay. As Ru/SiO2 is subject to greater plasma-induced heating than SiO2 (with a surface temperature increase in the range of 70-120 degrees C, with peaks up to 150 degrees C), we observe lower amounts of physisorbed water on Ru/SiO2, and less physisorbed formic acid formation. Importantly, the formation of surface species on the catalyst sample in our plasma-catalytic setup, as well as the observed conversions and selectivities in plasma conditions, can not be explained by plasma-induced heating of the catalyst surface, but must be attributed to other plasma effects, such as the adsorption of plasma-generated radicals and molecules, or the occurrence of Eley-Rideal reactions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000865542600001 Publication Date 2022-10-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2044-4753; 2044-4761 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 5
Call Number UA @ admin @ c:irua:191389 Serial 7185
Permanent link to this record