|   | 
Details
   web
Records
Author van der Linden, V.; Cosyns, P.; Schalm, O.; Cagno, S.; Nys, K.; Janssens, K.; Nowak, A.; Wagner, B.; Bulska, E.
Title Deeply coloured and black glass in the Northern provinces of the Roman Empire : differences and similarities in chemical composition before and after AD 150 Type A1 Journal article
Year 2009 Publication Archaeometry Abbreviated Journal Archaeometry
Volume 51 Issue 5 Pages 822-844
Keywords A1 Journal article; History; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract (down) In this work we attempt to elucidate the chronological and geographical origin of deeply coloured and black glass dating between 100 bc and ad 300 on the basis of their major and trace element compositions. Samples from the western and eastern parts of the Roman Empire were analysed. Analytical data were obtained by means of a scanning electron microscope – energy-dispersive system (SEM-EDS, 63 samples analysed) and laser ablation – inductively coupled plasma – mass spectrometry (LA-ICP-MS, 41 samples analysed). Among the glass fragments analysed, dark brown, dark purple and dark green hues could be distinguished. Only among the dark green fragments could a clear compositional distinction be observed between fragments dated to the periods before and after ad 150. In the early samples (first century bc to first century ad), iron, responsible for the green hue, was introduced by using impure sand containing relatively high amounts of Ti. In contrast, a Ti-poor source of iron was employed, containing Sb, Co and Pb in trace quantities, in order to obtain the dark green colour in the later glass samples. The analytical results obtained by combining SEM-EDS and LA-ICP-MS are therefore consistent with a differentiation of glassmaking recipes, detectable in glass composition, occurring in the period around ad 150.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000269728600009 Publication Date 2008-11-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-813x; 1475-4754 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.47 Times cited 39 Open Access
Notes Approved Most recent IF: 1.47; 2009 IF: 1.355
Call Number UA @ admin @ c:irua:94510 Serial 5568
Permanent link to this record
 

 
Author Verbruggen, S.W.; Lenaerts, S.; Denys, S.
Title Analytic versus CFD approach for kinetic modeling of gas phase photocatalysis Type A1 Journal article
Year 2015 Publication Chemical engineering journal Abbreviated Journal Chem Eng J
Volume 262 Issue Pages 1-8
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract (down) In this work two methods for determining the LangmuirHinshelwood kinetic parameters for a slit-shaped flat bed photocatalytic reactor are compared: an analytic mass transfer based model adapted from literature and a computational fluid dynamics (CFD) approach that was used in conjunction with a simplex optimization routine. Despite the differences between both approaches, similar values for the kinetic parameters and similar trends in terms of their UV intensity dependence were found. Using an effectiveness-NTU (number of transfer units) approach, the analytic mass transfer based method could quantify the relative contributions of the rate limiting steps through a reaction effectiveness parameter. The numeric CFD approach on the other hand could yield the two kinetic parameters that determine the photocatalytic reaction rate simultaneously. Furthermore, it proved to be more accurate as it accounts for the spatial variation of flow rate, reaction rate and concentrations at the surface of the photocatalyst. We elaborate this dual kinetic analysis with regard to the photocatalytic degradation of acetaldehyde in air over a silicon wafer coated with a layer of TiO2 P25 (Evonik) and study the usefulness and limitations of both strategies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000347577700001 Publication Date 2014-09-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.216 Times cited 30 Open Access
Notes ; S.W.V. acknowledges the Research Foundation of Flanders (FWO) for financial support. ; Approved Most recent IF: 6.216; 2015 IF: 4.321
Call Number UA @ admin @ c:irua:119724 Serial 5927
Permanent link to this record
 

 
Author Vazquez, C.; Martin Palacios, O.; Darchuk, L.; Marco Parra, L.-M.
Title Compositional study of prehistoric pigments (Carriqueo rock shelter, Argentina) by synchrotron radiation X-ray diffraction Type A1 Journal article
Year 2010 Publication Powder diffraction Abbreviated Journal
Volume 25 Issue 3 Pages 264-269
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract (down) In this work synchrotron radiation X-ray diffraction technique was successfully applied for the analysis of pigments found in excavation at Carriqueo rock shelter, Neuquen, Argentina. The pigment samples of orange, red, and brown shades were collected from different levels of this archaeological site and compared with a suspected source of provenance (La Oficina creek). X-ray diffraction patterns of several yellowish, reddish, and red pigments showed the presence of haematite, goethite, kaolinite, and quartz. The majority of Carriqueo collected samples belonged to the same group of the suspected source, having haematite and quartz as main crystalline phases. The results indicate that the raw material from La Oficina is the source of most of the pigments found at Carriqueo. The present work helps us to understand the strategy of supplying raw materials by human groups in the North Patagonia region. (C) 2010 International Centre for Diffraction Data. [DOI: 10.1154/1.3478884]
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000282386500009 Publication Date 2010-09-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0885-7156 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:95582 Serial 7717
Permanent link to this record
 

 
Author Lenaerts, S.; Roggen, J.; Maes, G.
Title FT-IR characterization of tin dioxide gas sensor materials under working conditions Type A1 Journal article
Year 1995 Publication Spectrochimica acta: part A: molecular and biomolecular spectroscopy Abbreviated Journal
Volume 51 Issue 5 Pages 883-894
Keywords A1 Journal article
Abstract (down) In this work self-supporting tin dioxide disks are characterized using FT-IR spectroscopy in the presence of a reducing gas in air, and in different O2/N2 mixtures at temperatures varying from room temperature up to 450°C. Every factor inducing a change in the oxygen content of the gas atmosphere above the tin dioxide, as for instance a temperature change, a surface reaction or adsorption of another species, induces a broad, intense IR absorption band with discrete weak bands superimposed on it. This broad absorption is assigned to the electronic transition from a native donor level, the oxygen vacancy in the bulk of the domain, to the conduction band of the tin dioxide material. For the interpretation of the narrow, superimposed absorptions, two hypotheses remain. The results demonstrate that FT-IR spectroscopy is an extremely suitable technique for the characterization of semiconducting metal oxide sensors, since it allows to follow in situ the processes in the bulk, at the surface and in the surrounding gas atmosphere of the sensor material at working temperature as well as in the presence of reducing gases in air.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos A1995RJ99900014 Publication Date 2003-04-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1386-1425 ISBN Additional Links UA library record; WoS full record; WoS citing articles; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:82015 Serial 5954
Permanent link to this record
 

 
Author Zhang, Q.-Z.; Liu, Y.-X.; Jiang, W.; Bogaerts, A.; Wang, Y.-N.
Title Heating mechanism in direct current superposed single-frequency and dual-frequency capacitively coupled plasmas Type A1 Journal article
Year 2013 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 22 Issue 2 Pages 025014-25018
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (down) In this work particle-in-cell/Monte Carlo collision simulations are performed to study the heating mechanism and plasma characteristics in direct current (dc) superposed radio-frequency (RF) capacitively coupled plasmas, operated both in single-frequency (SF) and dual-frequency (DF) regimes. An RF (60/2 MHz) source is applied on the bottom electrode to sustain the discharge, and a dc source is fixed on the top electrode. The heating mechanism appears to be very different in dc superposed SF and DF discharges. When only a single source of 60 MHz is applied, the plasma bulk region is reduced by the dc source, thus the ionization rate and hence the electron density decrease with rising dc voltage. However, when a DF source of 60 and 2 MHz is applied, the electron density can increase upon addition of a dc voltage, depending on the gap length and applied dc voltage. This is explained from the spatiotemporal ionization rates in the DF discharge. In fact, a completely different behavior is observed for the ionization rate in the two half-periods of the LF source. In the first LF half-period, the situation resembles the dc superposed SF discharge, and the reduced plasma bulk region due to the negative dc bias results in a very small effective discharge area and a low ionization rate. On the other hand, in the second half-period, the negative dc bias is to some extent counteracted by the LF voltage, and the sheath close to the dc electrode becomes particularly thin. Consequently, the amplitude of the high-frequency sheath oscillations at the top electrode is largely enhanced, while the LF sheath at the bottom electrode is in its expanding phase and can thus well confine the high-energy electrons. Therefore, the ionization rate increases considerably in this second LF half-period. Furthermore, in addition to the comparison between SF and DF discharges and the effect of gap length and dc voltage, the effect of secondary electrons is examined.
Address
Corporate Author Thesis
Publisher Institute of Physics Place of Publication Bristol Editor
Language Wos 000317275400016 Publication Date 2013-03-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 9 Open Access
Notes Approved Most recent IF: 3.302; 2013 IF: 3.056
Call Number UA @ lucian @ c:irua:106877 Serial 1413
Permanent link to this record
 

 
Author Pauwels, D.; Pilehvar, S.; Geboes, B.; Hubin, A.; De Wael, K.; Breugelmans, T.
Title A new multisine-based impedimetric aptasensing platform Type A1 Journal article
Year 2016 Publication Electrochemistry communications Abbreviated Journal Electrochem Commun
Volume 71 Issue Pages 23-27
Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Applied Electrochemistry & Catalysis (ELCAT)
Abstract (down) In this work an aptamer-based biosensor is combined with a multisine electrochemical impedance spectroscopy sensing methodology into a novel and promising biosensing strategy. Employing a multisine instead of a traditional single sine measuring method allows the detection and quantification of parameters that provide information about the accuracy and reliability of the results, such as noise and distortions. This does not only lead to a shorter measurement time, but it also enables an easy and fast evaluation of the quality of the data and fitting, leading to more accurate results.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000383445000006 Publication Date 2016-07-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1388-2481; 1873-1902 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.396 Times cited 1 Open Access
Notes ; ; Approved Most recent IF: 4.396
Call Number UA @ admin @ c:irua:134765 Serial 5746
Permanent link to this record
 

 
Author Monico, L.; Rosi, F.; Miliani, C.; Daveri, A.; Brunetti, B.G.
Title Non-invasive identification of metal-oxalate complexes on polychrome artwork surfaces by reflection mid-infrared spectroscopy Type A1 Journal article
Year 2013 Publication Spectrochimica acta: part A: molecular and biomolecular spectroscopy Abbreviated Journal
Volume 116 Issue Pages 270-280
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract (down) In this work a reflection mid-infrared spectroscopy study of twelve metal-oxalate complexes, of interest in art conservation science as alteration compounds, was performed. Spectra of the reference materials highlighted the presence of derivative-like and/or inverted features for the fundamental vibrational modes as result of the main contribution from the surface component of the reflected light. In order to provide insights in the interpretation of theses spectral distortions, reflection spectra were compared with conventional transmission ones. The Kramers-Kronig (KK) algorithm, employed to correct for the surface reflection distortions, worked properly only for the derivative-like bands. Therefore, to pay attention to the use of this algorithm when interpreting the reflection spectra is recommended. The outcome of this investigation was exploited to discriminate among different oxalates on thirteen polychrome art-works analyzed in situ by reflection mid-infrared spectroscopy. The visualization of the v(s)(CO) modes (1400-1200 cm(-1)) and low wavenumber bands (below 900 cm(-1)) in the raw reflection profiles allowed Ca, Cu and Zn oxalates to be identified. Further information about the speciation of different hydration forms of calcium oxalates were obtained by using the KK transform. The work proves reflection mid-infrared spectroscopy to be a reliable and sensitive spectro-analytical method for identifying and mapping different metal-oxalate alteration compounds on the surface of artworks, thus providing conservation scientists with a non-invasive tool to obtain information on the state of conservation and causes of alteration of artworks. (C) 2013 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000326207900035 Publication Date 2013-07-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1386-1425 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:112701 Serial 8313
Permanent link to this record
 

 
Author Bogaerts, A.; Aghaei, M.
Title Inductively coupled plasma-mass spectrometry: insights through computer modeling Type A1 Journal article
Year 2017 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom
Volume 32 Issue 32 Pages 233-261
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (down) In this tutorial review paper, we illustrate how computer modeling can contribute to a better insight in inductively coupled plasma-mass spectrometry (ICP-MS). We start with a brief overview on previous efforts, studying the fundamentals of the ICP and ICP-MS, with main focus on previous modeling activities. Subsequently, we explain in detail the model that we developed in previous years, and we show typical calculation results, illustrating the plasma characteristics, gas flow patterns and the sample transport, evaporation and ionization. We also present the effect of various experimental parameters, such as operating conditions, geometrical aspects and sample characteristics, to illustrate how modeling can help to elucidate the optimal conditions for improved analytical performance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000395529800002 Publication Date 2016-12-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.379 Times cited 14 Open Access OpenAccess
Notes The authors are very grateful to H. Lindner for the initial model development and for the many interesting discussions. They also gratefully acknowledge nancial support from the Fonds voor Wetenschappelijk Onderzoek (FWO; Grant number 6713). The calculations were carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 3.379
Call Number PLASMANT @ plasmant @ c:irua:140074 Serial 4416
Permanent link to this record
 

 
Author Gonzalez Garcia, A.
Title Tuning the properties of group III-As in the thinnest limit : a theoretical study of single layer and 2D-heterostructures Type Doctoral thesis
Year 2021 Publication Abbreviated Journal
Volume Issue Pages xvii, 175 p.
Keywords Doctoral thesis; Condensed Matter Theory (CMT)
Abstract (down) In this thesis, a first-principles research to tune the physical properties of group III-V materials in the thinnest limit is carried out. Among the different methods to tune the mechanical, electronic and magnetic properties of these graphene related materials, we use: two-dimensional (2D) multilayers, straintronics, hydrogen functionalization, and transition metal adsorption. The first part of this research is devoted to a complete characterization of the structural, electronic, mechanical and vibrational properties of 2D group III-As monolayers, obtained from density functional theory. Our findings are used to understand the contribution of the
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:182959 Serial 7040
Permanent link to this record
 

 
Author Vargas Paredes, A.A.
Title Emergent phenomena in superconductors in presence of intraband and cross-band pairing Type Doctoral thesis
Year 2020 Publication Abbreviated Journal
Volume Issue Pages 142 p.
Keywords Doctoral thesis; Condensed Matter Theory (CMT)
Abstract (down) In this thesis we investigate the emergence of new phenomena in multigap superconductors and multicomponent Ginzburg-Landau theories in the presence of intraband and cross-band pairing. The first part contains a review of emergent phenomena in superconductors with only intraband pairing, in particular the mechanism behind gap resonances which are accompanied by Higgs and Leggett modes. Then we study the gap resonances induced by two-dimensional quantum confinement and describe its spatial profile using the Bogoliubov-de Gennes equations. In the second part we describe the conditions where the cross-band pair formation is feasible. Using the formalism of Green functions we obtain the equations governing the interplay between intraband and cross-band pairing. Also, we derived the Ginzburg-Landau equations considering both intraband and cross-band pairing. Finally, we describe the crossover between the intraband-dominated and crossband-dominated regimes. These two are delimited by a tendency towards a gapless state. When a magnetic field is applied close to the gapless state, we found new arrangements of vortices like square lattices, stripes, labyrinths or of vortex clusters. The experimental signatures and consequences of crosspairing are discussed for MgB2 and Ba0.6K0.4Fe2As2.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:165865 Serial 7899
Permanent link to this record
 

 
Author Reyntjens, P.; Van de Put, M.; Vandenberghe, W.G.; Sorée, B.
Title Ultrascaled graphene-capped interconnects : a quantum mechanical study Type P1 Proceeding
Year 2023 Publication Proceedings of the IEEE ... International Interconnect Technology Conference T2 – IEEE International Interconnect Technology Conference (IITC) / IEEE, Materials for Advanced Metallization Conference (MAM), MAY 22-25, 2023, Dresden, Germany Abbreviated Journal
Volume Issue Pages 1-3
Keywords P1 Proceeding; Condensed Matter Theory (CMT)
Abstract (down) In this theoretical study, we assess the impact of a graphene capping layer on the resistivity of defective, extremely scaled interconnects. We investigate the effect of graphene capping on the electronic transport in ultrascaled interconnects, in the presence of grain boundary defects in the metal layer. We compare the results obtained using our quantum mechanical model to a simple parallel-conductor model and find that the parallel-conductor model does not capture the effect of the graphene cap correctly. At 0.5 nm metal thickness, the parallel-conductor model underestimates the conductivity by 3.0% to 4.0% for single-sided and double sided graphene capping, respectively.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001027381700006 Publication Date 2023-06-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 979-83-503-1097-9 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:198343 Serial 8949
Permanent link to this record
 

 
Author Wendelen, W.; Autrique, D.; Bogaerts, A.
Title Space charge limited electron emission from a Cu surface under ultrashort pulsed laser irradiation Type A1 Journal article
Year 2010 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 96 Issue 5 Pages 1-3
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (down) In this theoretical study, the electron emission from a copper surface under ultrashort pulsed laser irradiation is investigated using a one-dimensional particle in cell model. Thermionic emission as well as multiphoton photoelectron emission were taken into account. The emitted electrons create a negative space charge above the target; consequently the generated electric field reduces the electron emission by several orders of magnitude. The simulations indicate that the space charge effect should be considered when investigating electron emission related phenomena in materials under ultrashort pulsed laser irradiation of metals.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000274319500021 Publication Date 2010-02-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 22 Open Access
Notes Approved Most recent IF: 3.411; 2010 IF: 3.841
Call Number UA @ lucian @ c:irua:80995 Serial 3059
Permanent link to this record
 

 
Author Wendelen, W.; Autrique, D.; Bogaerts, A.
Title Space charge limited electron emission from a Cu surface under ultrashort pulsed laser irradiation Type A1 Journal article
Year 2010 Publication AIP conference proceedings Abbreviated Journal
Volume 1278 Issue Pages 407-415
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (down) In this theoretical study, the electron emission from a copper surface under ultrashort pulsed laser irradiation is investigated using a one dimensional particle in cell model. Thermionic emission as well as multi-photon photoelectron emission were taken into account. The emitted electrons create a negative space charge above the target, consequently the generated electric field reduces the electron emission by several orders of magnitude. The simulations indicate that the space charge effect should be considered when investigating electron emission related phenomena in materials under ultrashort pulsed laser irradiation of metals.the word abstract, but do replace the rest of this text. ©2010 American Institute of Physics
Address
Corporate Author Thesis
Publisher Place of Publication New York Editor
Language Wos 000287183900042 Publication Date 2010-10-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:88899 Serial 3058
Permanent link to this record
 

 
Author Worobiec, A.; Zwozdziak, A.; Sówka, I.; Zwozdziak, J.; Stefaniak, E.A.; Buczyńska, A.; Krata, A.; van Meel, K.; Van Grieken, R.; Górka, M.; Jedrysek, M.-O.
Title Historical changes in air pollution in the tri-border region of Poland, Czech Republic and Germany Type A1 Journal article
Year 2008 Publication Environment protection engineering Abbreviated Journal
Volume 34 Issue 4 Pages 81-90
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Laboratory Experimental Medicine and Pediatrics (LEMP)
Abstract (down) In this study, we show the trends in the concentration Of SO2 and particulate matter (PM) in two health resorts, located in the tri-border region of Poland, Germany and Czech Republic. We analyze the annual time series and the seasonal variability of PM concentration for the months of July and February over the period of 1996-2007. Additionally, in July 2006, we measured the mean 24-hour concentration of PM and the content of heavy metals (by EDXRF analysis). We prove that nowadays air pollution in this region has diminished to a large extent as compared to the 90s of the last century. In Cieplice, the local influence is still evident; while Czerniawa is exposed to a periodical advection of polluted air from regional sources.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000262019500010 Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0324-8828 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:72491 Serial 8044
Permanent link to this record
 

 
Author Yagmurcukardes, M.; Sahin, H.; Kang, J.; Torun, E.; Peeters, F.M.; Senger, R.T.
Title Pentagonal monolayer crystals of carbon, boron nitride, and silver azide Type A1 Journal article
Year 2015 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 118 Issue 118 Pages 104303
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) In this study, we present a theoretical investigation of structural, electronic, and mechanical properties of pentagonal monolayers of carbon (p-graphene), boron nitride (p-B2N4 and p-B4N2), and silver azide (p-AgN3) by performing state-of-the-art first principles calculations. Our total energy calculations suggest feasible formation of monolayer crystal structures composed entirely of pentagons. In addition, electronic band dispersion calculations indicate that while p-graphene and p-AgN3 are semiconductors with indirect bandgaps, p-BN structures display metallic behavior. We also investigate the mechanical properties (in-plane stiffness and the Poisson's ratio) of four different pentagonal structures under uniaxial strain. p-graphene is found to have the highest stiffness value and the corresponding Poisson's ratio is found to be negative. Similarly, p-B2N4 and p-B4N2 have negative Poisson's ratio values. On the other hand, the p-AgN3 has a large and positive Poisson's ratio. In dynamical stability tests based on calculated phonon spectra of these pentagonal monolayers, we find that only p-graphene and p-B2N4 are stable, but p-AgN3 and p-B4N2 are vulnerable against vibrational excitations.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000361636900028 Publication Date 2015-09-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 79 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. was supported by a FWO Pegasus Long Marie Curie Fellowship. H.S. and R.T.S. acknowledge the support from TUBITAK through Project No. 114F397. ; Approved Most recent IF: 2.068; 2015 IF: 2.183
Call Number UA @ lucian @ c:irua:128415 Serial 4223
Permanent link to this record
 

 
Author Trenchev, G.; Kolev, S.; Kiss’ovski, Z.
Title Modeling a Langmuir probe in atmospheric pressure plasma at different EEDFs Type A1 Journal article
Year 2017 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 26 Issue 26 Pages 055013
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (down) In this study, we present a computational model of a cylindrical electric probe in atmospheric pressure argon plasma. The plasma properties are varied in terms of density and electron temperature. Furthermore, results for plasmas with Maxwellian and non-Maxwellian electron energy distribution functions are also obtained and compared. The model is based on the fluid description of plasma within the COMSOL software package. The results for the ion saturation current are compared and show good agreement with existing analytical Langmuir probe theories. A strong dependence between the ion saturation current and electron transport properties was observed, and attributed to the effects of ambipolar diffusion.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000398327900002 Publication Date 2017-04-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 4 Open Access OpenAccess
Notes Approved Most recent IF: 3.302
Call Number PLASMANT @ plasmant @ c:irua:141914 Serial 4535
Permanent link to this record
 

 
Author Siriwardane, E.M.D.; Karki, P.; Sevik, C.; Cakir, D.
Title Electronic and mechanical properties of stiff rhenium carbide monolayers: A first-principles investigation Type A1 Journal article
Year 2018 Publication Applied surface science Abbreviated Journal
Volume 458 Issue Pages 762-768
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) In this study, we predicted two new stable metallic Re-C based monolayer structures with a rectangular (r-ReC2) and a hexagonal (h-Re2C) crystal symmetry using first-principle calculations based on density functional theory. Our results obtained from mechanical and phonon calculations and high-temperature molecular dynamic simulations clearly proved the stability of these two-dimensional (2D) crystals. Interestingly, Re-C monolayers in common transition metal carbide structures (i.e. MXenes) were found to be unstable, contrary to expectations. We found that the stable structures, i.e. r-ReC2 and h-Re2C, display superior mechanical properties over the well-known 2D materials. The Young's modulus for r-ReC2 and h-Re2C are extremely high and were calculated as 351 (1310) and 617 (804) N/m (GPa), respectively. Both materials have larger Young's modulus values than the most of the well-known 2D materials. We showed that the combination of the short strong directional p-d bonds, the high coordination number of atoms in the unit-cell and high valence electron density result in strong mechanical properties. Due to its crystal structure, the r-ReC2 monolayer has anisotropic mechanical properties and the crystallographic direction parallel to the C-2 dimers is stiffer compared to perpendicular direction due to strong covalent bonding within C-2 dimers. h-Re2C was derived from the corresponding bulk structure for which we determined the critical thickness for the dynamically stable bulk-derived monolayer structures. In addition, we also investigated the electronic of these two stable structures. Both exhibit metallic behavior and Re-5d orbitals dominate the states around the Fermi level. Due to their ultra high mechanical stability and stiffness, these novel Re-C monolayers can be exploited in various engineering applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000441400000088 Publication Date 2018-07-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:193776 Serial 7875
Permanent link to this record
 

 
Author Nematollahi, P.; Neyts, E.C.
Title A comparative DFT study on CO oxidation reaction over Si-doped BC2N nanosheet and nanotube Type A1 Journal article
Year 2018 Publication Applied surface science Abbreviated Journal Appl Surf Sci
Volume 439 Issue 439 Pages 934-945
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (down) In this study, we performed density functional theory (DFT) calculations to investigate different reaction mechanisms of CO oxidation catalyzed by the Si atom embedded defective BC2N nanostructures as well as the analysis of the structural and electronic properties. The structures of all the complexes are optimized and characterized by frequency calculations at the M062X/6-31G* computational level. Also, The electronic structures and thermodynamic parameters of adsorbed CO and O-2 molecules over Si-doped BC2N nanostructures are examined in detail. Moreover, to investigate the curvature effect on the CO oxidation reaction, all the adsorption and CO oxidation reactions on a finite-sized armchair (6,6) Si-BC2NNT are also studied. Our results indicate that there can be two possible pathways for the CO oxidation with O-2 molecule: O-2(g) + CO(g) -> O-2(ads) + CO(ads) -> CO2(g) + O-(ads) and O-(ads) + CO(g) -> CO2(g). The first reaction proceeds via the Langmuir-Hinshelwood (LH) mechanism while the second goes through the Eley-Rideal (ER) mechanism. On the other hand, by increasing the tube diameter, the energy barrier increases due to the strong adsorption energy of the O-2 molecule which is related to its dissociation over the tube surface. Our calculations indicate that the two step energy barrier of the oxidation reaction over Si-BC2NNS is less than that over the Si-BC2NNT. Hence, Si-BC2NNS may serve as an efficient and highly activated substrate to CO oxidation rather than (4,4) Si-BC2NNT. (C) 2018 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000427457100112 Publication Date 2018-01-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.387 Times cited 8 Open Access Not_Open_Access
Notes Approved Most recent IF: 3.387
Call Number UA @ lucian @ c:irua:150745 Serial 4960
Permanent link to this record
 

 
Author Shirazi, M.; Bogaerts, A.; Neyts, E.C.
Title A DFT study of H-dissolution into the bulk of a crystalline Ni(111) surface: a chemical identifier for the reaction kinetics Type A1 Journal article
Year 2017 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 19 Issue 19 Pages 19150-19158
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (down) In this study, we investigated the diffusion of H-atoms to the subsurface and their further diffusion into the bulk of a Ni(111) crystal by means of density functional theory calculations in the context of thermal and plasma-assisted catalysis. The H-atoms at the surface can originate from the dissociative adsorption of H2 or CH4 molecules, determining the surface H-coverage. When a threshold H-coverage is passed, corresponding to 1.00 ML for the crystalline Ni(111) surface, the surface-bound H-atoms start to diffuse to the subsurface. A similar threshold coverage is observed for the interstitial H-coverage. Once the interstitial sites are filled up with a coverage above 1.00 ML of H, dissolution of interstitial H-atoms to the layer below the interstitial sites will be initiated. Hence, by applying a high pressure or inducing a reactive plasma and high temperature, increasing the H-flux to the surface, a large amount of hydrogen can diffuse in a crystalline metal like Ni and can be absorbed. The formation of metal hydride may modify the entire reaction kinetics of the system. Equivalently, the H-atoms in the bulk can easily go back to the surface and release a large amount of heat. In a plasma process, H-atoms are formed in the plasma, and therefore the energy barrier for dissociative adsorption is dismissed, thus allowing achievement of the threshold coverage without applying a high pressure as in a thermal process. As a result, depending on the crystal plane and type of metal, a large number of H-atoms can be dissolved (absorbed) in the metal catalyst, explaining the high efficiency of plasma-assisted catalytic reactions. Here, the mechanism of H-dissolution is established as a chemical identifier for the investigation of the reaction kinetics of a chemical process.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000406334300034 Publication Date 2017-06-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 10 Open Access OpenAccess
Notes Financial support from the Reactive Atmospheric Plasma processIng – eDucation (RAPID) network, through the EU 7th Framework Programme (grant agreement no. 606889), is gratefully acknowledged. The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government department (EWI) and the Universiteit Antwerpen. Approved Most recent IF: 4.123
Call Number PLASMANT @ plasmant @ c:irua:144794 Serial 4633
Permanent link to this record
 

 
Author De Schutter, B.; Devulder, W.; Schrauwen, A.; van Stiphout, K.; Perkisas, T.; Bals, S.; Vantomme, A.; Detavernier, C.
Title Phase formation in intermixed NiGe thin films : influence of Ge content and low-temperature nucleation of hexagonal nickel germanides Type A1 Journal article
Year 2014 Publication Microelectronic engineering Abbreviated Journal Microelectron Eng
Volume 120 Issue Pages 168-173
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract (down) In this study, we focus on phase formation in intermixed NiGe thin films as they represent a simplified model of the small intermixed interface layer that is believed to form upon deposition of Ni on Ge and where initial phase formation happens. A combinatorial sputter deposition technique was used to co-deposit a range of intermixed NiGe thin films with Ge concentrations varying between 0 and 50 at.%Ge in a single deposition on both Ge (100) and inert SiO2 substrates. In situ X-ray diffraction and transmission electron microscopy where used to study phase formation. In almost the entire composition range under investigation, crystalline phases where found to be present in the as-deposited films. Between 36 and 48 at.%Ge, high-temperature hexagonal nickel germanides were found to occur metastabily below 300 °C, both on SiO2 and Ge (100) substrates. For Ge concentrations in the range between 36 and 42 at.%, this hexagonal germanide phase was even found to be present at room temperature in the as-deposited films. The results obtained in this work could provide more insight in the phase sequence of a pure Ni film on Ge.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000336697300028 Publication Date 2013-09-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0167-9317; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.806 Times cited 9 Open Access Not_Open_Access
Notes FWO project Nr. G076112N Approved Most recent IF: 1.806; 2014 IF: 1.197
Call Number UA @ lucian @ c:irua:116958 Serial 2584
Permanent link to this record
 

 
Author Friedrich, T.; Yu, C.-P.; Verbeeck, J.; Van Aert, S.
Title Phase object reconstruction for 4D-STEM using deep learning Type A1 Journal article
Year 2023 Publication Microscopy and microanalysis Abbreviated Journal
Volume 29 Issue 1 Pages 395-407
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down) In this study, we explore the possibility to use deep learning for the reconstruction of phase images from 4D scanning transmission electron microscopy (4D-STEM) data. The process can be divided into two main steps. First, the complex electron wave function is recovered for a convergent beam electron diffraction pattern (CBED) using a convolutional neural network (CNN). Subsequently, a corresponding patch of the phase object is recovered using the phase object approximation. Repeating this for each scan position in a 4D-STEM dataset and combining the patches by complex summation yields the full-phase object. Each patch is recovered from a kernel of 3x3 adjacent CBEDs only, which eliminates common, large memory requirements and enables live processing during an experiment. The machine learning pipeline, data generation, and the reconstruction algorithm are presented. We demonstrate that the CNN can retrieve phase information beyond the aperture angle, enabling super-resolution imaging. The image contrast formation is evaluated showing a dependence on the thickness and atomic column type. Columns containing light and heavy elements can be imaged simultaneously and are distinguishable. The combination of super-resolution, good noise robustness, and intuitive image contrast characteristics makes the approach unique among live imaging methods in 4D-STEM.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001033590800038 Publication Date 2023-01-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.8 Times cited 1 Open Access OpenAccess
Notes We acknowledge funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement no. 770887 PICOMETRICS) and funding from the European Union's Horizon 2020 research and innovation program under grant agreement No. 823717 ESTEEM3. J.V. and S.V.A acknowledge funding from the University of Antwerp through a TOP BOF project. The direct electron detector (Merlin, Medipix3, Quantum Detectors) was funded by the Hercules fund from the Flemish Government. This work was supported by the FWO and FNRS within the 2Dto3D project of the EOS program (grant number 30489208). Approved Most recent IF: 2.8; 2023 IF: 1.891
Call Number UA @ admin @ c:irua:198221 Serial 8912
Permanent link to this record
 

 
Author Al-Emam, E.; Motawea, A.G.; Caen, J.; Janssens, K.
Title Soot removal from ancient Egyptian complex painted surfaces using a double network gel : empirical tests on the ceiling of the sanctuary of Osiris in the temple of Seti I-Abydos Type A1 Journal article
Year 2021 Publication Heritage science Abbreviated Journal
Volume 9 Issue 1 Pages 1-10
Keywords A1 Journal article; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)
Abstract (down) In this study, we evaluated the ease of removal of soot layers from ancient wall paintings by employing double network gels as a controllable and safe cleaning method. The ceiling of the temple of Seti I (Abydos, Egypt) is covered with thick layers of soot; this is especially the case in the sanctuary of Osiris. These layers may have been accumulated during the occupation of the temple by Christians, fleeing the Romans in the first centuries A.D. Soot particulates are one of the most common deposits to be removed during conservation-restoration activities of ancient Egyptian wall paintings. They usually mask the painted reliefs and reduce the permeability of the painted surface. A Polyvinyl alcohol-borax/agarose (PVA-B/AG) double network gel was selected for this task since its properties were expected to be compatible with the cleaning treatment requirements. The gel is characterized by its flexibility, permitting to take the shape of the reliefs, while also having self-healing properties, featuring shape stability and an appropriate capacity to retain liquid. The gel was loaded with several cleaning reagents that proved to be effective for soot removal. Soot removal tests were conducted with these gel composites. The cleaned surfaces were evaluated with the naked eye, a digital microscope, and color measurements in order to select the best gel composite. The gel composite, loaded with a solution of 5% ammonia, 0.3% ammonium carbonate, and 0.3% EDTA yielded the most satisfactory results and allowed to safely remove a crust of thick soot layers from the surface. Thus, during the final phase of the study, it was used successfully to clean a larger area of the ceiling.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000604977300001 Publication Date 2021-01-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7445 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:174948 Serial 8557
Permanent link to this record
 

 
Author Ozdemir, I.; Arkin, H.; Milošević, M.V.; V. Barth, J.; Aktuerk, E.
Title Exploring the adsorption mechanisms of neurotransmitter and amino acid on Ti3C2-MXene monolayer : insights from DFT calculations Type A1 Journal article
Year 2024 Publication Surfaces and interfaces Abbreviated Journal
Volume 46 Issue Pages 104169-9
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) In this study, we conducted a systematic density functional theory (DFT) investigation of the interaction between Ti3C2-MXene monolayer and biological molecules dopamine (DA) and serine (Ser) as neurotransmitter and amino acid, respectively. Our calculations show good agreement with previous literature findings for the optimized Ti3C2 monolayer. We found that DA and Ser molecules bind to the Ti3C2 surface with adsorption energies of -2.244 eV and -3.960 eV, respectively. The adsorption of Ser resulted in the dissociation of one H atom. Electronic density of states analyses revealed little changes in the electronic properties of the Ti3C2-MXene monolayer upon adsorption of the biomolecules. We further investigated the interaction of DA and Ser with Ti3C2 monolayers featuring surface -termination with OH functional group, and Ti -vacancy. Our calculations indicate that the adsorption energies significantly decrease in the presence of surface termination, with adsorption energies of -0.097 eV and -0.330 eV for DA and Ser, respectively. Adsorption energies on the Ti -vacancy surface, on the other hand, are calculated to be -3.584 eV and -3.856 eV for DA and Ser, respectively. Our results provide insights into the adsorption behavior of biological molecules on Ti3C2-MXene, demonstrating the potential of this material for biosensing and other biomedical applications. These findings highlight the importance of surface modifications in the development of functional materials and devices based on Ti3C2-MXene, and pave the way for future investigations into the use of 2D materials for biomedical applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001206950300001 Publication Date 2024-03-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2468-0230 ISBN Additional Links UA library record; WoS full record
Impact Factor 6.2 Times cited Open Access
Notes Approved Most recent IF: 6.2; 2024 IF: NA
Call Number UA @ admin @ c:irua:205977 Serial 9150
Permanent link to this record
 

 
Author Liao, T.-W.; Verbruggen, S.; Claes, N.; Yadav, A.; Grandjean, D.; Bals, S.; Lievens, P.
Title TiO2 Films Modified with Au Nanoclusters as Self-Cleaning Surfaces under Visible Light Type A1 Journal article
Year 2018 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel
Volume 8 Issue 8 Pages 30
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)
Abstract (down) In this study, we applied cluster beam deposition (CBD) as a new approach for fabricating efficient plasmon-based photocatalytic materials. Au nanoclusters (AuNCs) produced in the gas phase were deposited on TiO2 P25-coated silicon wafers with coverage ranging from 2 to 8 atomic monolayer (ML) equivalents. Scanning Electron Microscopy (SEM) images of the AuNCs modified TiO2 P25 films show that the surface is uniformly covered by the AuNCs that remain isolated at low coverage (2 ML, 4 ML) and aggregate at higher coverage (8 ML). A clear relationship between AuNCs coverage and photocatalytic activity towards stearic acid photo-oxidation was measured, both under ultraviolet and green light illumination. TiO2 P25 covered with 4 ML AuNCs showed the best stearic acid photo-oxidation performance under green light illumination (Formal Quantum Efficiency 1.6 x 10-6 over a period of 93 h). These results demonstrate the large potential of gas-phase AuNCs beam deposition technology for the fabrication of visible light active plasmonic photocatalysts.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000424131600030 Publication Date 2018-01-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.553 Times cited 29 Open Access OpenAccess
Notes The research leading to these results has received funding from the European Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement n 607417 (Catsense). We also thank the Research Foundation—Flanders (FWO, Belgium), the Flemish Concerted Action (BOF KU Leuven, Project No. GOA/14/007) research program, and the microscope was partly funded by the Hercules Fund from the Flemish Government for the support. N.C. and S.B. acknowledge financial support from European Research Council (ERC Starting Grant #335078-COLOURATOM). ECAS_Sara (ROMEO:green; preprint:; postprint:can ; pdfversion:can); Approved Most recent IF: 3.553
Call Number EMAT @ emat @c:irua:147898UA @ admin @ c:irua:147898 Serial 4805
Permanent link to this record
 

 
Author Adam, N.; Leroux, F.; Knapen, D.; Bals, S.; Blust, R.
Title The uptake and elimination of ZnO and CuO nanoparticles in Daphnia magna under chronic exposure scenarios Type A1 Journal article
Year 2015 Publication Water research Abbreviated Journal Water Res
Volume 68 Issue 68 Pages 249-261
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Veterinary physiology and biochemistry
Abstract (down) In this study, the uptake and elimination of ZnO and CuO nanoparticles in Daphnia magna was tested. Daphnids were exposed during 10 days to sublethal concentrations of ZnO and CuO nanoparticles and corresponding metal salts (ZnCl2 and CuCl2.2H2O), after which they were transferred to unexposed medium for another 10 days. At different times during the exposure and none-exposure, the total and internal zinc or copper concentration of the daphnids was determined and the nanoparticles were localized in the organism using electron microscopy. The exposure concentrations were characterized by measuring the dissolved, nanoparticle and aggregated fraction in the medium. The results showed that the ZnO nanoparticles quickly dissolved after addition to the medium. Contrarily, only a small fraction (corresponding to the dissolved metal salt) of the CuO nanoparticles dissolved, while most of these nanoparticles formed large aggregates. Despite an initial increase in zinc and copper concentration during the first 48 hour to 5 day exposure, the body concentration reached a plateau level that was comparable for the ZnO nanoparticles and ZnCl2, but much higher for the CuO nanoparticles (with visible aggregates accumulating in the gut) than CuCl2.2H2O. During the remaining exposure and subsequent none-exposure phase, the zinc and copper concentration decreased fast to concentrations comparable with the unexposed daphnids. The results indicate that D. magna can regulate its internal zinc and copper concentration after exposure to ZnO and CuO nanoparticles, similar as after exposure to metal salts. The combined dissolution, accumulation and toxicity results confirm that the toxicity of ZnO and CuO nanoparticles is caused by the dissolved fraction. Keywords nano; zinc; copper; dissolution; aggregation; electron microscopy
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000347756900022 Publication Date 2014-10-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0043-1354; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.942 Times cited 51 Open Access OpenAccess
Notes ; The authors would like to thank Valentine Mubiana and Steven Joosen (Sphere, UA) for performing the ICP-MS and ICP-OES measurements and Prof. Dr. Gustaaf Van Tendeloo for making the collaboration between the EMAT and Sphere group possible. This study is part of the ENNSATOX-project, which was funded by the EU (NMP4-SL-2009-229244). The authors report no conflicts of interest. ; Approved Most recent IF: 6.942; 2015 IF: 5.528
Call Number c:irua:119366 c:irua:119366 Serial 3822
Permanent link to this record
 

 
Author Bafekry, A.; Shahrokhi, M.; Shafique, A.; Jappor, H.R.; Shojaei, F.; Feghhi, S.A.H.; Ghergherehchi, M.; Gogova, D.
Title Two-dimensional carbon nitride C₆N nanosheet with egg-comb-like structure and electronic properties of a semimetal Type A1 Journal article
Year 2021 Publication Nanotechnology Abbreviated Journal Nanotechnology
Volume 32 Issue 21 Pages 215702
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract (down) In this study, the structural, electronic and optical properties of theoretically predicted C6N monolayer structure are investigated by means of Density Functional Theory-based First-Principles Calculations. Phonon band dispersion calculations and molecular dynamics simulations reveal the dynamical and thermal stability of the C6N single-layer structure. We found out that the C6N monolayer has large negative in-plane Poisson's ratios along both X and Y direction and the both values are almost four times that of the famous-pentagraphene. The electronic structure shows that C6N monolayer is a semi-metal and has a Dirac-point in the BZ. The optical analysis using the random phase approximation method constructed over HSE06 illustrates that the first peak of absorption coefficient of the C6N monolayer along all polarizations is located in the IR range of spectrum, while the second absorption peak occurs in the visible range, which suggests its potential applications in optical and electronic devices. Interestingly, optically anisotropic character of this system is highly desirable for the design of polarization-sensitive photodetectors. Thermoelectric properties such as Seebeck coefficient, electrical conductivity, electronic thermal conductivity and power factor are investigated as a function of carrier doping at temperatures 300, 400, and 500 K. In general, we predict that the C6N monolayer could be a new platform for study of novel physical properties in two-dimensional semi-metal materials, which may provide new opportunities to realize high-speed low-dissipation devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000624531500001 Publication Date 2020-12-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.44 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.44
Call Number UA @ admin @ c:irua:176648 Serial 6740
Permanent link to this record
 

 
Author van der Linden, V.; Schalm, O.; Houbraken, J.; Thomas, M.; Meesdom, E.; Devos, A.; van Dooren, R.; Nieuwdorp, H.; Janssen, E.; Janssens, K.
Title Chemical analysis of 16th to 19th century Limoges School painted enamel objects in three museums of the Low Countries Type A1 Journal article
Year 2010 Publication X-ray spectrometry Abbreviated Journal X-Ray Spectrom
Volume 39 Issue 2 Pages 112-121
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract (down) In this study, the results of analysing of a series of 16th-19th century painted enamel objects of the Limoges School currently in collections in three Dutch and Flemish museums by means of portable and micro x-ray fluorescence analysis (PXRF and µ-XRF) and electron probe micro analysis (EPMA) are presented. The aim of the investigation was the authentication of specific pieces. Therefore, the glass compositions as well as the (glass) colouring agents used by the Limoges' artists were studied as a function of the age of the objects. Due to the evolution of these properties, it is possible to approximately date these objects based on their chemical composition. The complete émail peint collection of the Museum Boijmans-Van Beuningen (Rotterdam, The Netherlands), consisting of 20 émail peint plaques, was analysed with µ-XRF. Quantitative information was obtained by EPMA analysis of 15 enamel fragments of objects from museum and private collections in the Low Countries. PXRF analyses were performed on the painted enamel collection of the Antwerp Vleeshuis Museum (13 objects) and the Mayer van den Bergh Museum (4 objects) and on a set of 18 plaques that were donated to the Boijmans-Van Beuningen Museum by a private collector. The results obtained by means of EPMA, µ-XRF and PXRF proved to be useful in the discrimination of 16th century painted enamel objects from those of the19th century. From a total of 70 objects examined, 2 objects (OM964A and OM993) featured a chemical signature that deviated from the published literature composition and pigment use consistent with its presumed period of manufacture.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000275959400007 Publication Date 2009-08-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0049-8246 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.298 Times cited 8 Open Access
Notes ; ; Approved Most recent IF: 1.298; 2010 IF: 1.661
Call Number UA @ admin @ c:irua:82325 Serial 5509
Permanent link to this record
 

 
Author Delfino, C.L.; Hao, Y.; Martin, C.; Minoia, A.; Gopi, E.; Mali, K.S.; Van der Auweraer, M.; Geerts, Y.H.; Van Aert, S.; Lazzaroni, R.; De Feyter, S.
Title Conformation-Dependent Monolayer and Bilayer Structures of an Alkylated TTF Derivative Revealed using STM and Molecular Modeling Type A1 Journal Article
Year 2023 Publication The Journal of Physical Chemistry C Abbreviated Journal J. Phys. Chem. C
Volume 127 Issue 47 Pages 23023-23033
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract (down) In this study, the multi-layer self-assembled molecular network formation of an alkylated tetrathiafulvalene compound is studied at the liquid-solid interface between 1-phenyloctane and graphite. A combined theoretical/experimental approach associating force-field and quantum-chemical calculations with scanning tunnelling microscopy is used to determine the two-dimensional self-assembly beyond the monolayer, but also to further the understanding of the molecular adsorption conformation and its impact on the molecular packing within the assemblies at the monolayer and bilayer level.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001111637100001 Publication Date 2023-11-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.7 Times cited Open Access OpenAccess
Notes Financial support from the Research Foundation-Flanders (FWO G081518N, G0A3220N) and KU Leuven–Internal Funds (C14/19/079) is acknowledged. This work was in part supported by FWO and F. R. S.-FNRS under the Excellence of Science EOS program (project 30489208 and 40007495). C.M. acknowledges the financial support: Grants PID2021-128761OA-C22 and CNS2022-136052 funded by MCIN/AEI/10.13039/501100011033 by the “European Union” and SBPLY/21/180501/000127 funded by JCCM and by the EU through “Fondo Europeo de Desarollo Regional” (FEDER). Research in Mons is also supported by the Belgian National Fund for Scientific Research (FRS-FNRS) within the Consortium des Équipements de Calcul Intensif – CÉCI, under Grant 2.5020.11, and by the Walloon Region (ZENOBE Tier-1 supercomputer, under grant 1117545). Approved Most recent IF: 3.7; 2023 IF: 4.536
Call Number EMAT @ emat @c:irua:201671 Serial 8974
Permanent link to this record
 

 
Author Carballa, M.; Smits, M.; Etchebehere, C.; Boon, N.; Verstraete, W.
Title Correlations between molecular and operational parameters in continuous lab-scale anaerobic reactors Type A1 Journal article
Year 2011 Publication Applied microbiology and biotechnology Abbreviated Journal
Volume 89 Issue 2 Pages 303-314
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract (down) In this study, the microbial community characteristics in continuous lab-scale anaerobic reactors were correlated to reactor functionality using the microbial resource management (MRM) approach. Two molecular techniques, denaturing gradient gel electrophoresis (DGGE) and terminal-restriction fragment length polymorphism (T-RFLP), were applied to analyze the bacterial and archaeal communities, and the results obtained have been compared. Clustering analyses showed a similar discrimination of samples with DGGE and T-RFLP data, with a clear separation between the meso- and thermophilic communities. Both techniques indicate that bacterial and mesophilic communities were richer and more even than archaeal and thermophilic communities, respectively. Remarkably, the community composition was highly dynamic for both Bacteria and Archaea, with a rate of change between 30% and 75% per 18 days, also in stable performing periods. A hypothesis to explain the latter in the context of the converging metabolism in anaerobic processes is proposed. Finally, a more even and diverse bacterial community was found to be statistically representative for a well-functioning reactor as evidenced by a low Ripley index and high biogas production.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000285872500008 Publication Date 2010-09-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0175-7598; 1432-0614 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:85202 Serial 7736
Permanent link to this record
 

 
Author Roose, D.; Leroux, F.; de Vocht, N.; Guglielmetti, C.; Pintelon, I.; Adriaensen, D.; Ponsaerts, P.; van der Linden, A.-M.; Bals, S.
Title Multimodal imaging of micron-sized iron oxide particles following in vitro and in vivo uptake by stem cells: down to the nanometer scale Type A1 Journal article
Year 2014 Publication Contrast media and molecular imaging Abbreviated Journal Contrast Media Mol I
Volume 9 Issue 6 Pages 400-408
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Bio-Imaging lab
Abstract (down) In this study, the interaction between cells and micron-sized paramagnetic iron oxide (MPIO) particles was investigated by characterizing MPIO in their original state, and after cellular uptake in vitro as well as in vivo. Moreover, MPIO in the olfactory bulb were studied 9months after injection. Using various imaging techniques, cell-MPIO interactions were investigated with increasing spatial resolution. Live cell confocal microscopy demonstrated that MPIO co-localize with lysosomes after in vitro cellular uptake. In more detail, a membrane surrounding the MPIO was observed by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). Following MPIO uptake in vivo, the same cell-MPIO interaction was observed by HAADF-STEM in the subventricular zone at 1week and in the olfactory bulb at 9months after MPIO injection. These findings provide proof for the current hypothesis that MPIO are internalized by the cell through endocytosis. The results also show MPIO are not biodegradable, even after 9months in the brain. Moreover, they show the possibility of HAADF-STEM generating information on the labeled cell as well as on the MPIO. In summary, the methodology presented here provides a systematic route to investigate the interaction between cells and nanoparticles from the micrometer level down to the nanometer level and beyond. Copyright (c) 2014 John Wiley Sons, Ltd.
Address
Corporate Author Thesis
Publisher Place of Publication S.l. Editor
Language Wos 000346172100001 Publication Date 2014-04-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1555-4309; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.307 Times cited 5 Open Access Not_Open_Access
Notes ; The authors would like to thank Sofie Thys for her technical support. The UltraVIEW VoX spinning disk confocal microscope was purchased with support of the Hercules Foundation (Hercules Type 1: AUHA 09/001 and AUHA 11/01). The authors also appreciate financial support from the European Union under the Seventh Framework Program (Integrated Infrastructure Initiative no. 262348 European Soft Matter Infrastructure, ESMI), the Fund for Scientific Research- Flanders and the Flemish Institute for Science and Technology and the Belgian government through the Interuniversity Attraction Pole Program (IAP- PAI). ; Approved Most recent IF: 3.307; 2014 IF: 2.923
Call Number UA @ lucian @ c:irua:122750 Serial 2222
Permanent link to this record