|   | 
Details
   web
Records
Author Milat, O.; Van Tendeloo, G.; Amelinckx, S.; Wright, A.J.; Greaves, C.
Title Effect of the substitution Ba\leftrightarrow Sr on the Ga-1222 superstructure : an electron diffraction study Type A1 Journal article
Year 1995 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 7 Issue 9 Pages 1709-1715
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (up) The superstructure of the RE(2)(Sr0.85-xBaxNd0.15)(2)GaCU2O9 compound is found to change significantly with increasing substitution of Ba for Sr. Most of the changes take place in the (Sr0.85-xBaxNd0.15)O-GaO-(Sr0.85-xBaxNd0.15)O lamella, the rest of the basic structure being hardly affected. The structural changes for O less than or equal to x less than or equal to 0.65 are studied by electron diffraction. The arrangement of the chains of GaO4 tetrahedra in the Ba-free compound becomes disordered at x > 0.25. At x similar to 0.65 a rearrangement of the chains in the GaO layers takes place; they form a meandering arrangement, which can be described on a 4a(p) x 2a(p) x c(p) superlattice. This rearrangement is accompanied by ordering of Ba and Sr atoms in the adjacent (ST0.85-xBaxNd0.15)O layers. A simple scheme is proposed to explain the influence of the substitution of Ba for Sr on the linking of the GaO4 tetrahedra and on the geometry of the ''chains'' in the GaO layer.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos A1995RW21200021 Publication Date 2005-03-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record
Impact Factor 8.354 Times cited Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:13326 Serial 850
Permanent link to this record
 

 
Author Smets, W.; Wuyts, K.; Oerlemans, E.; Wuyts, S.; Denys, S.; Samson, R.; Lebeer, S.
Title Impact of urban land use on the bacterial phyllosphere of ivy (Hedera sp.) Type A1 Journal article
Year 2016 Publication Atmospheric environment : an international journal Abbreviated Journal
Volume 147 Issue Pages 376-383
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract (up) The surface of the aerial parts of the plant, also termed the phyllosphere, is a selective habitat for microbes. The bacterial composition of the phyllosphere depends on host plant species, leaf characteristics, season, climate, and geographic location of the host plant. In this study, we investigated the effect of an urban environment on the bacterial composition of phyllosphere communities. We performed a passive biomonitoring experiment in which leaves were sampled from ivy (Hedera sp.), a common evergreen climber species, in urban and non-urban locations. Exposure to traffic-generated particulate matter was estimated using leaf biomagnetic analyses. The bacterial community composition was determined using 16S rRNA gene sequencing on the Illumina MiSeq. The phyllosphere microbial communities of ivy differed greatly between urban and non-urban locations, as we observed a shift in several of the dominant taxa: Beijerinckia and Methylocystaceae were most abundant in the non-urban phyllosphere, whereas Hymenobacter and Sphingomonadaceae were dominating the urban ivy phyllosphere. The richness, diversity and composition of the communities showed greater variability in the urban than in the non-urban locations, where traffic-generated PM was lower. Interestingly, the relative abundances of eight of the ten most dominant taxa correlated well with leaf magnetism, be it positive or negative. The results of this study indicate that an urban environment can greatly affect the local phyllosphere community composition. Although other urban-related factors cannot be ruled out, the relative abundance of most of the dominant taxa was significantly correlated with exposure to traffic-generated PM.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000388543600033 Publication Date 2016-10-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1352-2310 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:136110 Serial 8066
Permanent link to this record
 

 
Author Siriwardane, E.M.D.; Demiroglu, I.; Sevik, C.; Peeters, F.M.; Çakir, D.
Title Assessment of sulfur-functionalized MXenes for li-ion battery applications Type A1 Journal article
Year 2020 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
Volume 124 Issue 39 Pages 21293-21304
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract (up) The surface termination of MXenes greatly determines the electrochemical properties and ion kinetics on their surfaces. So far, hydroxyl-, oxygen-, and fluorine-terminated MXenes have been widely studied for energy storage applications. Recently, sulfur-functionalized MXene structures, which possess low diffusion barriers, have been proposed as candidate materials to enhance battery performance. We performed first-principles calculations on the structural, stability, electrochemical, and ion dynamic properties of Li-adsorbed sulfur-functionalized groups 3B, 4B, 5B, and 6B transition-metal (M)-based MXenes (i.e., M2CS2 with M = Sc, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W). We performed phonon calculations, which indicated that all of the above M2CS2 MXenes, except for Sc, are dynamically stable at T = 0 K. The ground-state structure of each M2CS2 monolayer depends on the type of M atom. For instance, while sulfur prefers to sit at the FCC site on Ti2CS2, it occupies the HCP site of Cr-based MXene. We determined the Li adsorption configurations at different concentrations using the cluster expansion method. The highest maximum open-circuit voltages were computed for the group 4B element (i.e., Ti, Zr, and Hf)-based M2CS2, which are larger than 2.1 V, while their average voltages are approximately 1 V. The maximum voltage for the group 6B element (i.e., Cr, Mo, W)-based M2CS2 is less than 1 V, and the average voltage is less than 0.71 V. We found that S functionalization is helpful for capacity improvements over the O-terminated MXenes. In this respect, the computed storage gravimetric capacity may reach up to 417.4 mAh/g for Ti2CS2 and 404.5 mAh/g for V2CS2. Ta-, Cr-, Mo-, and W-based M2CS2 MXenes show very low capacities, which are less than 100 mAh/g. The Li surface diffusion energy barriers for all of the considered MXenes are less than 0.22 eV, which is favorable for high charging and discharging rates. Finally, ab initio molecular dynamic simulations performed at 400 K and bond-length analysis with respect to Li concentration verify that selected promising systems are robust against thermally induced perturbations that may induce structural transformations or distortions and undesirable Li release.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000577151900008 Publication Date 2020-09-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited 24 Open Access
Notes ; Computational resources were provided by the HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules Foundation. This work was supported, in part, by The Scientific and Technological Research Council of Turkey (TUBITAK) under contract no. 118F512 and the Air Force Office of Scientific Research under award no. FA9550-19-1-7048. This work was performed in part at the Center for Nanoscale Materials, a U.S. Department of Energy Office of Science User. Use of the Center for Nanoscale Materials, an Office of Science user facility, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-06CH11357. This work was supported, in part, by The Scientific and Technological Research Council of Turkey (TUBITAK) under contract no. 118C026. ; Approved Most recent IF: 3.7; 2020 IF: 4.536
Call Number UA @ admin @ c:irua:172693 Serial 6452
Permanent link to this record
 

 
Author Ang, F.; Van Passel, S.; Mathijs, E.
Title An aggregate resource efficiency perspective on sustainability : a sustainable value application to the EU-15 countries Type A1 Journal article
Year 2011 Publication Ecological Economics Abbreviated Journal Ecol Econ
Volume 71 Issue Pages 99-110
Keywords A1 Journal article; Economics
Abstract (up) The Sustainable Value approach integrates the efficiency with regard to environmental, social and economic resources into a monetary indicator. It gained significant popularity as evidenced by diverse applications at the corporate level. However, its introduction as a measure adhering to the strong sustainability paradigm sparked an ardent debate. This study explores its validity as a macroeconomic strong sustainability measure by applying the Sustainable Value approach to the EU-15 countries. Concretely, we assessed environmental, social and economic resources in combination with the GDP for all EU-15 countries from 1995 to 2006 for three benchmark alternatives. The results show that several countries manage to adequately delink resource use from GDP growth. Furthermore, the remarkable difference in outcome between the national and EU-15 benchmark indicates a possible inefficiency of the current allocation of national resource ceilings imposed by the European institutions. Additionally, by using an effects model we argue that the service degree of the economy and governmental expenditures on social protection and research and development are important determinants of overall resource efficiency. Finally, we sketch out three necessary conditions to link the Sustainable Value approach to the strong sustainability paradigm. (C) 2011 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000297396700011 Publication Date 2011-09-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-8009; 1873-6106 ISBN Additional Links UA library record; WoS full record; WoS citing articles; WoS full record; WoS citing articles
Impact Factor 2.965 Times cited 12 Open Access
Notes ; ; Approved Most recent IF: 2.965; 2011 IF: 2.713
Call Number UA @ admin @ c:irua:127560 Serial 6151
Permanent link to this record
 

 
Author Avila-Brande, D.; Otero-Díaz, L.C.; Landa-Cánovas, A.R.; Bals, S.; Van Tendeloo, G.
Title A new Bi4Mn1/3W2/3O8Cl Sillén-Aurivillius intergrowth: synthesis and structural characterisation by quantitative transmission electron microscopy Type A1 Journal article
Year 2006 Publication European journal of inorganic chemistry Abbreviated Journal Eur J Inorg Chem
Volume Issue 9 Pages 1853-1858
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (up) The synthesis and structural characterisation of a new phase with nominal composition Bi4Mn1/3W2/3O8Cl is presented. Conventional and analytical transmission electron microscopy are used to determine the composition, unit-cell symmetry and space group of the compound, whereas a structural model is deducted by exit-wave reconstruction in the transmission electron microscope. This technique allows the microscope information limit of 1.1 angstrom to be reached and the (light) oxygen atoms in the presence of heavier atoms (Bi, W, Mn) to be imaged. The average structure is refined from Xray powder diffraction data using the Rietveld method yielding an orthorhombic unit cell with lattice parameters a 5.467(4) angstrom, b = 5.466(7) angstrom and c = 14.159(3) angstrom and space group Cm2m, which could be described as a Sillen-Aurivillius intergrowth. ((c) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006)
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000237617800016 Publication Date 2006-03-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-1948;1099-0682; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.444 Times cited 12 Open Access
Notes Approved Most recent IF: 2.444; 2006 IF: 2.704
Call Number UA @ lucian @ c:irua:59436 Serial 2335
Permanent link to this record
 

 
Author Shenderova, O.; Hens, S.; Vlasov, I.; Turner, S.; Lu, Y.-G.; Van Tendeloo, G.; Schrand, A.; Burikov, S.A.; Dolenko, T.A.
Title Carbon-dot-decorated nanodiamonds Type A1 Journal article
Year 2014 Publication Particle and particle systems characterization Abbreviated Journal Part Part Syst Char
Volume 31 Issue 5 Pages 580-590
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract (up) The synthesis of a new class of fluorescent carbon nanomaterials, carbon-dot-decorated nanodiamonds (CDD-ND), is reported. These CDD-NDs are produced by specific acid treatment of detonation soot, forming tiny rounded sp2 carbon species (carbon dots), 12 atomic layers thick and 12 nm in size, covalently attached to the surface of the detonation diamond nanoparticles. A combination of nanodiamonds bonded with a graphitic phase as a starting material and the application of graphite intercalated acids for oxidation of the graphitic carbon is necessary for the successful production of CDD-ND. The CDD-ND photoluminescence (PL) is stable, 20 times more intense than the intrinsic PL of well-purified NDs and can be tailored by changing the oxidation process parameters. Carbon-dot-decorated DNDs are shown to be excellent probes for bioimaging applications and inexpensive additives for PL nanocomposites.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000335518900008 Publication Date 2014-01-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0934-0866; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.474 Times cited 30 Open Access
Notes Fwo; 262348 Esmi; 246791 Countatoms Approved Most recent IF: 4.474; 2014 IF: 3.081
Call Number UA @ lucian @ c:irua:117332 Serial 280
Permanent link to this record
 

 
Author Sanchez-Iglesias, A.; Jenkinson, K.; Bals, S.; Liz-Marzan, L.M.
Title Kinetic regulation of the synthesis of pentatwinned gold nanorods below room temperature Type A1 Journal article
Year 2021 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
Volume 125 Issue 43 Pages 23937-23944
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract (up) The synthesis of gold nanorods requires the presence of symmetry-breaking and shape-directing additives, among which bromide ions and quaternary ammonium surfactants have been reported as essential. As a result, hexadecyltrimethylammonium bromide (CTAB) has been selected as the most efficient surfactant to direct anisotropic growth. One of the difficulties arising from this selection is the low solubility of CTAB in water at room temperature, and therefore the seeded growth of gold nanorods is usually performed at 25 degrees C or above, which has restricted so far the analysis of kinetic effects derived from lower temperatures. We report a systematic study of the synthesis of gold nanorods from pentatwinned seeds using hexadecyltrimethylammonium chloride (CTAC) as the principal surfactant and a low concentration of bromide as shape-directing agent. Under these conditions, the synthesis can be performed at temperatures as low as 8 degrees C, and the corresponding kinetic effects can be studied, resulting in temperature-controlled aspect ratio tunability.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000716453300038 Publication Date 2021-10-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 6 Open Access OpenAccess
Notes realnano; sygmaSB; This work was supported by the National Science Foundation (NSF) under award NSF CHE-1808502 (P.C. and I.J.). This work made use of the EPIC facility of Northwestern University's NUANCE Center, which has received support from the SHyNE Resource (NSF ECCS-2025633), the IIN, and Northwestern's MRSEC program (NSF DMR-1720139). D.A E. and S.B. acknowledge funding from the European Research Council under the European Union's Horizon 2020 research and innovation program (ERC Consolidator Grants No. 815128 REALNANO and Grant Agreement No. 731019 EUSMI). Approved Most recent IF: 4.536
Call Number UA @ admin @ c:irua:184104 Serial 6868
Permanent link to this record
 

 
Author Huijben, M.; Koster, G.; Kruize, M.K.; Wenderich, S.; Verbeeck, J.; Bals, S.; Slooten, E.; Shi, B.; Molegraaf, H.J.A.; Kleibeuker, J.E.; Van Aert, S.; Goedkoop, J.B.; Brinkman, A.; Blank, D.H.A.; Golden, M.S.; Van Tendeloo, G.; Hilgenkamp, H.; Rijnders, G.;
Title Defect engineering in oxide heterostructures by enhanced oxygen surface exchange Type A1 Journal article
Year 2013 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater
Volume 23 Issue 42 Pages 5240-5248
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract (up) The synthesis of materials with well-controlled composition and structure improves our understanding of their intrinsic electrical transport properties. Recent developments in atomically controlled growth have been shown to be crucial in enabling the study of new physical phenomena in epitaxial oxide heterostructures. Nevertheless, these phenomena can be influenced by the presence of defects that act as extrinsic sources of both doping and impurity scattering. Control over the nature and density of such defects is therefore necessary to fully understand the intrinsic materials properties and exploit them in future device technologies. Here, it is shown that incorporation of a strontium copper oxide nano-layer strongly reduces the impurity scattering at conducting interfaces in oxide LaAlO3SrTiO3(001) heterostructures, opening the door to high carrier mobility materials. It is proposed that this remote cuprate layer facilitates enhanced suppression of oxygen defects by reducing the kinetic barrier for oxygen exchange in the hetero-interfacial film system. This design concept of controlled defect engineering can be of significant importance in applications in which enhanced oxygen surface exchange plays a crucial role.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000327480900003 Publication Date 2013-06-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1616-301X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 87 Open Access
Notes Countatoms; Vortex; Fwo; Ifox ECASJO_; Approved Most recent IF: 12.124; 2013 IF: 10.439
Call Number UA @ lucian @ c:irua:109273UA @ admin @ c:irua:109273 Serial 615
Permanent link to this record
 

 
Author Zhong, R.; Peng, L.; de Clippel, F.; Gommes, C.; Goderis, B.; Ke, X.; Van Tendeloo, G.; Jacobs, P.A.; Sels, B.F.
Title An eco-friendly soft template synthesis of mesostructured silica-carbon nanocomposites for acid catalysis Type A1 Journal article
Year 2015 Publication ChemCatChem Abbreviated Journal Chemcatchem
Volume 7 Issue 7 Pages 3047-3058
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (up) The synthesis of ordered mesoporous silica-carbon composites was explored by employing TEOS and sucrose as the silica and carbon precursor respectively, and the triblock copolymer F127 as a structure-directing agent via an evaporation-induced self-assembly (EISA) process. It is demonstrated that the synthesis procedures allow for control of the textural properties and final composition of these silica-carbon nanocomposites via adjustment of the effective SiO2/C weight ratio. Characterization by SAXS, N-2 physisorption, HRTEM, TGA, and C-13 and Si-29 solid-state MAS NMR show a 2D hexagonal mesostructure with uniform large pore size ranging from 5.2 to 7.6nm, comprising of separate carbon phases in a continuous silica phase. Ordered mesoporous silica and non-ordered porous carbon can be obtained by combustion of the pyrolyzed nanocomposites in air or etching with HF solution, respectively. Sulfonic acid groups can be readily introduced to such kind of silica-carbon nanocomposites by a standard sulfonation procedure with concentrated sulfuric acid. Excellent acid-catalytic activities and selectivities for the dimerization of styrene to produce 1,3-diphenyl-1-butene and dimerization of -methylstyrene to unsaturated dimers were demonstrated with the sulfonated materials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000361189400037 Publication Date 2015-09-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1867-3880; 1867-3899 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.803 Times cited 13 Open Access
Notes Approved Most recent IF: 4.803; 2015 IF: 4.556
Call Number UA @ lucian @ c:irua:127836 Serial 4138
Permanent link to this record
 

 
Author Mandal, T.K.; Croft, M.; Hadermann, J.; Van Tendeloo, G.; Stephens, P.W.; Greenblatt, M.
Title La2MnVO6 double perovskite: a structural, magnetic and X-ray absorption investigation Type A1 Journal article
Year 2009 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
Volume 19 Issue 25 Pages 4382-4390
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (up) The synthesis, electron diffraction (ED), synchrotron X-ray and neutron structure, X-ray absorption spectroscopy (XAS) and magnetic property studies of La2MnVO6 double perovskite are described. Analysis of the synchrotron powder X-ray diffraction data for La2MnVO6 indicates a disordered arrangement of Mn and V at the B-site of the perovskite structure. Absence of super-lattice reflections in the ED patterns for La2MnVO6 supports the disordered cation arrangement. Room temperature time-of-flight (TOF) neutron powder diffraction (NPD) data show no evidence of cation ordering, in corroboration with the ED and synchrotron studies (orthorhombic Pnma, a = 5.6097(3), b = 7.8837(5) and c = 5.5668(3) ; 295 K, NPD). A comparison of XAS analyses of La2TVO6 with T = Ni and Co shows T2+ formal oxidation state while the T = Mn material evidences a Mn3+ admixture into a dominantly Mn2+ ground state. V-K edge measurements manifest a mirror image behavior with a V4+ state for T = Ni and Co with a V3+ admixture arising in the T = Mn material. The magnetic susceptibility data for La2MnVO6 show ferromagnetic correlations; the observed effective moment, µeff (5.72 µB) is much smaller than the calculated moment (6.16 µB) based on the spin-only formula for Mn2+ (d5, HS) /V4+ (d1), supportive of the partly oxidized Mn and reduced V scenario (Mn3+/V3+).
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000266989800015 Publication Date 2009-04-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 10 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:77367 Serial 3540
Permanent link to this record
 

 
Author Matulis, A.; Masir, M.R.; Peeters, F.M.
Title Application of optical beams to electrons in graphene Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 83 Issue 11 Pages 115458-115458,7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) The technique of beam optics is applied to the description of the wave function of Dirac electrons. This approach is illustrated by considering electron transmission through simple nonhomogeneous structures, such as flat and bent p-n junctions and superlattices. We found that a convex p-n junction compresses the beam waist, while a concave interface widens it without loosing its focusing properties. At a flat p-n junction the waist of the transmitted Gaussian beam can be narrowed or widened, depending on the angle of incidence. A general condition is derived for the occurrence of beam collimation in a superlattice which is less stringent than previous discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000288896400013 Publication Date 2011-03-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 13 Open Access
Notes ; This research was supported by the Flemish Science Foundation (Grant No. FWO-Vl), by the Belgian Science policy (IAP), and (in part) by the Lithuanian Science Council under project No. MIP-79/2010. ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:89377 Serial 142
Permanent link to this record
 

 
Author Verlinden, G.; Gijbels, R.; Geuens, I.
Title Chemical microcharacterization of ultrathin iodide conversion layers and adsorbed thiocyanate surface layers on silver halide microcrystals with time-of-flight SIMS Type A1 Journal article
Year 2002 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume 8 Issue 3 Pages 216-226
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (up) The technique of imaging time-of-flight secondary ion mass spectrometry (TOF-SIMS) and dual beam depth,profiling has been used to study the composition of the surface of tabular silver halide microcrystals. Analysis of individual microcrystals with a size well below 1 mum from a given emulsion is possible. The method is successfully applied for the characterization of silver halide microcrystals with subpercent global iodide concentrations confined in surface layers with a thickness below 5 nm. The developed TOF-SIMS analytical procedure is explicitly demonstrated for the molecular imaging of adsorbed thiocyanate layers (SCN) at crystal surfaces of individual crystals and for the differentiation of iodide conversion layers synthesized with KI and with AgI micrates (nanocrystals with a size between 10 and 50 nm). It can be concluded that TOF-SIMS as a microanalytical, surface-sensitive technique has some unique properties over other analytical techniques for the study of complex structured surface layers of silver halide microcrystals. This offers valuable information to support the synthesis of future photographic emulsions.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge, Mass. Editor
Language Wos 000179055900007 Publication Date 2002-11-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.891 Times cited 1 Open Access
Notes Approved Most recent IF: 1.891; 2002 IF: 1.733
Call Number UA @ lucian @ c:irua:103876 Serial 349
Permanent link to this record
 

 
Author Zhang, S.; Sahin, H.; Torun, E.; Peeters, F.; Martien, D.; DaPron, T.; Dilley, N.; Newman, N.
Title Fundamental mechanisms responsible for the temperature coefficient of resonant frequency in microwave dielectric ceramics Type A1 Journal article
Year 2017 Publication Journal of the American Ceramic Society Abbreviated Journal J Am Ceram Soc
Volume 100 Issue 100 Pages 1508-1516
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) The temperature coefficient of resonant frequency ((f)) of a microwave resonator is determined by three materials parameters according to the following equation: (f)=-(1/2 (epsilon) + 1/2 + (L)), where (L), (epsilon), and are defined as the linear temperature coefficients of the lattice constant, dielectric constant, and magnetic permeability, respectively. We have experimentally determined each of these parameters for Ba(Zn1/3Ta2/3)O-3, 0.8 at.% Ni-doped Ba(Zn1/3Ta2/3)O-3, and Ba(Ni1/3Ta2/3)O-3 ceramics. These results, in combination with density functional theory calculations, have allowed us to develop a much improved understanding of the fundamental physical mechanisms responsible for the temperature coefficient of resonant frequency, (f).
Address
Corporate Author Thesis
Publisher Place of Publication Columbus, Ohio Editor
Language Wos 000399610800034 Publication Date 2017-02-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7820 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.841 Times cited 6 Open Access
Notes ; ; Approved Most recent IF: 2.841
Call Number UA @ lucian @ c:irua:143682 Serial 4597
Permanent link to this record
 

 
Author Papp, G.; Peeters, F.M.
Title Giant magnetoresistance in a two-dimensional electron gas modulated by magnetic barriers Type A1 Journal article
Year 2004 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 16 Issue 46 Pages 8275-8283
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) The temperature-dependent giant magnetoresistance effect is investigated in a magnetically modulated two-dimensional electron gas, which can be realized by depositing two parallel ferromagnets on the top and bottom of a heterostructure. The effective potential for electrons arising for parallel magnetization allows the electrons to resonantly tunnel through the magnetic barriers, while this is excluded in the anti-parallel situation. Such a discrepancy results in a giant magnetoresistance ratio (MRR), which can be up to 10(31)%. The MRR shows a strong dependence on temperature, but our study indicates that for realistic parameters for a GaAs heterostructure the effect can be as high as 10(4)% at 4 K.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000225706000017 Publication Date 2004-11-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 69 Open Access
Notes Approved Most recent IF: 2.649; 2004 IF: 2.049
Call Number UA @ lucian @ c:irua:103718 Serial 1338
Permanent link to this record
 

 
Author Papp, G.; Peeters, F.M.
Title Magneto conductance for tunnelling through double magnetic barriers Type A1 Journal article
Year 2005 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E
Volume 25 Issue 4 Pages 339-346
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract (up) The temperature-dependent magnetoresistance effect is investigated in a magnetically modulated two-dimensional (21)) electron gas (2DEG) which can be realized by depositing two parallel ferromagnets on top of a 2DEG electron gas. In the resonant tunnelling regime the transmission for the parallel and antiparallel magnetization configurations shows a quite distinct dependence on the longitudinal wave vector of the incident electrons. This leads to a very large magneto resistance ratio with a strong temperature dependence. (C) 2004 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher North-Holland Place of Publication Amsterdam Editor
Language Wos 000226187900002 Publication Date 2004-09-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.221 Times cited 25 Open Access
Notes Approved Most recent IF: 2.221; 2005 IF: 0.946
Call Number UA @ lucian @ c:irua:99308 Serial 1898
Permanent link to this record
 

 
Author Shpanchenko, R.V.; Nistor, L.; Van Tendeloo, G.; van Landuyt, J.; Amelinckx, S.
Title Structural studies on new ternary oxides Ba8Ta4Ti3O24 and Ba10Ta7.04Ti1.2O30 Type A1 Journal article
Year 1995 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
Volume 114 Issue 2 Pages 560-574
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (up) The ternary oxides Ba8Ta4Ti3O24 and Ba10Ta7.04Ti1.2O30 were synthesized and their crystal structures and defects were studied by means of X-ray powder diffraction, electron diffraction, and high resolution electron microscopy. The crystal structure of Ba8Ta4Ti3O24 is based on the 8H (cchc)(2) close-packed stacking (a 10.0314 Angstrom, c = 18.869 Angstrom, SG P6(3)/mcm, Z = 3) and that of Ba10Ta7.04Ti1.2O30 and on the 10H (cchcc)(2) close-packed stacking (a = 5.7981 Angstrom, c = 23.755 Angstrom, SG P6(3)/mmc, Z = 1) of BaO3 layers. The structural refinements gave the following values for the R factors for Ba8Ta4Ti3O24 (Ba10Ta7.04Ti1.2O30) R(I) = 0.041 (0.039), R(P) = 0.108 (0.118), and R(wP) = 0.094 (0.099). The main feature of both structures is the presence of two types of face-sharing octahedra (FSO) with different occupancies by Ta atoms, Ti atoms, and vacancies, which results in the formation of a superstructure. It was shown that in the Ba8Ta4Ti3O24 structure these pairs of FSO occur in an ordered fashion and in the Ba10Ta7.04Ti1.2O30 structure in a disordered fashion. The existence of the wide range of solid solutions was shown to be also a consequence of the presence of one of the two types of face-sharing octahedra. (C) 1995 Academic Press, Inc,
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos A1995QH33100040 Publication Date 2002-10-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.133 Times cited 23 Open Access
Notes Approved
Call Number UA @ lucian @ c:irua:13289 Serial 3261
Permanent link to this record
 

 
Author Robberecht, H.; Van Grieken, R.; van Sprundel, M.; vanden Berghe, D.; Deelstra, H.
Title Selenium in environmental and drinking waters of Belgium Type A1 Journal article
Year 1983 Publication The science of the total environment Abbreviated Journal
Volume 26 Issue 2 Pages 163-172
Keywords A1 Journal article; Pharmacology. Therapy; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract (up) The tetravalent and hexavalent selenium content of water samples can be determined by conventional energy-dispersive X-ray fluorescence after different preconcentration steps. Selenium values of nearly three-hundred different environmental and drinking water samples in Belgium are reported. The results are quite low, ranging from the detection limits up to 1 μg l−1. The concentration levels are compared to literature data and the speciation is discussed. The contribution of drinking water to the daily intake of selenium in Belgium ranges from less than 0.2 to 5%.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos A1983QD20900006 Publication Date 2003-09-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697; 1879-1026 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:116647 Serial 8508
Permanent link to this record
 

 
Author Bulut, P.; Beceren, B.; Yildirim, S.; Sevik, C.; Gurel, T.
Title Promising room temperature thermoelectric conversion efficiency of zinc-blende AgI from first principles Type A1 Journal article
Year 2021 Publication Journal Of Physics-Condensed Matter Abbreviated Journal J Phys-Condens Mat
Volume 33 Issue 1 Pages 015501
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) The theoretical investigation on structural, vibrational, and electronic properties of zinc-blende (ZB) AgI were carried out employing first principles density functional theory calculations. Thermoelectric properties then were predicted through semi-classical Boltzmann transport equations within the constant relaxation time approximation. Equilibrium lattice parameter, bulk modulus, elastic constants, and vibrational properties were calculated by using generalized gradient approximation. Calculated properties are in good agreement with available experimental values. Electronic and thermoelectric properties were investigated both with and without considering spin-orbit coupling (SOC) effect which is found to have a strong influence on p-type Seebeck coefficient as well as the power factor of the ZB-AgI. By inclusion of SOC, a reduction of the band-gap and p-type Seebeck coefficients as well as the power factor was found which is the indication of that spin-orbit interaction cannot be ignored for p-type thermoelectric properties of the ZB-AgI. By using deformation potential theory for electronic relaxation time and experimentally predicted lattice thermal conductivity, we obtained aZTvalue 1.69 (0.89) at 400 K for n-type (p-type) carrier concentration of 1.5 x 10(18)(4.6 x10(19)) cm(-3)that makes ZB-AgI as a promising room temperature thermoelectric material.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000577217600001 Publication Date 2020-09-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record
Impact Factor 2.649 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 2.649
Call Number UA @ admin @ c:irua:193762 Serial 8425
Permanent link to this record
 

 
Author Hamelet, S.; Gibot, P.; Casas-Cabanas, M.; Bonnin, D.; Grey, C.P.; Cabana, J.; Leriche, J.B.; Rodriguez-Carvajal, J.; Courty, M.; Levasseur, S.; Carlach, P.; Van Thournout, M.; Tarascon, J.M.; Masquelier, C.;
Title The effects of moderate thermal treatments under air on LiFePO4-based nano powders Type A1 Journal article
Year 2009 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
Volume 19 Issue 23 Pages 3979-3991
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (up) The thermal behavior under air of LiFePO(4)-based powders was investigated through the combination of several techniques such as temperature-controlled X-ray diffraction, thermogravimetric analysis and Mossbauer and NMR spectroscopies. The reactivity with air at moderate temperatures depends on the particle size and leads to progressive displacement of Fe from the core structure yielding nano-size Fe(2)O(3) and highly defective, oxidized Li(x)Fe(y)PO(4) compositions whose unit-cell volume decreases dramatically when the temperature is raised between 400 and 600 K. The novel LiFePO(4)-like compositions display new electrochemical reactivity when used as positive electrodes in Li batteries. Several redox phenomena between 3.4 V and 2.7 V vs. Li were discovered and followed by in-situ X-ray diffraction, which revealed two distinct solid solution domains associated with highly anisotropic variations of the unit-cell constants.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000266615800024 Publication Date 2009-05-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 93 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:94582 Serial 867
Permanent link to this record
 

 
Author Michel, K.H.; Costamagna; Peeters, F.M.
Title Theory of thermal expansion in 2D crystals Type A1 Journal article
Year 2015 Publication Physica status solidi: B: basic research Abbreviated Journal Phys Status Solidi B
Volume 252 Issue 252 Pages 2433-2437
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) The thermal expansion alpha(T) in layered crystals is of fundamental and technological interest. As suggested by I. M. Lifshitz in 1952, in thin solid films (crystalline membranes) a negative contribution to alpha(T) is due to anharmonic couplings between in-plane stretching modes and out-of-plane bending (flexural modes). Genuine in-plane anharmonicities give a positive contribution to alpha(T). The competition between these two effects can lead to a change of sign (crossover) from a negative value of alpha(T) in a temperature (T) range T <= T-alpha to a positive value of alpha(T) for T > T-alpha in layered crystals. Here, we present an analytical lattice dynamical theory of these phenomena for a two-dimensional (2D) hexagonal crystal. We start from a Hamiltonian that comprises anharmonic terms of third and fourth order in the lattice displacements. The in-plane and out-of-plane contributions to the thermal expansion are studied as functions of T for crystals of different sizes. Besides, renormalization of the flexural mode frequencies plays a crucial role in determining the crossover temperature T-alpha. Numerical examples are given for graphene where the anharmonic couplings are determined from experiments. The theory is applicable to other layer crystals wherever the anharmonic couplings are known. (C) 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos 000364690400014 Publication Date 2015-08-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-1972 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.674 Times cited 21 Open Access
Notes ; We thank B. Verberck, D. Lamoen, and A. Dobry for useful comments. We acknowledge funding from the FWO (Belgium)-MINCyT (Argentina) collaborative research project. This work is supported by the Euro GRAPHENE project CONGRAN. ; Approved Most recent IF: 1.674; 2015 IF: 1.489
Call Number UA @ lucian @ c:irua:130281 Serial 4264
Permanent link to this record
 

 
Author Zhang, Q.; De Clippeleir, H.; Su, C.; Al-Omari, A.; Wett, B.; Vlaeminck, S.E.; Murthy, S.
Title Deammonification for digester supernatant pretreated with thermal hydrolysis : overcoming inhibition through process optimization Type A1 Journal article
Year 2016 Publication Applied microbiology and biotechnology Abbreviated Journal
Volume 100 Issue 12 Pages 5595-5606
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract (up) The thermal hydrolysis process (THP) has been proven to be an excellent pretreatment step for an anaerobic digester (AD), increasing biogas yield and decreasing sludge disposal. The goal of this work was to optimize deammonification for efficient nitrogen removal despite the inhibition effects caused by the organics present in the THP-AD sludge filtrate (digestate). Two sequencing batch reactors were studied treating conventional digestate and THP-AD digestate, respectively. Improved process control based on higher dissolved oxygen set-point (1 mg O-2/L) and longer aeration times could achieve successful treatment of THP-AD digestate. This increased set-point could overcome the inhibition effect on aerobic ammonium-oxidizing bacteria (AerAOB), potentially caused by particulate and colloidal organics. Moreover, based on the mass balance, anoxic ammonium-oxidizing bacteria (AnAOB) contribution to the total nitrogen removal decreased from 97 +/- A 1 % for conventional to 72 +/- A 5 % for THP-AD digestate treatment, but remained stable by selective AnAOB retention using a vibrating screen. Overall, similar total nitrogen removal rates of 520 +/- A 28 mg N/L/day at a loading rate of 600 mg N/L/day were achieved in the THP-AD reactor compared to the conventional digestate treatment operating at low dissolved oxygen (DO) (0.38 +/- A 0.10 mg O-2/L).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000376456700033 Publication Date 2016-02-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0175-7598; 1432-0614 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:134166 Serial 7755
Permanent link to this record
 

 
Author Ferreira, W.P.; Peeters, F.M.; Farias, G.A.
Title Melting and evaporation in classical two-dimensional clusters confined by a Coulomb potential Type A1 Journal article
Year 2005 Publication Physical review : E : statistical, nonlinear, and soft matter physics Abbreviated Journal Phys Rev E
Volume 72 Issue 4 Part 1 Pages 041502-41507
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) The thermal properties of a two-dimensional classical cluster of negatively charged particles bound by a punctual positive charge are presented. The melting phenomenon is analyzed and the features which characterize such a solid-liquid transition are highlighted. We found that the presence of metastable states strongly modifies the melting scenario, and that the melting temperature of the system is determined by the height of the saddle point energy separating the ground state and the metastable state. Due to the particular type of confinement potential considered in this paper, we also found that, at sufficiently large temperature, the cluster can become thermally ionized.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication Woodbury (NY) Editor
Language Wos 000232930600030 Publication Date 2005-10-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 4 Open Access
Notes Approved Most recent IF: 2.366; 2005 IF: 2.418
Call Number UA @ lucian @ c:irua:104067 Serial 1983
Permanent link to this record
 

 
Author Xu, B.; Milošević, M.V.; Peeters, F.M.
Title Calorimetric properties of mesoscopic superconducting disks, rings, and cylinders Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 81 Issue 6 Pages 064501,1-064501,10
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) The thermal signatures of superconductivity in mesoscopic disks, rings and cylinders are calculated within the Ginzburg-Landau theory. In an applied perpendicular magnetic field H the heat capacity of mesoscopic samples shows a strong dependence on the realized vortex state; discontinuities are found at the critical field for different vorticities, as well as at the superconducting-to-normal state transition. The same applies to the intermediate state of type-I superconductors. Even the subtle changes in the fluxoid distribution inside the sample leave clear signatures on heat capacity, which is particularly useful for fully three-dimensional samples whose interior is often inaccessible by magnetometry. The heat-capacity jump ΔC(H) at the critical temperature exhibits quasiperiodic modulations as a function of magnetic field. In mesoscopic superconducting rings, these oscillations provide calorimetric verification of the Little-Parks effect.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000274998100091 Publication Date 2010-02-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 17 Open Access
Notes ; We are grateful to O. Bourgeois for useful discussions. This work was supported by the Flemish Science Foundation (FWO-VI), the Interuniversity Attraction Poles (IAP) Program-Belgian State-Belgian Science Policy, ESF-JSPS NES program and the ESF-AQDJJ network. ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:81766 Serial 271
Permanent link to this record
 

 
Author Nistor, L.C.; Richard, O.; Zhao, O.; Bender, H.; Stesmans, A.; Van Tendeloo, G.
Title A microstructural study of the thermal stability of atomic layer deposited Al2O3 thin films Type A1 Journal article
Year 2003 Publication Institute of physics conference series T2 – Microscopy of semiconducting materials Abbreviated Journal
Volume Issue Pages 397-400
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (up) The thermal stability of amorphous Al2O3 films (similar to8 and 80 nut thick) deposited by atomic layer deposition on HF-last and thin SiO2 covered (001) Si substrates is studied by transmission electron microscopy. The layers are in- and ex-situ annealed in the same temperature range.
Address
Corporate Author Thesis
Publisher Iop Place of Publication Cambridge Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0-7503-0979-2 ISBN Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:54860 Serial 2048
Permanent link to this record
 

 
Author Ao, Z.M.; Hernández-Nieves, A.D.; Peeters, F.M.; Li, S.
Title Enhanced stability of hydrogen atoms at the graphene/graphane interface of nanoribbons Type A1 Journal article
Year 2010 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 97 Issue 23 Pages 233109,1-233109,3
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) The thermal stability of graphene/graphane nanoribbons (GGNRs) is investigated using density functional theory. It is found that the energy barriers for the diffusion of hydrogen atoms on the zigzag and armchair interfaces of GGNRs are 2.86 and 3.17 eV, respectively, while the diffusion barrier of an isolated H atom on pristine graphene was only ∼ 0.3 eV. These results unambiguously demonstrate that the thermal stability of GGNRs can be enhanced significantly by increasing the hydrogen diffusion barriers through graphene/graphane interface engineering. This may provide new insights for viable applications of GGNRs.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000285364000067 Publication Date 2010-12-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 43 Open Access
Notes ; The financial supports by the Vice-Chancellor's Postdoctoral Research Fellowship Program of the University of New South Wales (SIR50/PS19184), the Flemish Science Foundation (FWO-VI), and the Belgian Science Policy (IAP) are acknowledged. A.D.H. acknowledges also support from ANPCyT (Grant No. PICT2008-2236) and the collaborative project FWO-MINCyT (FW/08/01). ; Approved Most recent IF: 3.411; 2010 IF: 3.841
Call Number UA @ lucian @ c:irua:86972 Serial 1056
Permanent link to this record
 

 
Author Ben Dkhil, S.; Pfannmöller, M.; Schroeder, R.R.; Alkarsifi, R.; Gaceur, M.; Koentges, W.; Heidari, H.; Bals, S.; Margeat, O.; Ackermann, J.; Videlot-Ackermann, C.
Title Interplay of interfacial layers and blend composition to reduce thermal degradation of polymer solar cells at high temperature Type A1 Journal article
Year 2018 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter
Volume 10 Issue 10 Pages 3874-3884
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract (up) The thermal stability of printed polymer solar cells at elevated temperatures needs to be improved to achieve high-throughput fabrication including annealing steps as well as long-term stability. During device processing, thermal annealing impacts both the organic photoactive layer, and the two interfacial layers make detailed studies of degradation mechanism delicate. A recently identified thermally stable poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b'-dithiopherie-2,6-diyl] [3-fluoro-2-[(2-ethylhexyl) carbonyl] thieno [3,4-b]thiophenediyl]] : [6,6]-phenyl- C-71-butyric acid methyl ester (PTB7:PC70BM) blend as photoactive layer in combination with poly(3,4-ethylenedioxythiophene) polystyrene sulfonate as hole extraction layer is used here to focus on the impact of electron extraction layer (EEL) on the thermal stability of solar cells. Solar cells processed with densely packed ZnO nanoparticle layers still show 92% of the initial efficiency after constant annealing during 1 day at 140 degrees C, whereas partially covering ZnO layers as well as an evaporated calcium layer leads to performance losses of up to 30%. This demonstrates that the nature and morphology of EELs highly influence the thermal stability of the device. We extend our study to thermally unstable PTB7:[6,6]-phenyl-C-61-butyric acid methyl ester (PC60BM) blends to highlight the impact of ZnO on the device degradation during annealing. Importantly, only 12% loss in photocurrent density is observed after annealing at 140 degrees C during 1 day when using closely packed ZnO. This is in stark contrast to literature and addressed here to the use of a stable double-sided confinement during thermal annealing. The underlying mechanism of the inhibition of photocurrent losses is revealed by electron microscopy imaging and spatially resolved spectroscopy. We found that the double-sided confinement suppresses extensive fullerene diffusion during the annealing step, but with still an increase in size and distance of the enriched donor and acceptor domains inside the photoactive layer by an average factor of 5. The later result in combination with comparably small photocurrent density losses indicates the existence of an efficient transport of minority charge carriers inside the donor and acceptor enriched phases in PTB7:PC60BM blends.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000424728800082 Publication Date 2018-01-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.504 Times cited 9 Open Access OpenAccess
Notes ; We acknowledge the financial support by the French Fond Unique Interministeriel (FUI) under the project “SFUMATO” (grant number: F1110019V/201308815) as well as by the European Commission under the Project “SUNFLOWER” (FP7-ICT-2011-7-contract number: 287594). M.P. and R.R.S. acknowledge support by the HeiKA (Heidelberg Karlsruhe Research Partnership) FunTech-3D materials science program. ; Approved Most recent IF: 7.504
Call Number UA @ lucian @ c:irua:149309UA @ admin @ c:irua:149309 Serial 4939
Permanent link to this record
 

 
Author Dabral, A.; Lu, A.K.A.; Chiappe, D.; Houssa, M.; Pourtois, G.
Title A systematic study of various 2D materials in the light of defect formation and oxidation Type A1 Journal article
Year 2019 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 21 Issue 3 Pages 1089-1099
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (up) The thermodynamic aspects of various 2D materials are explored using Density Functional Theory (DFT). Various metal chalcogenides (MX2, M = metal, chalcogen X = S, Se, Te) are investigated with respect to their interaction and stability under different ambient conditions met in the integration process of a transistor device. Their interaction with high- dielectrics is also addressed, in order to assess their possible integration in Complementary Metal Oxide Semiconductor (CMOS) field effect transistors. 2D materials show promise for high performance nanoelectronic devices, but the presence of defects (vacancies, grain boundaries,...) can significantly impact their electronic properties. To assess the impact of defects, their enthalpies of formation and their signature levels in the density of states have been studied. We find, consistently with literature reports, that chalcogen vacancies are the most likely source of defects. It is shown that while pristine 2D materials are in general stable whenever set in contact with different ambient atmospheres, the presence of defective sites affects the electronic properties of the 2D materials to varying degrees. We observe that all the 2D materials studied in the present work show strong reactivity towards radical oxygen plasma treatments while reactivity towards other common gas phase chemical such as O-2 and H2O and groups present at the high- surface varies significantly between species. While energy band-gaps, effective masses and contact resistivities are key criteria in selection of 2D materials for scaled CMOS and tunneling based devices, the phase and ambient stabilities might also play a very important role in the development of reliable nanoelectronic applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000456147000009 Publication Date 2018-12-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 1 Open Access Not_Open_Access
Notes Approved Most recent IF: 4.123
Call Number UA @ admin @ c:irua:156715 Serial 5267
Permanent link to this record
 

 
Author Van Duppen, B.; Peeters, F.M.
Title Thermodynamic properties of the electron gas in multilayer graphene in the presence of a perpendicular magnetic field Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 88 Issue 24 Pages 245429-7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) The thermodynamic properties of the electron gas in multilayer graphene depend strongly on the number of layers and the type of stacking. Here we analyze how those properties change when we vary the number of layers for rhombohedral stacked multilayer graphene and compare our results with those from a conventional two-dimensional electron gas. We show that the highly degenerate zero-energy Landau level which is partly filled with electrons and partly with holes has a strong influence on the values of the different thermodynamic quantities.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000328686900006 Publication Date 2014-01-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 2 Open Access
Notes ; The authors would like to thank C. De Beule for enlightening discussions. This work was supported by the European Science Foundation (ESF) under the EUROCORES Program Euro-GRAPHENE within the project CONGRAN, the Flemish Science Foundation (FWO-Vl) by an aspirant research grant to B.V.D., and the Methusalem Program of the Flemish Government. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:113700 Serial 3635
Permanent link to this record
 

 
Author Goris, B.; de Beenhouwer, J.; de Backer, A.; Zanaga, D.; Batenburg, K.J.; Sánchez-Iglesias, A.; Liz-Marzán, L.M.; Van Aert, S.; Bals, S.; Sijbers, J.; Van Tendeloo, G.
Title Measuring lattice strain in three dimensions through electron microscopy Type A1 Journal article
Year 2015 Publication Nano letters Abbreviated Journal Nano Lett
Volume 15 Issue 15 Pages 6996-7001
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Vision lab
Abstract (up) The three-dimensional (3D) atomic structure of nanomaterials, including strain, is crucial to understand their properties. Here, we investigate lattice strain in Au nanodecahedra using electron tomography. Although different electron tomography techniques enabled 3D characterizations of nanostructures at the atomic level, a reliable determination of lattice strain is not straightforward. We therefore propose a novel model-based approach from which atomic coordinates are measured. Our findings demonstrate the importance of investigating lattice strain in 3D.
Address
Corporate Author Thesis
Publisher Place of Publication Washington Editor
Language Wos 000363003100108 Publication Date 2015-09-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.712 Times cited 87 Open Access OpenAccess
Notes Fwo; 335078 Colouratom; 267867 Plasmaquo; 312483 Esteem2; 262348 Esmi; esteem2jra4; ECASSara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 12.712; 2015 IF: 13.592
Call Number c:irua:127639 c:irua:127639 Serial 1965
Permanent link to this record
 

 
Author Ke, X.; Bals, S.; Cott, D.; Hantschel, T.; Bender, H.; Van Tendeloo, G.
Title Three-dimensional analysis of carbon nanotube networks in interconnects by electron tomography without missing wedge artifacts Type A1 Journal article
Year 2010 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume 16 Issue 2 Pages 210-217
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (up) The three-dimensional (3D) distribution of carbon nanotubes (CNTs) grown inside semiconductor contact holes is studied by electron tomography. The use of a specialized tomography holder results in an angular tilt range of ±90°, which means that the so-called missing wedge is absent. The transmission electron microscopy (TEM) sample for this purpose consists of a micropillar that is prepared by a dedicated procedure using the focused ion beam (FIB) but keeping the CNTs intact. The 3D results are combined with energy dispersive X-ray spectroscopy (EDS) to study the relation between the CNTs and the catalyst particles used during their growth. The reconstruction, based on the full range of tilt angles, is compared with a reconstruction where a missing wedge is present. This clearly illustates that the missing wedge will lead to an unreliable interpretation and will limit quantitative studies
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge, Mass. Editor
Language Wos 000276137200011 Publication Date 2010-02-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276;1435-8115; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.891 Times cited 42 Open Access
Notes Esteem 026019; Fwo; Iap-Vi Approved Most recent IF: 1.891; 2010 IF: 3.259
Call Number UA @ lucian @ c:irua:82279 Serial 3642
Permanent link to this record