|   | 
Details
   web
Records
Author Lavor, I.R.; Cavalcante, L.S.R.; Chaves, A.; Peeters, F.M.; Van Duppen, B.
Title Probing the structure and composition of van der Waals heterostructures using the nonlocality of Dirac plasmons in the terahertz regime Type A1 Journal article
Year 2021 Publication 2d Materials Abbreviated Journal 2D Mater
Volume 8 Issue 1 Pages 015014
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) Dirac plasmons in graphene are very sensitive to the dielectric properties of the environment. We show that this can be used to probe the structure and composition of van der Waals heterostructures (vdWh) put underneath a single graphene layer. In order to do so, we assess vdWh composed of hexagonal boron nitride and different types of transition metal dichalcogenides (TMDs). By performing realistic simulations that account for the contribution of each layer of the vdWh separately and including the importance of the substrate phonons, we show that one can achieve single-layer resolution by investigating the nonlocal nature of the Dirac plasmon-polaritons. The composition of the vdWh stack can be inferred from the plasmon-phonon coupling once it is composed by more than two TMD layers. Furthermore, we show that the bulk character of TMD stacks for plasmonic screening properties in the terahertz regime is reached only beyond 100 layers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000582820500001 Publication Date 2020-10-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.937 Times cited 2 Open Access OpenAccess
Notes ; This work was financially supported by the Brazilian Council for Research (CNPq), Brazilian National Council for the Improvement of Higher Education (CAPES) and by the Research Foundation Flanders (FWO) through a postdoctoral fellowship to B.V.D. ; Approved Most recent IF: 6.937
Call Number UA @ admin @ c:irua:173507 Serial 6696
Permanent link to this record
 

 
Author Lavor, I.R.; Chaves, A.; Peeters, F.M.; Van Duppen, B.
Title Tunable coupling of terahertz Dirac plasmons and phonons in transition metal dichalcogenide-based van der Waals heterostructures Type A1 Journal article
Year 2021 Publication 2d Materials Abbreviated Journal 2D Mater
Volume Issue Pages 015018
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) Dirac plasmons in graphene hybridize with phonons of transition metal dichalcogenides (TMDs) when the materials are combined in so-called van der Waals heterostructures (vdWh), thus forming surface plasmon-phonon polaritons (SPPPs). The extend to which these modes are coupled depends on the TMD composition and structure, but also on the plasmons' properties. By performing realistic simulations that account for the contribution of each layer of the vdWh separately, we calculate how the strength of plasmon-phonon coupling depends on the number and composition of TMD layers, on the graphene Fermi energy and the specific phonon mode. From this, we present a semiclassical theory that is capable of capturing all relevant characteristics of the SPPPs. We find that it is possible to realize both strong and ultra-strong coupling regimes by tuning graphene's Fermi energy and changing TMD layer number.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000722020100001 Publication Date 2021-11-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record
Impact Factor 6.937 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 6.937
Call Number UA @ admin @ c:irua:183053 Serial 7036
Permanent link to this record
 

 
Author Wang, Y.; Chen, Y.; Harding, J.; He, H.; Bogaerts, A.; Tu, X.
Title Catalyst-free single-step plasma reforming of CH4 and CO2 to higher value oxygenates under ambient conditions Type A1 Journal article
Year 2022 Publication Chemical Engineering Journal Abbreviated Journal Chem Eng J
Volume 450 Issue Pages 137860
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (up) Direct conversion of CH4 and CO2 to liquid fuels and chemicals under mild conditions is appealing for biogas conversion and utilization but challenging due to the inert nature of both gases. Herein, we report a promising plasma process for the catalyst-free single-step conversion of CH4 and CO2 into higher value oxygenates (i.e., methanol, acetic acid, ethanol, and acetone) at ambient pressure and room temperature using a water-cooled dielectric barrier discharge (DBD) reactor, with methanol being the main liquid product. The distribution of liquid products could be tailored by tuning the discharge power, reaction temperature and residence time. Lower discharge powers (10–15 W) and reaction temperatures (5–20 ◦ C) were favourable for the production of liquid products, achieving the highest methanol selectivity of 43% at 5 ◦ C and 15 W. A higher discharge power and reaction temperature, on the other hand, produced more gaseous products, particularly H2 (up to 26% selec­tivity) and CO (up to 33% selectivity). In addition, varying these process parameters (discharge power, reaction temperature and residence time) resulted in a simultaneous change in key discharge properties, such as mean electron energy (Ee), electron density (ne) and specific energy input (SEI), all of which are essential determiners of plasma chemical reactions. According to the results of artificial neural network (ANN) models, the relative importance of these process parameters and key discharge indicators on reaction performance follows the order: discharge power > reaction temperature > residence time, and SEI > ne > Ee, respectively. This work provides new insights into the contributions and tuning mechanism of multiple parameters for optimizing the reaction performance (e.g., liquid production) in the plasma gas conversion process.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000830813300004 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 15.1 Times cited Open Access OpenAccess
Notes This project received funding from the European Union’s Horizon 2020 research and innovation program under the Marie SklodowskaCurie grant agreement No. 813393. Approved Most recent IF: 15.1
Call Number PLASMANT @ plasmant @c:irua:189502 Serial 7100
Permanent link to this record
 

 
Author Zografos, O.; Manfrini, M.; Vaysset, A.; Sorée, B.; Ciubotaru, F.; Adelmann, C.; Lauwereins, R.; Raghavan, P.; Radu, I.P.
Title Exchange-driven magnetic logic Type A1 Journal article
Year 2017 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
Volume 7 Issue Pages 12154
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract (up) Direct exchange interaction allows spins to be magnetically ordered. Additionally, it can be an efficient manipulation pathway for low-powered spintronic logic devices. We present a novel logic scheme driven by exchange between two distinct regions in a composite magnetic layer containing a bistable canted magnetization configuration. By applying a magnetic field pulse to the input region, the magnetization state is propagated to the output via spin-to-spin interaction in which the output state is given by the magnetization orientation of the output region. The dependence of this scheme with input field conditions is extensively studied through a wide range of micromagnetic simulations. These results allow different logic operating modes to be extracted from the simulation results, and majority logic is successfully demonstrated.
Address
Corporate Author Thesis
Publisher Nature Publishing Group Place of Publication London Editor
Language Wos 000411434900020 Publication Date 2017-09-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited 7 Open Access
Notes ; ; Approved Most recent IF: 4.259
Call Number UA @ lucian @ c:irua:146742 Serial 4784
Permanent link to this record
 

 
Author Demiroglu, I.; Karaaslan, Y.; Kocabas, T.; Keceli, M.; Vazquez-Mayagoitia, A.; Sevik, C.
Title Computation of the thermal expansion coefficient of graphene with Gaussian approximation potentials Type A1 Journal article
Year 2021 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
Volume 125 Issue 26 Pages 14409-14415
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract (up) Direct experimental measurement of thermal expansion coefficient without substrate effects is a challenging task for two-dimensional (2D) materials, and its accurate estimation with large-scale ab initio molecular dynamics is computationally very expensive. Machine learning-based interatomic potentials trained with ab initio data have been successfully used in molecular dynamics simulations to decrease the computational cost without compromising the accuracy. In this study, we investigated using Gaussian approximation potentials to reproduce the density functional theory-level accuracy for graphene within both lattice dynamical and molecular dynamical methods, and to extend their applicability to larger length and time scales. Two such potentials are considered, GAP17 and GAP20. GAP17, which was trained with pristine graphene structures, is found to give closer results to density functional theory calculations at different scales. Further vibrational and structural analyses verify that the same conclusions can be deduced with density functional theory level in terms of the reasoning of the thermal expansion behavior, and the negative thermal expansion behavior is associated with long-range out-of-plane phonon vibrations. Thus, it is argued that the enabled larger system sizes by machine learning potentials may even enhance the accuracy compared to small-size-limited ab initio molecular dynamics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000672734100027 Publication Date 2021-06-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 4.536
Call Number UA @ admin @ c:irua:179850 Serial 7719
Permanent link to this record
 

 
Author Zhang, Y.; Qin, S.; Claes, N.; Schilling, W.; Sahoo, P.K.; Ching, H.Y.V.; Jaworski, A.; Lemière, F.; Slabon, A.; Van Doorslaer, S.; Bals, S.; Das, S.
Title Direct Solar Energy-Mediated Synthesis of Tertiary Benzylic Alcohols Using a Metal-Free Heterogeneous Photocatalyst Type A1 Journal article
Year 2022 Publication ACS Sustainable Chemistry and Engineering Abbreviated Journal Acs Sustain Chem Eng
Volume 10 Issue 1 Pages 530-540
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Organic synthesis (ORSY)
Abstract (up) Direct hydroxylation via the functionalization of tertiary benzylic C(sp3)-H bond is of great significance for obtaining tertiary alcohols which find wide applications in pharmaceuticals as well as in fine chemical industries. However, current synthetic procedures use toxic reagents and therefore, the development of a sustainable strategy for the synthesis of tertiary benzyl alcohols is highly desirable. To solve this problem, herein, we report a metal-free

heterogeneous photocatalyst to synthesize the hydroxylated products using oxygen as the key reagent. Various benzylic substrates were employed into our mild reaction conditions to afford the desirable products in good to excellent yields. More importantly, gram-scale reaction was achieved via harvesting direct solar energy and exhibited high quantity of the product. The high stability of the catalyst was proved via recycling the catalyst and spectroscopic analyses. Finally, a possible mechanism was proposed based on the EPR and other experimental

evidence.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000736518000001 Publication Date 2022-01-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2168-0485 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.4 Times cited 24 Open Access OpenAccess
Notes We thank BOF joint PhD grant (to Y. Z.), Francqui Foundation and FWO research grant (to S.D.), Chinese Scholarship Council (to Y.Z.). A.S. would like to thank the Swedish Energy Agency for financial support (project nr: 5050-1). The SEM microscope was partly funded by the Hercules Fund from the Flemish Government. Approved Most recent IF: 8.4
Call Number EMAT @ emat @c:irua:184744 Serial 6900
Permanent link to this record
 

 
Author Terzano, R.; Santoro, A.; Spagnuolo, M.; Vekemans, B.; Medici, L.; Janssens, K.; Göttlicher, J.; Denecke, M.A.; Mangold, S.; Ruggiero, P.
Title Solving mercury (Hg) speciation in soil samples by synchrotron X-ray microspectroscopic techniques Type A1 Journal article
Year 2010 Publication Environmental pollution Abbreviated Journal Environ Pollut
Volume 158 Issue 8 Pages 2702-2709
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract (up) Direct mercury (Hg) speciation was assessed for soil samples with a Hg concentration ranging from 7 up to 240 mg kg1. Hg chemical forms were identified and quantified by sequential extractions and bulkand micro-analytical techniques exploiting synchrotron generated X-rays. In particular, microspectroscopic techniques such as m-XRF, m-XRD and m-XANES were necessary to solve bulk Hg speciation, in both soil fractions <2 mm and <2 mm. The main Hg-species found in the soil samples were metacinnabar (b-HgS), cinnabar (a-HgS), corderoite (Hg3S2Cl2), and an amorphous phase containing Hg bound to chlorine and sulfur. The amount of metacinnabar and amorphous phases increased in the fraction <2 mm. No interaction among Hg-species and soil components was observed. All the observed Hgspecies originated from the slow weathering of an inert Hg-containing waste material (K106, U.S. EPA) dumped in the area several years ago, which is changing into a relatively more dangerous source of pollution.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000280571500026 Publication Date 2010-06-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0269-7491 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.099 Times cited 30 Open Access
Notes ; This research was partially financed by the MIUR (COFIN 2005) project “Innovative chemical, physical, and biological methods to characterize and remediate soils polluted by heavy metals (MICROS)”. Synchrotron experiments at HASYLAB were financially supported by the European Community-Research Infrastructure Action under the FP6 “Structuring the European Research Area” Program I(Integrating Activity on Synchrotron and Free Electron Laser Science; project: contract RII3-CT-2004-506008). This research was also performed as part of the “Interuniversity Attraction Poles” (IAP6) Program financed by the Belgian government. We thank Gerald Falkenberg and Karen Rickers-Appel for their scientific and technical support in obtaining the experimental data at Beam line L (HASYLAB, DESY, Hamburg, Germany). ; Approved Most recent IF: 5.099; 2010 IF: 3.395
Call Number UA @ admin @ c:irua:84050 Serial 5835
Permanent link to this record
 

 
Author Gonnissen, J.; Batuk, D.; Nataf, G.F.; Jones, L.; Abakumov, A.M.; Van Aert, S.; Schryvers, D.; Salje, E.K.H.
Title Direct Observation of Ferroelectric Domain Walls in LiNbO3: Wall-Meanders, Kinks, and Local Electric Charges Type A1 Journal article
Year 2016 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater
Volume 26 Issue 26 Pages 7599-7604
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract (up) Direct observations of the ferroelectric domain boundaries in LiNbO3 are performed using high-resolution high-angle annular dark field scanning transmission electron microscopy imaging, revealing a very narrow width of the domain wall between the 180° domains. The domain walls demonstrate local side-way meandering, which results in inclinations even when the overall wall orientation follows the ferroelectric polarization. These local meanders contain kinks with “head-to-head” and “tail-to-tail” dipolar configurations and are therefore locally charged. The charged meanders are confined to a few cation layers along the polarization direction and are separated by longer stretches of straight domain walls.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000388166700006 Publication Date 2016-09-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1616-301X ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 23 Open Access
Notes J.G. acknowledges the support from the Research Foundation Flanders (FWO, Belgium) through various project fundings (G.0368.15N, G.0369.15N, and G.0374.13N), as well as the financial support from the European Union Seventh Framework Program (FP7/2007–2013) under Grant agreement no. 312483 (ESTEEM2). The authors thank J. Hadermann for useful suggestions on the interpretation of the HAADFSTEM images. E.K.H.S. thanks the EPSRC (EP/K009702/1) and the Leverhulme Trust (EM-2016-004) for support. G.F.N. thanks the National Research Fund, Luxembourg (FNR/P12/4853155/Kreisel) for support.; esteem2_jra2 Approved Most recent IF: 12.124
Call Number c:irua:135336 c:irua:135336 Serial 4129
Permanent link to this record
 

 
Author Li, S.; Ahmed, R.; Yi, Y.; Bogaerts, A.
Title Methane to Methanol through Heterogeneous Catalysis and Plasma Catalysis Type A1 Journal article
Year 2021 Publication Catalysts Abbreviated Journal Catalysts
Volume 11 Issue 5 Pages 590
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (up) Direct oxidation of methane to methanol (DOMTM) is attractive for the increasing industrial demand of feedstock. In this review, the latest advances in heterogeneous catalysis and plasma catalysis for DOMTM are summarized, with the aim to pinpoint the differences between both, and to provide some insights into their reaction mechanisms, as well as the implications for future development of highly selective catalysts for DOMTM.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000653609900001 Publication Date 2021-05-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-4344 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.082 Times cited Open Access OpenAccess
Notes Fundamental Research Funds for the Central Universities of China, DUT18JC42 ; National Natural Science Foundation of China, 21503032 ; PetroChina Innovation Foundation, 2018D-5007-0501 ; TOP-BOF research project of the Research Council of the University of Antwerp, 32249 ; This research was funded by the Fundamental Research Funds for the Central Universities of China (DUT18JC42), the National Natural Science Foundation of China (21503032) PetroChina Innovation Foundation (2018D-5007-0501) and the TOP-BOF research project of the Research Council of the University of Antwerp (grant ID 32249). This research was supported by the China Scholarship Council (CSC). The authors warmly acknowledge CSC for their support. Approved Most recent IF: 3.082
Call Number PLASMANT @ plasmant @c:irua:177851 Serial 6753
Permanent link to this record
 

 
Author Ciocarlan, R.-G.; Blommaerts, N.; Lenaerts, S.; Cool, P.; Verbruggen, S.W.
Title Recent trends in plasmon‐assisted photocatalytic CO₂ reduction Type A1 Journal article
Year 2023 Publication Chemsuschem Abbreviated Journal
Volume 16 Issue 5 Pages e202201647-25
Keywords A1 Journal article; Engineering sciences. Technology; Laboratory of adsorption and catalysis (LADCA)
Abstract (up) Direct photocatalytic reduction of CO2 has become an highly active field of research. It is thus of utmost importance to maintain an overview of the various materials used to sustain this process, find common trends, and, in this way, eventually improve the current conversions and selectivities. In particular, CO2 photoreduction using plasmonic photocatalysts under solar light has gained tremendous attention, and a wide variety of materials has been developed to reduce CO2 towards more practical gases or liquid fuels (CH4, CO, CH3OH/CH3CH2OH) in this manner. This Review therefore aims at providing insights in current developments of photocatalysts consisting of only plasmonic nanoparticles and semiconductor materials. By classifying recent studies based on product selectivity, this Review aims to unravel common trends that can provide effective information on ways to improve the photoreduction yield or possible means to shift the selectivity towards desired products, thus generating new ideas for the way forward.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000926901300001 Publication Date 2023-01-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.4 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 8.4; 2023 IF: 7.226
Call Number UA @ admin @ c:irua:193633 Serial 7335
Permanent link to this record
 

 
Author Dingenen, F.; Verbruggen, S.W.
Title Tapping hydrogen fuel from the ocean : a review on photocatalytic, photoelectrochemical and electrolytic splitting of seawater Type A1 Journal article
Year 2021 Publication Renewable & Sustainable Energy Reviews Abbreviated Journal Renew Sust Energ Rev
Volume 142 Issue Pages 110866
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract (up) Direct splitting of earth-abundant seawater provides an eco-friendly route for the production of clean H2, but is hampered by selectivity and stability issues. Direct seawater electrolysis is the most established technology, attaining high current densities in the order of 1–2 A cm−2. Alternatively, light-driven processes such as photocatalytic and photoelectrochemical seawater splitting are particularly promising as well, as they rely on renewable solar power. Solar-to-Hydrogen efficiencies have increased over the past decade from negligible values to about 2%. Especially the absence of large local pH changes (in the order of several tenths of a pH unit compared to up to 9 pH units for electrolysis) is a strong asset for pure photocatalysis. This may lead to less adverse side-reactions such as Cl2 and ClO− formation, (acid or base induced) corrosion and scaling. Besides, additional requirements for electrolytic cells, e.g. membranes and electricity input, are not needed in pure photocatalysis systems. In this review, the state-of-the-art technologies in light-driven seawater splitting are compared to electrochemical approaches with a focus on sustainability and stability. Promising advances are identified at the level of the catalyst as well as the process, and insight is provided in solutions crossing different fields.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000632316600003 Publication Date 2021-03-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1364-0321; 1879-0690 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.05 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 8.05
Call Number UA @ admin @ c:irua:175701 Serial 8642
Permanent link to this record
 

 
Author Gonzalez-Rubio, G.; Gonzalez-Izquierdo, J.; Banares, L.; Tardajos, G.; Rivera, A.; Altantzis, T.; Bals, S.; Pena-Rodriguez, O.; Guerrero-Martinez, A.; Liz-Marzan, L.M.
Title Femtosecond Laser-Controlled Tip-to-Tip Assembly and Welding of Gold Nanorods Type A1 Journal article
Year 2015 Publication Nano letters Abbreviated Journal Nano Lett
Volume 15 Issue 15 Pages 8282-8288
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract (up) Directed assembly of gold nanorods through the use of dithiolated molecular linkers is one of the most efficient methodologies for the morphologically controlled tip-to-tip assembly of this type of anisotropic nanocrystals. However, in a direct analogy to molecular polymerization synthesis, this process is characterized by difficulties in chain-growth control over nanoparticle oligomers. In particular, it is nearly impossible to favor the formation of one type of oligomer, making the methodology hard to use for actual applications in nanoplasmonics. We propose here a light-controlled synthetic procedure that allows obtaining selected plasmonic oligomers in high yield and with reaction times in the scale of minutes by irradiation with low fluence near-infrared (NIR) femtosecond laser pulses. Selective inhibition of the formation of gold nanorod n-mers (trimers) with a longitudinal localized surface plasmon in resonance with a 800 nm Ti:sapphire laser, allowed efficient trapping of the (n – 1)-mers (dimers) by hot spot mediated photothermal decomposition of the interparticle molecular linkers. Laser irradiation at higher energies produced near-field enhancement at the interparticle gaps, which is large enough to melt gold nanorod tips, offering a new pathway toward tip-to-tip welding of gold nanorod oligomers with a plasmonic response at the NIR. Thorough optical and electron microscopy characterization indicates that plasmonic oligomers can be selectively trapped and welded, which has been analyzed in terms of a model that predicts with reasonable accuracy the relative concentrations of the main plasmonic species.
Address Ikerbasque, Basque Foundation for Science , 48013 Bilbao, Spain
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000366339600075 Publication Date 2015-11-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.712 Times cited 101 Open Access OpenAccess
Notes This work has been funded by the Spanish MINECO (MAT2012-38541, MAT2013-46101-R, MAT2014-59678-R and CTQ2012-37404-C02-01). A.G.-M. and G.G.-R., respectively, acknowledge receipt of Ramón y Cajal and FPI Fellowships from the Spanish MINECO. O.P.-R. is grateful with Moncloa Campus of International Excellence (UCMUPM) for the PICATA postdoctoral fellowship. The facilities provided by the Center for Ultrafast Lasers at Complutense University of Madrid are gratefully acknowledged. S.B. acknowledges funding from the European Research Council under the Seventh Framework Program (FP7), ERC Grant 335078 COLOURATOMS.; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 12.712; 2015 IF: 13.592
Call Number c:irua:129686 Serial 3976
Permanent link to this record
 

 
Author Bizindavyi, J.; Verhulst, A.S.; Smets, Q.; Verreck, D.; Sorée, B.; Groeseneken, G.
Title Band-Tails Tunneling Resolving the Theory-Experiment Discrepancy in Esaki Diodes Type A1 Journal article
Year 2018 Publication IEEE journal of the Electron Devices Society Abbreviated Journal Ieee J Electron Devi
Volume 6 Issue 1 Pages 633-641
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) Discrepancies exist between the theoretically predicted and experimentally measured performance of band-to-band tunneling devices, such as Esaki diodes and tunnel field-effect transistors (TFETs). We resolve this discrepancy for highly-doped, direct-bandgap Esaki diodes by successfully calibrating a semi-classical model for high-doping-induced ballistic band-tails tunneling currents at multiple temperatures with two In0.53Ga0.47As Esaki diodes using their SIMS doping profiles, C-V characteristics and their forward-bias current density in the negative differential resistance (NDR) regime. The current swing in the NDR regime is shown not to be linked to the band-tails Urbach energy. We further demonstrate theoretically that the calibrated band-tails contribution is also the dominant band-tails contribution to the subthreshold swing of the corresponding TFETs. Lastly, we verify that the presented procedure is applicable to all direct-bandgap semiconductors by successfully applying it to InAs Esaki diodes in literature.
Address
Corporate Author Thesis
Publisher IEEE, Electron Devices Society Place of Publication New York, N.Y. Editor
Language Wos 000435505000013 Publication Date 2018-05-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2168-6734 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.141 Times cited 5 Open Access
Notes ; J. Bizindavyi gratefully acknowledges FWO-Vlaanderen for a Strategic Basic Research PhD fellowship. ; Approved Most recent IF: 3.141
Call Number UA @ lucian @ c:irua:152097UA @ admin @ c:irua:152097 Serial 5014
Permanent link to this record
 

 
Author Bals, S.; Batenburg, K.J.; Liang, D.; Lebedev, O.; Van Tendeloo, G.; Aerts, A.; Martens, J.A.; Kirschhock, C.E.
Title Quantitative three-dimensional modeling of zeotile through discrete electron tomography Type A1 Journal article
Year 2009 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 131 Issue 13 Pages 4769-4773
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract (up) Discrete electron tomography is a new approach for three-dimensional reconstruction of nanoscale objects. The technique exploits prior knowledge of the object to be reconstructed, which results in an improvement of the quality of the reconstructions. Through the combination of conventional transmission electron microscopy and discrete electron tomography with a model-based approach, quantitative structure determination becomes possible. In the present work, this approach is used to unravel the building scheme of Zeotile-4, a silica material with two levels of structural order. The layer sequence of slab-shaped building units could be identified. Successive layers were found to be related by a rotation of 120°, resulting in a hexagonal space group. The Zeotile-4 material is a demonstration of the concept of successive structuring of silica at two levels. At the first level, the colloid chemical properties of Silicalite-1 precursors are exploited to create building units with a slablike geometry. At the second level, the slablike units are tiled using a triblock copolymer to serve as a mesoscale structuring agent.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000264806300050 Publication Date 2009-03-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.858 Times cited 58 Open Access
Notes Fwo; Iap; Esteem 026019 Approved Most recent IF: 13.858; 2009 IF: 8.580
Call Number UA @ lucian @ c:irua:76393 Serial 2767
Permanent link to this record
 

 
Author Haug, C.; Ruebeling, F.; Kashiwar, A.; Gumbsch, P.; Kübel, C.; Greiner, C.
Title Early deformation mechanisms in the shear affected region underneath a copper sliding contact Type A1 Journal article
Year 2020 Publication Nature Communications Abbreviated Journal Nat Commun
Volume 11 Issue 1 Pages 839-8
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract (up) Dislocation mediated plastic deformation decisively influences the friction coefficient and the microstructural changes at many metal sliding interfaces during tribological loading. This work explores the initiation of a tribologically induced microstructure in the vicinity of a copper twin boundary. Two distinct horizontal dislocation traces lines (DTL) are observed in their interaction with the twin boundary beneath the sliding interface. DTL formation seems unaffected by the presence of the twin boundary but the twin boundary acts as an indicator of the occurring deformation mechanisms. Three concurrent elementary processes can be identified: simple shear of the subsurface area in sliding direction, localized shear at the primary DTL and crystal rotation in the layers above and between the DTLs around axes parallel to the transverse direction. Crystal orientation analysis demonstrates a strong compatibility of these proposed processes. Quantitatively separating these different deformation mechanisms is crucial for future predictive modeling of tribological contacts.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2020-02-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Additional Links UA library record
Impact Factor 16.6 Times cited Open Access
Notes Approved Most recent IF: 16.6; 2020 IF: 12.124
Call Number UA @ admin @ c:irua:183619 Serial 6863
Permanent link to this record
 

 
Author Idrissi, H.; Cordier, P.; Jacob, D.; Walte, N.
Title Dislocations and plasticity of experimentally deformed coesite Type A1 Journal article
Year 2008 Publication European journal of mineralogy Abbreviated Journal Eur J Mineral
Volume 20 Issue 4 Pages 665-671
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (up) Dislocation microstructures have been characterized by transmission electron microscopy in polycrystalline coesite deformed experimentally at 4 GPa, 1200 degrees C. Burgers vectors have been determined by large-angle convergent-beam electron diffraction. Sample orientation was assisted by precession electron diffraction to overcome difficulties arising from pseudo-hexagonal symmetry. The results are explained by using a pseudo-hexagonal setting. We found that most dislocations observed are of the 1/3 < 2 (1) over bar(1) over bar0 > type. No clear glide plane was identified, suggesting that climb is activated under these conditions. This conclusion is supported by the observation of numerous subgrain boundaries. We have also observed some [00011 dislocations. Finally, the C12/cl space group to which coesite belongs being centred, an additional slip system is observed: 1/6[(1) over bar2 (1) over bar3](01 (1) over bar1) (1/2[(1) over bar 10](110) in the monoclinic setting).
Address
Corporate Author Thesis
Publisher Place of Publication Stuttgart Editor
Language Wos 000262891900021 Publication Date 2008-08-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0935-1221; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.362 Times cited 5 Open Access
Notes Approved Most recent IF: 1.362; 2008 IF: 1.220
Call Number UA @ lucian @ c:irua:94604 Serial 733
Permanent link to this record
 

 
Author Wu, Y.; Chen, G.; Yu, J.; Wang, D.; Ma, C.; Li, C.; Pennycook, S.J.; Yan, Y.; Wei, S.-H.
Title Hole-induced spontaneous mutual annihilation of dislocation pairs Type A1 Journal article
Year 2019 Publication The journal of physical chemistry letters Abbreviated Journal J Phys Chem Lett
Volume 10 Issue 23 Pages 7421-7425
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract (up) Dislocations are always observed during crystal growth, and it is usually desirable to reduce the dislocation density in high-quality crystals. Here, the annihilation process of the 30 degrees Shockley partial dislocation pairs in CdTe is studied by first-principles calculations. We found that the dislocations can glide relatively easily due to the weak local bonding. Our systematic study of the slipping mechanism of the dislocations suggests that the energy barrier for the annihilation process is low. Band structure calculations reveal that the band bending caused by the charge transfer between the two dislocation cores depends on the core-core distance. A simple linear model is proposed to describe the mechanism of formation of the dislocation pair. More importantly, we demonstrate that hole injection can affect the core structure, increase the mobility, and eventually trigger a spontaneous mutual annihilation, which could be employed as a possible facile way to reduce the dislocation density.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000501622700017 Publication Date 2019-11-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record
Impact Factor 9.353 Times cited Open Access
Notes Approved Most recent IF: 9.353
Call Number UA @ admin @ c:irua:165068 Serial 6302
Permanent link to this record
 

 
Author Vanschoenwinkel, J.; Lizin, S.; Swinnen, G.; Azadi, H.; Van Passel, S.
Title Solar cooking in Senegalese villages : an application of best-worst scaling Type A1 Journal article
Year 2014 Publication Energy Policy Abbreviated Journal Energ Policy
Volume 67 Issue Pages 447-458
Keywords A1 Journal article; Sociology; Engineering sciences. Technology; Engineering Management (ENM)
Abstract (up) Dissemination programs of nontraditional cookstoves often fail. Nontraditional cookstoves aim to solve problems associated with biomass fuel usage in developing countries. Recent studies do not explain what drives user's cookstove choice. This study therefore builds a holistic framework that centralizes product-specific preferences or needs. The case study identifies product-specific factors that influence rural Senegalese inhabitants to switch to solar cooking, using best worst scaling. Looking at the preferences, the case study classified 126 respondents, in three distinct market segments with different solar cooking expectations. The paper identifies socio-demographic characteristics that explain these differences in the respondents' preferences. Finally, the respondent sample is divided in two groups: solar cooker owners and non-owners. When studied with regard to the same issue, solar cooker owners appear to value benefits of the solar cooker lower than non-owners. This is due to program factors (such as formations, after-sales network) and miscommunication (such as a wrong image of the solar cooker) that highly influenced the respondents' cookstove choice. As a conclusion, solar cookers and solar cooking programs are not always adapted to the needs and requirements of the end-users. Needs-oriented and end-user adopted strategies are necessary in order to successfully implement nontraditional cookstoves programs. (C) 2013 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000332815300043 Publication Date 2014-01-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0301-4215; 1873-6777 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.14 Times cited 10 Open Access
Notes ; The authors thank the VLIR-UOS for their financial support and the Sol Suffit Program for their co-operation during the research. ; Approved Most recent IF: 4.14; 2014 IF: 2.575
Call Number UA @ admin @ c:irua:127544 Serial 6251
Permanent link to this record
 

 
Author Hellemans, K.
Title Laser ablation ICP-MS as a tool for surface analysis in comparison to other elemental analysis methods Type Doctoral thesis
Year 2019 Publication Abbreviated Journal
Volume Issue Pages 229 p.
Keywords Doctoral thesis; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract (up) Dit onderzoek presenteert een overzicht van de mogelijkheden van LA-ICP-MS als een techniek voor kwantitatieve analyse, bepalen van isotoopverhoudingen en elementaire beeldvorming. Hiervoor wordt de techniek zelf voorgesteld en worden de belangrijkste parameters die een invloed hebben op de kwaliteit van een LA-ICP-MS meting beschreven. Voor kwantitieve analyse worden de huidige calibratiestrategieën voor LA-ICP-MS toegelicht, zowel op het vlak van selectie en bereiding van standaarden als op het vlak van dataverwerking. Daarnaast werd een nieuwe calibratiestrategie voorgesteld, gebaseerd op een lineaire combinatie van standaarden. Een case study met de traditionele calibratiestrategie uit de literatuur werd uitgevoerd en vergeleken met data van SEM-EDX om een referentiekader te schetsen voor de performantie van de techniek. In een tweede case study werd onze nieuwe calibratiestrategie toegepast en werd er uitsluitend gebruik gemaakt van LA-ICP-MS, wat uitstekende resultaten opleverde. Met het oog op het bepalen van isotoopverhoudingen, werd er onderzocht wat de limieten zijn van het gebruik van een lage resolutie quadrupool massaspectrometer voor deze bepaling. Dit stelde ons in staat om de te verwachten accuraatheid en precisie in te schatten. De performantie bleek goed genoeg te zijn om weapon-grade plutonium te onderscheiden van global fall-out, zoals het werd aangetoond in de case study omtrent dit onderwerp. Uiteindelijk hebben we ook LA-ICP-MS geëvalueerd als een techniek voor elementaire beeldvorming, waarbij we tevens de meest courante multivariate data analyse hebben beschreven. Om de techniek te plaatsen tegenover andere elementaire technieken, werd een historisch verffragment geanalyseerd dat in het verleden reeds geanalyseerd was met SEM-EDX and μ-XRD. Op die manier konden we de resultaten accuraat vergelijken met de andere technieken.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:160063 Serial 8152
Permanent link to this record
 

 
Author Peeters, B.; Daems, D.; Van der Donck, T.; Delport, F.; Lammertyn, J.
Title Real-time FO-SPR monitoring of solid-phase DNAzyme cleavage activity for cutting-edge biosensing Type A1 Journal article
Year 2019 Publication ACS applied materials and interfaces Abbreviated Journal
Volume 11 Issue 7 Pages 6759-6768
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract (up) DNA nanotechnology has a great potential in biosensor design including nanostructuring of the biosensor surface through DNA origami, target recognition by means of aptamers, and DNA-based signal amplification strategies. In this paper, we use DNA nanotechnology to describe for the first time the concept of real-time solid-phase monitoring of DNAzyme cleavage activity for the detection of specific single-stranded DNA (ssDNA) with a fiber optic surface plasmon resonance (FO-SPR) biosensor. Hereto, we first developed a robust ligation strategy for the functionalization of the FO-SPR biosensing surface with ssDNA-tethered gold nanoparticles, serving as the substrate for the DNAzyme. Next, we established a relation between the SPR signal change, due to the cleavage activity of the 10–23 DNAzyme, and the concentration of the DNAzyme, showing faster cleavage kinetics for higher DNAzyme concentrations. Finally, we implemented this generic concept for biosensing of ssDNA target in solution. Hereto, we designed a DNAzyme–inhibitor complex, consisting of an internal loop structure complementary to the ssDNA target, that releases active DNAzyme molecules in a controlled way as a function of the target concentration. We demonstrated reproducible target detection with a theoretical limit of detection of 1.4 nM, proving that the presented ligation strategy is key to a universal DNAzyme-based FO-SPR biosensing concept with promising applications in the medical and agrofood sector.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000459642200008 Publication Date 2019-01-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:160132 Serial 8457
Permanent link to this record
 

 
Author Dabaghmanesh, S.; Saniz, R.; Neyts, E.; Partoens, B.
Title Sulfur-alloyed Cr2O3: a new p-type transparent conducting oxide host Type A1 Journal article
Year 2017 Publication RSC advances Abbreviated Journal Rsc Adv
Volume 7 Issue 7 Pages 4453-4459
Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (up) Doped Cr2O3 has been shown to be a p-type transparent conducting oxide (TCO). Its conductivity, however, is low. As for most p-type TCOs, the main problem is the high effective hole mass due to flat valence bands. We use first-principles methods to investigate whether one can increase the valence band dispersion (i.e. reduce the hole mass) by anion alloying with sulfur, while keeping the band gap large enough for transparency. The alloying concentrations considered are given by Cr(4)SxO(6-x), with x = 1-5. To be able to describe the electronic properties of these materials accurately, we first study Cr2O3, examining critically the accuracy of different density functionals and methods, including PBE, PBE+U, HSE06, as well as perturbative approaches within the GW approximation. Our results demonstrate that Cr4S2O4 has an optical band gap of 3.08 eV and an effective hole mass of 1.8 m(e). This suggests Cr4S2O4 as a new p-type TCO host candidate.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000393751300030 Publication Date 2017-01-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.108 Times cited 9 Open Access OpenAccess
Notes ; This work was supported by SIM vzw, Technologiepark 935, BE-9052 Zwijnaarde, Belgium, within the InterPoCo project of the H-INT-S horizontal program. The computational resources and services used in this work were provided by the Vlaams Supercomputer Centrum (VSC) and the HPC infrastructure of the University of Antwerp. ; Approved Most recent IF: 3.108
Call Number UA @ lucian @ c:irua:141543 Serial 4528
Permanent link to this record
 

 
Author Nematollahi, P.; Neyts, E.C.
Title Distribution pattern of metal atoms in bimetal-doped pyridinic-N₄ pores determines their potential for electrocatalytic N₂ reduction Type A1 Journal article
Year 2022 Publication Journal Of Physical Chemistry A Abbreviated Journal J Phys Chem A
Volume 126 Issue 20 Pages 3080-3089
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (up) Doping two single transition-metal (TM) atoms on a substrate host opens numerous possibilities for catalyst design. However, what if the substrate contains more than one vacancy site? Then, the combination of two TMs along with their distribution patterns becomes a design parameter potentially complementary to the substrate itself and the bimetal composition. In this study, we investigate ammonia synthesis under mild electrocatalytic conditions on a transition-metal-doped porous C24N24 catalyst using density functional theory (DFT). The TMs studied include Ti, Mn, and Cu in a 2:4 dopant ratio (Ti2Mn4@C24N24 and Ti2Cu4@N-24(24)). Our computations show that a single Ti atom in both catalysts exhibits the highest selectivity for N-2 fixation at ambient conditions. This work is a good theoretical model to establish the structure-activity relationship, and the knowledge earned from the metal-N-4 moieties may help studies of related nanomaterials, especially those with curved structures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000804119800003 Publication Date 2022-05-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1089-5639; 1520-5215 ISBN Additional Links UA library record; WoS full record
Impact Factor 2.9 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 2.9
Call Number UA @ admin @ c:irua:189023 Serial 7146
Permanent link to this record
 

 
Author Sharafi, L.; Zarafshani, K.; Keshavarz, M.; Azadi, H.; Van Passel, S.
Title Farmers' decision to use drought early warning system in developing countries Type A1 Journal article
Year 2021 Publication Science Of The Total Environment Abbreviated Journal Sci Total Environ
Volume 758 Issue Pages 142761
Keywords A1 Journal article; Engineering Management (ENM)
Abstract (up) Drought is a persistent, sluggish natural disaster in developing countries that has generated a financial burden and an unstable climate. Farmers should adopt early warning systems (EWS) in their strategies for monitoring drought to reduce its serious consequences. However, farmers in developing countries are reluctant to use EWS as their management strategies. Hence, the aim of this study was to investigate the decision of farmers to use climate knowledge through the model of farming activity in Kermanshah Township, Iran. A surveyor questionnaire was used to gather data from 370 wheat farmers using random sampling methods inmulti-stage clusters. Results revealed that the decision to use climate information is affected by personal factors, attitude towards climate information, objectives of using climate information, and external/physical farming factors. The result of this study has implications for drought management practitioners. To be specific, the results can aid policymakers to design early alert programs to minimize the risk of drought and thus move from conventional to climate smart agriculture. (C) 2020 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000605623800001 Publication Date 2020-10-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.9 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 4.9
Call Number UA @ admin @ c:irua:176030 Serial 6924
Permanent link to this record
 

 
Author Zarafshani, K.; Sharafi, L.; Azadi, H.; Van Passel, S.
Title Vulnerability assessment models to drought : toward a conceptual framework Type A1 Journal article
Year 2016 Publication Sustainability Abbreviated Journal Sustainability-Basel
Volume 8 Issue 6 Pages 1-21
Keywords A1 Journal article; Engineering Management (ENM)
Abstract (up) Drought is regarded as a slow-onset natural disaster that causes inevitable damage to water resources and to farm life. Currently, crisis management is the basis of drought mitigation plans, however, thus far studies indicate that effective drought management strategies are based on risk management. As a primary tool in mitigating the impact of drought, vulnerability assessment can be used as a benchmark in drought mitigation plans and to enhance farmers ability to cope with drought. Moreover, literature pertaining to drought has focused extensively on its impact, only awarding limited attention to vulnerability assessment as a tool. Therefore, the main purpose of this paper is to develop a conceptual framework for designing a vulnerability model in order to assess farmers level of vulnerability before, during and after the onset of drought. Use of this developed drought vulnerability model would aid disaster relief workers by enhancing the adaptive capacity of farmers when facing the impacts of drought. The paper starts with the definition of vulnerability and outlines different frameworks on vulnerability developed thus far. It then identifies various approaches of vulnerability assessment and finally offers the most appropriate model. The paper concludes that the introduced model can guide drought mitigation programs in countries that are impacted the most by drought.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000378776800084 Publication Date 2016-06-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2071-1050 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.789 Times cited 15 Open Access
Notes ; ; Approved Most recent IF: 1.789
Call Number UA @ admin @ c:irua:134331 Serial 6278
Permanent link to this record
 

 
Author Ysebaert, T.; Samson, R.; Denys, S.
Title Revisiting dry deposition modelling of particulate matter on vegetation at the microscale Type A1 Journal article
Year 2023 Publication Air quality, atmosphere & health Abbreviated Journal
Volume Issue Pages
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract (up) Dry deposition is an important process determining pollutant concentrations, especially when studying the influence of urban green infrastructure on particulate matter (PM) levels in cities. Computational fluid dynamics (CFD) models of PM capture by vegetation are useful tools to increase their applicability. The meso-scale models of Zhang et al. (Atmos Environ 35:549-560, 2001) and Petroff and Zhang (Geosci Model Dev 3(2):753-769, 2010) have often been adopted in CFD models, however a comparison of these models with measurements including all PM particle sizes detrimental to health has been rarely reported and certainly not for green wall species. This study presents dry deposition experiments on real grown Hedera helix in a wind tunnel setup with wind speeds from 1 to 4 m s(-1) and PM consisting of a mixture of soot (0.02 – 0.2 mu mu m) and dust particles (0.3 – 10 mu mu m). Significant factors determining the collection efficiency (%) were particle diameter and wind speed, but relative air humidity and the type of PM (soot or dust) did not have a significant influence. Zhang's model outperformed Petroff's model for particles < 0.3 mu mu m, however the inclusion of turbulent impaction in Petroff's model resulted in better agreement with the measurements for particles > 2 – 3 mu mu m. The optimised model had an overall root-mean-square-error of similar to 4% for collection efficiency (CE) and 0.4 cm s-1 for deposition velocity (nu d), which was shown to be highly competitive against previously described models. It can thus be used to model PM deposition on other plant species, provided the correct parameterisation of the drag by this species. A detailed description of the spatial distribution of the vegetation could solve the underestimation for particle sizes of 0.3 – 2 mu mu m.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001125841300001 Publication Date 2023-12-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1873-9318; 1873-9326 ISBN Additional Links UA library record; WoS full record
Impact Factor 5.1 Times cited Open Access
Notes Approved Most recent IF: 5.1; 2023 IF: 3.184
Call Number UA @ admin @ c:irua:201986 Serial 9086
Permanent link to this record
 

 
Author Rojas, C.M.; Van Grieken, R.E.; Laane, R.W.
Title Comparison of 3 dry deposition models applied to field-measurements in the Southern Bight of the North-Sea Type A1 Journal article
Year 1993 Publication Atmospheric environment Abbreviated Journal
Volume 27 Issue 3 Pages 363-370
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract (up) Dry deposition velocities have been calculated using three different approaches. Turbulent wind profile theory has been used to predict the drag coefficient, wind speed and friction velocity at 10 m height when the wind speed is measured at a higher altitude. The resulting parameters were introduced in a two-layer deposition model. The second approach was the well-known model of Slinn and Slinn (1980, Atmospheric Environment 14, 1013-1016), whereas the third corresponded to the model published by Williams (1982, Atmospheric Environment 16, 1933 1938). Results point to clear differences. However, in a field experiment carried out at the Southern Bight of the North Sea, all three approaches show relatively comparable results. The role played by the size distribution of atmospheric particulate matter is essential. In our case any of the three models could have given satisfactory outcomes taking into account the wide spread of the experimental results cited in the literature for the same airshed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos A1993KQ75200008 Publication Date 2003-08-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-6981 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:100018 Serial 7690
Permanent link to this record
 

 
Author Herzog, M.J.; Gauquelin, N.; Esken, D.; Verbeeck, J.; Janek, J.
Title Increased Performance Improvement of Lithium-Ion Batteries by Dry Powder Coating of High-Nickel NMC with Nanostructured Fumed Ternary Lithium Metal Oxides Type A1 Journal article
Year 2021 Publication ACS applied energy materials Abbreviated Journal ACS Appl. Energy Mater.
Volume 4 Issue 9 Pages 8832-8848
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract (up) Dry powder coating is an effective approach to protect the surfaces of layered cathode active materials (CAMs) in lithium-ion batteries. Previous investigations indicate an incorporation of lithium ions in fumed Al2O3, ZrO2, and TiO2 coatings on LiNi0.7Mn0.15Co0.15O2 during cycling, improving the cycling performance. Here, this coating approach is transferred for the first time to fumed ternary LiAlO2, Li4Zr3O8, and Li4Ti5O12 and directly compared with their lithium-free equivalents. All materials could be processed equally and their nanostructured small aggregates accumulate on the CAM surfaces to quite homogeneous coating layers with a certain porosity. The LiNixMnyCozO2 (NMC) coated with lithium-containing materials shows an enhanced improvement in overall capacity, capacity retention, rate performance, and polarization behavior during cycling, compared to their lithium-free analogues. The highest rate performance was achieved with the fumed ZrO2 coating, while the best long-term cycling stability with the highest absolute capacity was obtained for the fumed LiAlO2-coated NMC. The optimal coating agent for NMC to achieve a balanced system is fumed Li4Ti5O12, providing a good compromise between high rate capability and good capacity retention. The coating agents prevent CAM particle cracking and degradation in the order LiAlO2 ≈ Al2O3 > Li4Ti5O12 > Li4Zr3O8 > ZrO2 > TiO2. A schematic model for the protection and electrochemical performance enhancement of high-nickel NMC with fumed metal oxide coatings is sketched. It becomes apparent that physical and chemical characteristics of the coating significantly influence the performance of NMC. A high degree of coating-layer porosity is favorable for the rate capability, while a high coverage of the surface, especially in vulnerable grain boundaries, enhances the long-term cycling stability and improves the cracking behavior of NMCs. While zirconium-containing coatings possess the best chemical properties for high rate performances, aluminum-containing coatings feature a superior chemical nature to protect high-nickel NMCs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000703338600018 Publication Date 2021-09-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2574-0962 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 15 Open Access OpenAccess
Notes For his support in scanning electron microscopy analysis, the authors thank Erik Peldszus. N. G. and J. V. acknowledge funding from GOA project “Solarpaint” of the University of Antwerp and from the Flemish Research Fund (FWO) project G0F1320N. The Qu-Ant-EM microscope and the direct electron detector were partly funded by the Hercules fund from the Flemish Government Approved Most recent IF: NA
Call Number EMAT @ emat @c:irua:183949 Serial 6823
Permanent link to this record
 

 
Author Cleiren, E.; Heijkers, S.; Ramakers, M.; Bogaerts, A.
Title Dry Reforming of Methane in a Gliding Arc Plasmatron: Towards a Better Understanding of the Plasma Chemistry Type A1 Journal article
Year 2017 Publication Chemsuschem Abbreviated Journal Chemsuschem
Volume 10 Issue 20 Pages 4025-4036
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (up) Dry reforming of methane (DRM) in a gliding arc plasmatron is studied for different CH4 fractions in the mixture. The CO2 and CH4 conversions reach their highest values of approximately 18 and 10%, respectively, at 25% CH4 in the gas mixture, corresponding to an overall energy cost of 10 kJ L@1 (or 2.5 eV per molecule) and an energy efficiency of 66%. CO and H2 are the major products, with the formation of smaller fractions of C2Hx (x=2, 4, or 6) compounds and H2O. A chemical kinetics model is used to investigate the underlying chemical processes. The calculated CO2 and CH4 conversion and the energy efficiency are in good agreement with the experimental data. The model calculations reveal that the reaction of CO2 (mainly at vibrationally excited levels) with H radicals is mainly responsible for

the CO2 conversion, especially at higher CH4 fractions in the mixture, which explains why the CO2 conversion increases with increasing CH4 fraction. The main process responsible for CH4 conversion is the reaction with OH radicals. The excellent energy efficiency can be explained by the non-equilibrium character of the plasma, in which the electrons mainly activate the gas molecules, and by the important role of the vibrational kinetics of CO2. The results demonstrate that a gliding arc plasmatron is very promising for DRM.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000413565100012 Publication Date 2017-10-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.226 Times cited 23 Open Access OpenAccess
Notes Fonds Wetenschappelijk Onderzoek, G.0383.16N ; Federaal Wetenschapsbeleid; Approved Most recent IF: 7.226
Call Number PLASMANT @ plasmant @c:irua:146665 Serial 4759
Permanent link to this record
 

 
Author Snoeckx, R.; Zeng, Y.X.; Tu, X.; Bogaerts, A.
Title Plasma-based dry reforming : improving the conversion and energy efficiency in a dielectric barrier discharge Type A1 Journal article
Year 2015 Publication RSC advances Abbreviated Journal Rsc Adv
Volume 5 Issue 5 Pages 29799-29808
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (up) Dry reforming of methane has gained significant interest over the years. A novel reforming technique with great potential is plasma technology. One of its drawbacks, however, is energy consumption. Therefore, we performed an extensive computational study, supported by experiments, aiming to identify the influence of the operating parameters (gas mixture, power, residence time and frequency) of a dielectric barrier discharge plasma on the conversion and energy efficiency, and to investigate which of these parameters lead to the most promising results and whether these are eventually sufficient for industrial implementation. The best results, in terms of both energy efficiency and conversion, are obtained at a specific energy input (SEI) of 100 J cm−3, a 1090 CH4CO2 ratio, 10 Hz, a residence time of 1 ms, resulting in a total conversion of 84% and an energy efficiency of 8.5%. In general, increasing the CO2 content in the gas mixture leads to a higher conversion and energy efficiency. The SEI couples the effect of the power and residence time, and increasing the SEI always results in a higher conversion, but somewhat lower energy efficiencies. The effect of the frequency is more complicated: we observed that the product of frequency (f) and residence time (τ), being a measure for the total number of micro-discharge filaments which the gas molecules experience when passing through the reactor, was critical. For most cases, a higher number of filaments yields higher values for conversion and energy efficiency. To benchmark our model predictions, we also give an overview of measured conversions and energy efficiencies reported in the literature, to indicate the potential for improvement compared to the state-of-the art. Finally, we identify the limitations as well as the benefits and future possibilities of plasma technology.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000352789500026 Publication Date 2015-03-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.108 Times cited 67 Open Access
Notes Approved Most recent IF: 3.108; 2015 IF: 3.840
Call Number c:irua:132577 Serial 2629
Permanent link to this record
 

 
Author Wang, Y.-T.; Wu, S.-M.; Luo, G.-Q.; Tian, G.; Wang, L.-Y.; Xiao, S.-T.; Wu, J.-X.; Wu, A.; Wu, K.-J.; Lenaerts, S.; Yang, X.-Y.
Title A core-shell confined Pd@TS-1 @meso-SiO2 catalyst and its synergy effect on styrene oxidation Type A1 Journal article
Year 2023 Publication Applied catalysis : A : general Abbreviated Journal
Volume 650 Issue Pages 119016-6
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract (up) Dual active sites from acidic zeolite and Pd are not only capable of catalyzing multiple type of reactions, but could also generate unique functions owing to the synergy between metals and acidic sites. However, there are only a few reports on the investigation of the synergy of acid/Pd dual sites in TS-1. Herein, TS-1 confined Pd catalyst with mesoporous silica shell (Pd@TS-1 @meso-SiO2) has been successfully synthesized and its synergy effect contributes to the enhanced conversion rate (19.2%) and selectivity (74.7%) on styrene oxidation. The interaction between Pd and TS-1 has been investigated by EPR and 1H NMR techniques, the experimental measurements show an obvious change in the signal distribution of weakly acidic terminal hydroxyls and hydrogen-bonding silanols. The schematic illustration of selective styrene oxidation in the model of Pd@TS-1 @meso-SiO2 is proposed to clarify the synergistic effect on styrene oxidation between TS-1 and Pd nanoparticles at an atomic-/nanoscale.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001015700000001 Publication Date 2022-12-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-860x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.5 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 5.5; 2023 IF: 4.339
Call Number UA @ admin @ c:irua:197805 Serial 8826
Permanent link to this record