toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records
Author Duarte-Neto, P.; Stosic, B.; Stosic, T.; Lessa, R.; Milošević, M.V.; Stanley, H.E.
  Title Multifractal properties of a closed contour : a peek beyond the shape analysis Type A1 Journal article
  Year 2014 Publication PLoS ONE Abbreviated Journal Plos One
  Volume 9 Issue 12 Pages e115262
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract (down) In recent decades multifractal analysis has been successfully applied to characterize the complex temporal and spatial organization of such diverse natural phenomena as heartbeat dynamics, the dendritic shape of neurons, retinal vessels, rock fractures, and intricately shaped volcanic ash particles. The characterization of multifractal properties of closed contours has remained elusive because applying traditional methods to their quasi-one-dimensional nature yields ambiguous answers. Here we show that multifractal analysis can reveal meaningful and sometimes unexpected information about natural structures with a perimeter well-defined by a closed contour. To this end, we demonstrate how to apply multifractal detrended fluctuation analysis, originally developed for the analysis of time series, to an arbitrary shape of a given study object. In particular, we show the application of the method to fish otoliths, calcareous concretions located in fish's inner ear. Frequently referred to as the fish's “black box”, they contain a wealth of information about the fish's life history and thus have recently attracted increasing attention. As an illustrative example, we show that a multifractal approach can uncover unexpected relationships between otolith contours and size and age of fish at maturity.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000347239900030 Publication Date 2014-12-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-6203; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.806 Times cited 6 Open Access
  Notes ; Funding: This work was supported by CNPq, Brazil (Projects No. 201506/2011-4, No. 303251/2010-7, and No. 306719/2012-6). MVM acknowledges support from Flemish Science Foundation (FWO-Vlaanderen) and CAPES PVE action No. BEX1392/ 11-5. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. ; Approved Most recent IF: 2.806; 2014 IF: 3.234
  Call Number UA @ lucian @ c:irua:123770 Serial 2218
Permanent link to this record
 

 
Author Deng, S.; Verbruggen, S.W.; Lenaerts, S.; Martens, J.A.; Van den Berghe, S.; Devloo-Casier, K.; Devulder, W.; Dendoover, J.; Deduytsche, D.; Detavernier, C.
  Title Controllable nitrogen doping in as deposited TiO2 film and its effect on post deposition annealing Type A1 Journal article
  Year 2014 Publication Journal of vacuum science and technology: A: vacuum surfaces and films Abbreviated Journal J Vac Sci Technol A
  Volume 32 Issue 1 Pages 01a123
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
  Abstract (down) In order to narrow the band gap of TiO2, nitrogen doping by combining thermal atomic layer deposition (TALD) of TiO2 and plasma enhanced atomic layer deposition (PEALD) of TiN has been implemented. By altering the ratio between TALD TiO2 and PEALD TiN, the as synthesized TiOxNy films showed different band gaps (from 1.91 eV to 3.14 eV). In situ x-ray diffraction characterization showed that the crystallization behavior of these films changed after nitrogen doping. After annealing in helium, nitrogen doped TiO2 films crystallized into rutile phase while for the samples annealed in air a preferential growth of the anatase TiO2 along (001) orientation was observed. Photocatalytic tests of the degradation of stearic acid were done to evaluate the effect of N doping on the photocatalytic activity.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000335847600023 Publication Date 2013-12-16
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0734-2101 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.374 Times cited 10 Open Access
  Notes ; The authors wish to thank the Research Foundation-Flanders (FWO) for financial support. The authors acknowledge the European Research Council for funding under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement Nos. 239865-COCOON and 246791-COUNTATO. The authors also acknowledge the support from UGENT-GOA-01G01513 and IWT-SBO SOSLion. J.A.M. acknowledges the Flemish government for long-term structural funding (Methusalem). J.D. acknowledges the Flemisch FWO for a postdoctoral fellowship. ; Approved Most recent IF: 1.374; 2014 IF: 2.322
  Call Number UA @ admin @ c:irua:117296 Serial 5936
Permanent link to this record
 

 
Author Govaerts, K.; Sluiter, M.H.F.; Partoens, B.; Lamoen, D.
  Title Homologous series of layered structures in binary and ternary Bi-Sb-Te-Se systems : ab initio study Type A1 Journal article
  Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 89 Issue 5 Pages 054106-54109
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
  Abstract (down) In order to account explicitly for the existence of long-periodic layered structures and the strong structural relaxations in the most common binary and ternary alloys of the Bi-Sb-Te-Se system, we have developed a one-dimensional cluster expansion (CE) based on first-principles electronic structure calculations, which accounts for the Bi and Sb bilayer formation. Excellent interlayer distances are obtained with a van der Waals density functional. It is shown that a CE solely based on pair interactions is sufficient to provide an accurate description of the ground-state energies of Bi-Sb-Te-Se binary and ternary systems without making the data set of ab initio calculated structures unreasonably large. For the binary alloys A1−xQx (A=Sb, Bi; Q=Te, Se), a ternary CE yields an almost continuous series of (meta)stable structures consisting of consecutive A bilayers next to consecutive A2Q3 for 0<x<0.6. For x>0.6, the binary alloy segregates into pure Q and A2Q3. The Bi-Sb system is described by a quaternary CE and is found to be an ideal solid solution stabilized by entropic effects at T≠0 K but with an ordered structure of alternating Bi and Sb layers for x=0.5 at T=0 K. A quintuple CE is used for the ternary Bi-Sb-Te system, where stable ternary layered compounds with an arbitrary stacking of Sb2Te3, Bi2Te3, and Te-Bi-Te-Sb-Te quintuple units are found, optionally separated by mixed Bi/Sb bilayers. Electronic properties of the stable compounds were studied taking spin-orbit coupling into account.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000332420900001 Publication Date 2014-03-05
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 5 Open Access
  Notes Fwo; Hercules Approved Most recent IF: 3.836; 2014 IF: 3.736
  Call Number UA @ lucian @ c:irua:114910 Serial 1487
Permanent link to this record
 

 
Author Jiang, W.; Zhang, Y.; Bogaerts, A.
  Title Numerical characterization of local electrical breakdown in sub-micrometer metallized film capacitors Type A1 Journal article
  Year 2014 Publication New journal of physics Abbreviated Journal New J Phys
  Volume 16 Issue Pages 113036
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract (down) In metallized film capacitors, there exists an air gap of about 0.2 μm between the films, with a pressure ranging generally from 130 atm. Because of the created potential difference between the two films, a microdischarge is formed in this gap. In this paper, we use an implicit particle-in-cell Monte Carlo collision simulation method to study the discharge properties in this direct-current microdischarge with 0.2 μm gap in a range of different voltages and pressures. The discharge process is significantly different from a conventional high pressure discharge. Indeed, the high electric field due to the small gap sustains the discharge by field emission. At low applied voltage (~15 V), only the electrons are generated by field emission, while both electrons and ions are generated as a stable glow discharge at medium applied voltage (~50 V). At still higher applied voltage (~100 V), the number of electrons and ions rapidly multiplies, the electric field reverses, and the discharge changes from a glow to an arc regime.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Bristol Editor
  Language Wos 000346763400006 Publication Date 2014-11-15
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1367-2630; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.786 Times cited Open Access
  Notes Approved Most recent IF: 3.786; 2014 IF: 3.558
  Call Number UA @ lucian @ c:irua:120455 Serial 2393
Permanent link to this record
 

 
Author Grujić, M.M.; Tadić, M.Z.; Peeters, F.M.
  Title Orbital magnetic moments in insulating Dirac systems : impact on magnetotransport in graphene van der Waals heterostructures Type A1 Journal article
  Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 90 Issue 20 Pages 205408
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract (down) In honeycomb Dirac systems with broken inversion symmetry, orbital magnetic moments coupled to the valley degree of freedom arise due to the topology of the band structure, leading to valley-selective optical dichroism. On the other hand, in Dirac systems with prominent spin-orbit coupling, similar orbital magnetic moments emerge as well. These moments are coupled to spin, but otherwise have the same functional form as the moments stemming from spatial inversion breaking. After reviewing the basic properties of these moments, which are relevant for a whole set of newly discovered materials, such as silicene and germanene, we study the particular impact that these moments have on graphene nanoengineered barriers with artificially enhanced spin-orbit coupling. We examine transmission properties of such barriers in the presence of a magnetic field. The orbital moments are found to manifest in transport characteristics through spin-dependent transmission and conductance, making them directly accessible in experiments. Moreover, the Zeeman-type effects appear without explicitly incorporating the Zeeman term in the models, i.e., by using minimal coupling and Peierls substitution in continuum and the tight-binding methods, respectively. We find that a quasiclassical view is able to explain all the observed phenomena.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000344915800009 Publication Date 2014-11-10
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 5 Open Access
  Notes ; This work was supported by the Ministry of Education, Science and Technological Development (Serbia), and the Fonds Wetenschappelijk Onderzoek (Belgium). ; Approved Most recent IF: 3.836; 2014 IF: 3.736
  Call Number UA @ lucian @ c:irua:122141 Serial 2497
Permanent link to this record
 

 
Author Chen, D.; Goris, B.; Bleichrodt, F.; Heidari Mezerji, H.; Bals, S.; Batenburg, K.J.; de With, G.; Friedrich, H.
  Title The properties of SIRT, TVM, and DART for 3D imaging of tubular domains in nanocomposite thin-films and sections Type A1 Journal article
  Year 2014 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
  Volume 147 Issue Pages 137-148
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract (down) In electron tomography, the fidelity of the 3D reconstruction strongly depends on the employed reconstruction algorithm. In this paper, the properties of SIRT, TVM and DART reconstructions are studied with respect to having only a limited number of electrons available for imaging and applying different angular sampling schemes. A well-defined realistic model is generated, which consists of tubular domains within a matrix having slab-geometry. Subsequently, the electron tomography workflow is simulated from calculated tilt-series over experimental effects to reconstruction. In comparison with the model, the fidelity of each reconstruction method is evaluated qualitatively and quantitatively based on global and local edge profiles and resolvable distance between particles. Results show that the performance of all reconstruction methods declines with the total electron dose. Overall, SIRT algorithm is the most stable method and insensitive to changes in angular sampling. TVM algorithm yields significantly sharper edges in the reconstruction, but the edge positions are strongly influenced by the tilt scheme and the tubular objects become thinned. The DART algorithm markedly suppresses the elongation artifacts along the beam direction and moreover segments the reconstruction which can be considered a significant advantage for quantification. Finally, no advantage of TVM and DART to deal better with fewer projections was observed.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos 000343157400015 Publication Date 2014-08-19
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.843 Times cited 42 Open Access OpenAccess
  Notes Fwo Approved Most recent IF: 2.843; 2014 IF: 2.436
  Call Number UA @ lucian @ c:irua:119073 Serial 2729
Permanent link to this record
 

 
Author Tytgat, T.; Smits, M.; Lenaerts, S.; Verbruggen, S.W.
  Title Immobilization of TiO2 into self-supporting photocatalytic foam : influence of calcination temperature Type A1 Journal article
  Year 2014 Publication International journal of applied ceramic technology Abbreviated Journal Int J Appl Ceram Tec
  Volume 11 Issue 4 Pages 714-722
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
  Abstract (down) Immobilization of photocatalytic powder is crucial to obtain industrially relevant purification processes. To achieve this goal, self-supporting TiO2 foams were manufactured by a polyacrylamide gel process. These gels were calcined at different temperatures to study the effect of the calcination temperature on foam characteristics (rigidity, crystallinity, and porosity) and its influence on photocatalytic activity. The results show that an optimal degradation is achieved for those foams calcined between 700 and 800°C. Calcination at higher temperatures results in a steep decrease in activity, explained by stability issues of the material due to formation of Na2SO4 phases and a larger rutile fraction.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000339051500012 Publication Date 2013-04-24
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1546-542x ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.048 Times cited 2 Open Access
  Notes ; This work was supported by a PhD grant from the Institute of Innovation by Science and Technology in Flanders (IWT). ; Approved Most recent IF: 1.048; 2014 IF: 1.320
  Call Number UA @ admin @ c:irua:117295 Serial 5960
Permanent link to this record
 

 
Author de Nolf, W.; Vanmeert, F.; Janssens, K.
  Title XRDUA : crystalline phase distribution maps by two-dimensional scanning and tomographic (micro) X-ray powder diffraction Type A1 Journal article
  Year 2014 Publication Journal of applied crystallography Abbreviated Journal
  Volume 47 Issue 3 Pages 1107-1117
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract (down) Imaging of crystalline phase distributions in heterogeneous materials, either plane projected or in virtual cross sections of the object under investigation, can be achieved by scanning X-ray powder diffraction employing X-ray micro beams and X-ray-sensitive area detectors. Software exists to convert the two-dimensional powder diffraction patterns that are recorded by these detectors to one-dimensional diffractograms, which may be analysed by the broad variety of powder diffraction software developed by the crystallography community. However, employing these tools for the construction of crystalline phase distribution maps proves to be very difficult, especially when employing micro-focused X-ray beams, as most diffraction software tools have mainly been developed having structure solution in mind and are not suitable for phase imaging purposes. XRDUA has been developed to facilitate the execution of the complete sequence of data reduction and interpretation steps required to convert large sequences of powder diffraction patterns into a limited set of crystalline phase maps in an integrated fashion.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000336738500031 Publication Date 2014-05-28
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0021-8898 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited 62 Open Access
  Notes ; The authors would like to thank the synchrotron beamline staff at ID15 (ESRF, Grenoble, France), MicroXAS (SLS, Villigen, Switzerland) and PO6/BL-L (Petra III/Hasylab, Hamburg, Germany) for accommodating the experiments presented in this paper. Support from FWO 'Big Science' project G0C1213N as well as from the BELSPO project 'S2ART' (SD/RI/04A) is acknowledged. ; Approved Most recent IF: NA
  Call Number UA @ admin @ c:irua:117758 Serial 5920
Permanent link to this record
 

 
Author Ban, V.; Soloninin, A.V.; Skripov, A.V.; Hadermann, J.; Abakumov, A.; Filinchuk, Y.
  Title Pressure-Collapsed Amorphous Mg(BH4)(2): An Ultradense Complex Hydride Showing a Reversible Transition to the Porous Framework Type A1 Journal article
  Year 2014 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
  Volume 118 Issue 40 Pages 23402-23408
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract (down) Hydrogen-storage properties of complex hydrides depend of their form, such as a polymorphic form or an eutectic mixture. This Paper reports on an easy and reproducible way to synthesize a new stable form of magnesium borohydride by pressure-induced collapse of the porous gamma-Mg(BH4)(2). This amorphous complex hydride was investigated by temperature-programmed synchrotron X-ray diffraction (SXRD), transmission electron microscopy (TEM), thermogravimetric analysis, differential scanning calorimetry analysis, and Raman spectroscopy, and the dynamics of the BH4 reorientation was studied by spinlattice relaxation NMR spectroscopy. No long-range order is observed in the lattice region by Raman spectroscopy, while the internal vibration modes of the BH4 groups are the same as in the crystalline state. A hump at 4.9 angstrom in the SXRD pattern suggests the presence of nearly linear MgBH4 Mg fragments constituting all the known crystalline polymorphs of Mg(BH4)(2), which are essentially frameworks built of tetrahedral Mg nodes and linear BH4 linkers. TEM shows that the pressure-collapsed phase is amorphous down to the nanoscale, but surprisingly, SXRD reveals a transition at similar to 90 degrees C from the dense amorphous state (density of 0.98 g/cm(3)) back to the porous ? phase having only 0.55 g/cm(3) crystal density. The crystallization is slightly exothermic, with the enthalpy of -4.3 kJ/mol. The volumetric hydrogen density of the amorphous form is 145 g/L, one of the highest among hydrides. Remarkably, this form of Mg(BH4)2 has different reactivity compared to the crystalline forms. The parameters of the reorientational motion of BH4 groups in the amorphous Mg(BH4)(2) found from NMR measurements differ significantly from those in the known crystalline forms. The behavior of the nuclear spinlattice relaxation rates can be described in terms of a Gaussian distribution of the activation energies centered on 234 +/- 9 meV with the dispersion of 100 +/- 10 meV.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos 000343016800067 Publication Date 2014-09-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.536 Times cited 23 Open Access
  Notes Approved Most recent IF: 4.536; 2014 IF: 4.772
  Call Number UA @ lucian @ c:irua:121113 Serial 2711
Permanent link to this record
 

 
Author Zhou, C.; Ji, G.; Chen, Z.; Wang, M.; Addad, A.; Schryvers, D.; Wang, H.
  Title Fabrication, interface characterization and modeling of oriented graphite flakes/Si/Al composites for thermal management applications Type A1 Journal article
  Year 2014 Publication Materials and design Abbreviated Journal Mater Design
  Volume 63 Issue Pages 719-728
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract (down) Highly thermally conductive graphite flakes (Gf)/Si/Al composites have been fabricated using Gf, Si powder and an AlSi7Mg0.3 alloy by an optimized pressure infiltration process for thermal management applications. In the composites, the layers of Gf were spaced apart by Si particles and oriented perpendicular to the pressing direction, which offered the opportunity to tailor the thermal conductivity (TC) and coefficient of thermal expansion (CTE) of the composites. Microstructural characterization revealed that the formation of a clean and tightly-adhered interface at the nanoscale between the side surface of the Gf and Al matrix, devoid of a detrimental Al4C3 phase and a reacted amorphous AlSiOC layer, contributed to excellent thermal performance along the alignment direction. With increasing volume fraction of Gf from 13.7 to 71.1 vol.%, the longitudinal (i.e. parallel to the graphite layers) TC of the composites increased from 179 to 526 W/m K, while the longitudinal CTE decreased from 12.1 to 7.3 ppm/K (matching the values of electronic components). Furthermore, the modified layers-in-parallel model better fitted the longitudinal TC data than the layers-in-parallel model and confirmed that the clean and tightly-adhered interface is favorable for the enhanced longitudinal TC.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Reigate Editor
  Language Wos 000340949300086 Publication Date 2014-07-17
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0261-3069; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited 61 Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:118124 Serial 1166
Permanent link to this record
 

 
Author Deng, S.; Verbruggen, S.W.; He, Z.; Cott, D.J.; Vereecken, P.M.; Martens, J.A.; Bals, S.; Lenaerts, S.; Detavernier, C.
  Title Atomic layer deposition-based synthesis of photoactive TiO2 nanoparticle chains by using carbon nanotubes as sacrificial templates Type A1 Journal article
  Year 2014 Publication RSC advances Abbreviated Journal Rsc Adv
  Volume 4 Issue 23 Pages 11648-11653
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)
  Abstract (down) Highly ordered and self supported anatase TiO2 nanoparticle chains were fabricated by calcining conformally TiO2 coated multi-walled carbon nanotubes (MWCNTs). During annealing, the thin tubular TiO2 coating that was deposited onto the MWCNTs by atomic layer deposition (ALD) was transformed into chains of TiO2 nanoparticles ([similar]12 nm diameter) with an ultrahigh surface area (137 cm2 per cm2 of substrate), while at the same time the carbon from the MWCNTs was removed. Photocatalytic tests on the degradation of acetaldehyde proved that these forests of TiO2 nanoparticle chains are highly photoactive under UV light because of their well crystallized anatase phase.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000332470000017 Publication Date 2014-02-14
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.108 Times cited 45 Open Access Not_Open_Access
  Notes ; The authors wish to thank the Research Foundation – Flanders (FWO) and UGENT-GOA-01G01513 for financial support. The authors acknowledge the European Research Council for funding under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 239865-COCOON and no. 246791-COUNTATOMS. JAM acknowledges the Flemish government for long-term structural funding (Methusalem). ; Approved Most recent IF: 3.108; 2014 IF: 3.840
  Call Number UA @ lucian @ c:irua:117298 Serial 168
Permanent link to this record
 

 
Author Ying, J.; Yang, X.-Y.; Hu, Z.-Y.; Mu, S.-C.; Janiak, C.; Geng, W.; Pan, M.; Ke, X.; Van Tendeloo, G.; Su, B.-L.
  Title One particle@one cell : highly monodispersed PtPd bimetallic nanoparticles for enhanced oxygen reduction reaction Type A1 Journal article
  Year 2014 Publication Nano energy Abbreviated Journal Nano Energy
  Volume 8 Issue Pages 214-222
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract (down) Highly monodispersed platinum-based nanoalloys are the best-known catalysts for the oxygen reduction reaction. Although certainly promising, the durability and stability are among the main requirements for commercializing fuel cell electrocatalysts in practical applications. Herein, we synthesize highly stable, durable and catalytic active monodispersed PtPd nano-particles encapsulated in a unique one particle@one cell structure by adjusting the viscosity of solvents using mesocellular foam. PtPd nanoparticles in mesocellular carbon foam exhibit an excellent electrocatalytic activity (over 4 times mass and specific activities than the commercial Pt/C catalyst). Most importantly, this nanocatalyst shows no obvious change of structure and only a 29.5% loss in electrochemically active surface area after 5000 potential sweeps between 0.6 and 1.1 V versus reversible hydrogen electrode cycles. (C) 2014 Elsevier Ltd. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000340981700026 Publication Date 2014-06-23
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2211-2855; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 12.343 Times cited 40 Open Access
  Notes Approved Most recent IF: 12.343; 2014 IF: 10.325
  Call Number UA @ lucian @ c:irua:119255 Serial 2465
Permanent link to this record
 

 
Author Sun, M.; Rousse, G.; Abakumov, A.M.; Van Tendeloo, G.; Sougrati, M.-T.; Courty, M.; Doublet, M.-L.; Tarascon, J.-M.
  Title An oxysulfate Fe2O(SO4)2 electrode for sustainable Li-based batteries Type A1 Journal article
  Year 2014 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
  Volume 136 Issue 36 Pages 12658-12666
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract (down) High-performing Fe-based electrodes for Li-based batteries are eagerly pursued because of the abundance and environmental benignity of iron, with especially great interest in polyanionic compounds because of their flexibility in tuning the Fe3+/Fe2+ redox potential. We report herein the synthesis and structure of a new Fe-based oxysulfate phase, Fe2O(SO4)(2), made at low temperature from abundant elements, which electrochemically reacts with nearly 1.6 Li atoms at an average voltage of 3.0 V versus Li+/Li, leading to a sustained reversible capacity of similar to 125 mAh/g. The Li insertiondeinsertion process, the first ever reported in any oxysulfate, entails complex phase transformations associated with the position of iron within the FeO6 octahedra. This finding opens a new path worth exploring in the quest for new positive electrode materials.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos 000341544600029 Publication Date 2014-08-14
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 13.858 Times cited 11 Open Access
  Notes Approved Most recent IF: 13.858; 2014 IF: 12.113
  Call Number UA @ lucian @ c:irua:119906 Serial 96
Permanent link to this record
 

 
Author Rehor, I.; Slegerova, J.; Kucka, J.; Proks, V.; Petrakova, V.; Adam, M.P.; Treussart, F.; Turner, S.; Bals, S.; Sacha, P.; Ledvina, M.; Wen, A.M.; Steinmetz, N.F.; Cigler, P.;
  Title Fluorescent nanodiamonds embedded in biocompatible translucent shells Type A1 Journal article
  Year 2014 Publication Small Abbreviated Journal Small
  Volume 10 Issue 6 Pages 1106-1115
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract (down) High pressure high temperature (HPHT) nanodiamonds (NDs) represent extremely promising materials for construction of fluorescent nanoprobes and nanosensors. However, some properties of bare NDs limit their direct use in these applications: they precipitate in biological solutions, only a limited set of bio-orthogonal conjugation techniques is available and the accessible material is greatly polydisperse in shape. In this work, we encapsulate bright 30-nm fluorescent nanodiamonds (FNDs) in 1020-nm thick translucent (i.e., not altering FND fluorescence) silica shells, yielding monodisperse near-spherical particles of mean diameter 66 nm. High yield modification of the shells with PEG chains stabilizes the particles in ionic solutions, making them applicable in biological environments. We further modify the opposite ends of PEG chains with fluorescent dyes or vectoring peptide using click chemistry. High conversion of this bio-orthogonal coupling yielded circa 2000 dye or peptide molecules on a single FND. We demonstrate the superior properties of these particles by in vitro interaction with human prostate cancer cells: while bare nanodiamonds strongly aggregate in the buffer and adsorb onto the cell membrane, the shell encapsulated NDs do not adsorb nonspecifically and they penetrate inside the cells.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Weinheim Editor
  Language Wos 000333538000012 Publication Date 2014-02-05
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1613-6810; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 8.643 Times cited 79 Open Access Not_Open_Access
  Notes 262348 ESMI; Hercules; FWO Approved Most recent IF: 8.643; 2014 IF: 8.368
  Call Number UA @ lucian @ c:irua:115566 Serial 1234
Permanent link to this record
 

 
Author Dufour, T.; Minnebo, J.; Abou Rich, S.; Neyts, E.C.; Bogaerts, A.; Reniers, F.
  Title Understanding polyethylene surface functionalization by an atmospheric He/O2 plasma through combined experiments and simulations Type A1 Journal article
  Year 2014 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
  Volume 47 Issue 22 Pages 224007
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract (down) High density polyethylene surfaces were exposed to the atmospheric post-discharge of a radiofrequency plasma torch supplied in helium and oxygen. Dynamic water contact angle measurements were performed to evaluate changes in surface hydrophilicity and angle resolved x-ray photoelectron spectroscopy was carried out to identify the functional groups responsible for wettability changes and to study their subsurface depth profiles, up to 9 nm in depth. The reactions leading to the formation of CO, C = O and OC = O groups were simulated by molecular dynamics. These simulations demonstrate that impinging oxygen atoms do not react immediately upon impact but rather remain at or close to the surface before eventually reacting. The simulations also explain the release of gaseous species in the ambient environment as well as the ejection of low molecular weight oxidized materials from the surface.
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos 000336207900008 Publication Date 2014-05-14
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.588 Times cited 13 Open Access
  Notes Approved Most recent IF: 2.588; 2014 IF: 2.721
  Call Number UA @ lucian @ c:irua:116919 Serial 3804
Permanent link to this record
 

 
Author Martinez, G.T.; Rosenauer, A.; de Backer, A.; Verbeeck, J.; Van Aert, S.
  Title Quantitative composition determination at the atomic level using model-based high-angle annular dark field scanning transmission electron microscopy Type A1 Journal article
  Year 2014 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
  Volume 137 Issue Pages 12-19
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract (down) High angle annular dark field scanning transmission electron microscopy (HAADF STEM) images provide sample information which is sensitive to the chemical composition. The image intensities indeed scale with the mean atomic number Z. To some extent, chemically different atomic column types can therefore be visually distinguished. However, in order to quantify the atomic column composition with high accuracy and precision, model-based methods are necessary. Therefore, an empirical incoherent parametric imaging model can be used of which the unknown parameters are determined using statistical parameter estimation theory (Van Aert et al., 2009, [1]). In this paper, it will be shown how this method can be combined with frozen lattice multislice simulations in order to evolve from a relative toward an absolute quantification of the composition of single atomic columns with mixed atom types. Furthermore, the validity of the model assumptions are explored and discussed.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos 000331092200003 Publication Date 2013-11-09
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.843 Times cited 74 Open Access
  Notes FWO; FP7; ERC Countatoms; ESTEEM2; esteem2_ta Approved Most recent IF: 2.843; 2014 IF: 2.436
  Call Number UA @ lucian @ c:irua:111579UA @ admin @ c:irua:111579 Serial 2749
Permanent link to this record
 

 
Author Verreck, D.; Van de Put, M.; Sorée, B.; Verhulst, A.S.; Magnus, W.; Vandenberghe, W.G.; Collaert, N.; Thean, A.; Groeseneken, G.
  Title Quantum mechanical solver for confined heterostructure tunnel field-effect transistors Type A1 Journal article
  Year 2014 Publication Journal of applied physics Abbreviated Journal J Appl Phys
  Volume 115 Issue 5 Pages 053706-53708
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract (down) Heterostructure tunnel field-effect transistors (HTFET) are promising candidates for low-power applications in future technology nodes, as they are predicted to offer high on-currents, combined with a sub-60 mV/dec subthreshold swing. However, the effects of important quantum mechanical phenomena like size confinement at the heterojunction are not well understood, due to the theoretical and computational difficulties in modeling realistic heterostructures. We therefore present a ballistic quantum transport formalism, combining a novel envelope function approach for semiconductor heterostructures with the multiband quantum transmitting boundary method, which we extend to 2D potentials. We demonstrate an implementation of a 2-band version of the formalism and apply it to study confinement in realistic heterostructure diodes and p-n-i-n HTFETs. For the diodes, both transmission probabilities and current densities are found to decrease with stronger confinement. For the p-n-i-n HTFETs, the improved gate control is found to counteract the deterioration due to confinement. (C) 2014 AIP Publishing LLC.
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000331645900040 Publication Date 2014-02-05
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0021-8979;1089-7550; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.068 Times cited 15 Open Access
  Notes ; D. Verreck acknowledges the support of a Ph.D. stipend from the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen). This work was supported by imec's Industrial Affiliation Program. ; Approved Most recent IF: 2.068; 2014 IF: 2.183
  Call Number UA @ lucian @ c:irua:115825 Serial 2780
Permanent link to this record
 

 
Author Javon, E.; Lubk; Cours, R.; Reboh, S.; Cherkashin, N.; Houdellier, F.; Gatel, C.; Hytch, M.J.
  Title Dynamical effects in strain measurements by dark-field electron holography Type A1 Journal article
  Year 2014 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
  Volume 147 Issue Pages 70-85
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract (down) Here, we study the effect of dynamic scattering on the projected geometric phase and strain maps reconstructed using dark-field electron holography (DFEH) for non-uniformly strained crystals. The investigated structure consists of a {SiGe/Si} superlattice grown on a (001)-Si substrate. The three dimensional strain held within the thin TEM lamella is modelled by the finite element method. The observed projected strain is simulated in two ways by multiplying the strain at each depth in the crystal by a weighting function determined from a recently developed analytical two-beam dynamical theory, and by simply taking the average value. We demonstrate that the experimental results need to be understood in terms of the dynamical theory and good agreement is found between the experimental and simulated results. Discrepancies do remain for certain cases and are likely to be from an imprecision in the actual two-beam diffraction conditions, notably the deviation parameter, and points to limitations in the 2-beam approximation. Finally, a route towards a 3D reconstruction of strain fields is proposed. (C) 2014 Elsevier B.V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos 000343157400009 Publication Date 2014-07-02
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.843 Times cited 10 Open Access
  Notes Approved Most recent IF: 2.843; 2014 IF: 2.436
  Call Number UA @ lucian @ c:irua:121108 Serial 769
Permanent link to this record
 

 
Author Yalcin, A.O.; Fan, Z.; Goris, B.; Li, W.F.; Koster, R.S.; Fang, C.M.; van Blaaderen, A.; Casavola, M.; Tichelaar, F.D.; Bals, S.; Van Tendeloo, G.; Vlugt, T.J.H.; Vanmaekelbergh, D.; Zandbergen, H.W.; van Huis, M.A.;
  Title Atomic resolution monitoring of cation exchange in CdSe-PbSe heteronanocrystals during epitaxial solid-solid-vapor growth Type A1 Journal article
  Year 2014 Publication Nano letters Abbreviated Journal Nano Lett
  Volume 14 Issue 6 Pages 3661-3667
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract (down) Here, we show a novel solidsolidvapor (SSV) growth mechanism whereby epitaxial growth of heterogeneous semiconductor nanowires takes place by evaporation-induced cation exchange. During heating of PbSe-CdSe nanodumbbells inside a transmission electron microscope (TEM), we observed that PbSe nanocrystals grew epitaxially at the expense of CdSe nanodomains driven by evaporation of Cd. Analysis of atomic-resolution TEM observations and detailed atomistic simulations reveals that the growth process is mediated by vacancies.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington Editor
  Language Wos 000337337100106 Publication Date 2014-05-20
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 12.712 Times cited 42 Open Access OpenAccess
  Notes 262348 Esmi; Fwo; 246791 Countatoms; 335078 Colouratom; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 12.712; 2014 IF: 13.592
  Call Number UA @ lucian @ c:irua:117027 Serial 179
Permanent link to this record
 

 
Author Kao, K.-H.; Verhulst, A.S.; Van de Put, M.; Vandenberghe, W.G.; Sorée, B.; Magnus, W.; De Meyer, K.
  Title Tensile strained Ge tunnel field-effect transistors: k\cdot p material modeling and numerical device simulation Type A1 Journal article
  Year 2014 Publication Journal of applied physics Abbreviated Journal J Appl Phys
  Volume 115 Issue 4 Pages 044505-44508
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract (down) Group IV based tunnel field-effect transistors generally show lower on-current than III-V based devices because of the weaker phonon-assisted tunneling transitions in the group IV indirect bandgap materials. Direct tunneling in Ge, however, can be enhanced by strain engineering. In this work, we use a 30-band k.p method to calculate the band structure of biaxial tensile strained Ge and then extract the bandgaps and effective masses at Gamma and L symmetry points in k-space, from which the parameters for the direct and indirect band-to-band tunneling (BTBT) models are determined. While transitions from the heavy and light hole valence bands to the conduction band edge at the L point are always bridged by phonon scattering, we highlight a new finding that only the light-holelike valence band is strongly coupling to the conduction band at the Gamma point even in the presence of strain based on the 30-band k.p analysis. By utilizing a Technology Computer Aided Design simulator equipped with the calculated band-to-band tunneling BTBT models, the electrical characteristics of tensile strained Ge point and line tunneling devices are self-consistently computed considering multiple dynamic nonlocal tunnel paths. The influence of field-induced quantum confinement on the tunneling onset is included. Our simulation predicts that an on-current up to 160 (260) mu A/mu m can be achieved along with on/off ratio > 10(6) for V-DD = 0.5V by the n-type (p-type) line tunneling device made of 2.5% biaxial tensile strained Ge. (C) 2014 AIP Publishing LLC.
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000331210800113 Publication Date 2014-01-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0021-8979;1089-7550; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.068 Times cited 26 Open Access
  Notes ; Authors would like to thank Dr. Mohammad Ali Pourghaderi for useful discussions on the nonparabolicity. Authors would also like to thank Professor Eddy Simoen and Dr. Yosuke Shimura for useful discussions about the validity of modeled bandgaps and effective masses. This work was also supported by IMEC's Industrial Affiliation Program. ; Approved Most recent IF: 2.068; 2014 IF: 2.183
  Call Number UA @ lucian @ c:irua:115800 Serial 3505
Permanent link to this record
 

 
Author Rather, J.A.; Pilehvar, S.; De Wael, K.
  Title A graphene oxide amplification platform tagged with tyrosinase-zinc oxide quantum dot hybrids for the electrochemical sensing of hydroxylated polychlorobiphenyls Type A1 Journal article
  Year 2014 Publication Sensors and actuators : B : chemical Abbreviated Journal Sensor Actuat B-Chem
  Volume 190 Issue Pages 612-620
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract (down) Graphene oxide can act as an amplification platform for the immobilization of a hybrid structure composed of tyrosinase (Tyr) and zinc oxide quantum dots (ZnO QDs). This article describes how this platform increases the sensitivity for the detection of hydroxylated polychlorobiphenyls (OH-PCBs). The adsorption of Tyr (with low isoelectric point) on the positively charged surface of ZnO QDs is based on electrostatic interactions. The scanning electron microscopic images and UVvis spectroscopic analysis demonstrated the adsorption of Tyr on ZnO QDs. The stepwise assembly process of the fabricated biosensor was characterized by cyclic voltammetry and electrochemical impedance spectroscopy. The synthesized ZnO QDs and graphene oxide were characterized by Raman spectroscopy, infrared spectroscopy, X-ray diffraction and scanning electron microscopic techniques. The determination of OH-PCBs was carried out by using square wave voltammetry over the concentration range of 2.827.65 μM with a detection limit of 0.15 μM with good reproducibility, selectivity and acceptable stability. The high value of surface coverage of ZnO QDs and small value of MichaelisMenten constant (View the MathML source) confirmed an excellent loading of the Tyr and a high affinity of the biosensor toward the detection of OH-PCBs. This biosensor and the described sensing platform offer a great potential for rapid, cost-effective and on-field analysis of OH-PCBs.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000326687700082 Publication Date 2013-09-14
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 5.401 Times cited 26 Open Access
  Notes ; The authors are highly thankful for the mobility grant (Non-Europe Postdoc Fellowship) for one of the author (Jahangir Ahmad Rather) supported by the Belgian Federal Science Policy (Belspo) co-funded by the Marie Curie Actions from the European Commission. Sanaz Pilehvar is funded by BOF-DOCPRO UA. We are also thankful to the EMAT (Electron Microscopy for Materials Science) group and Laboratory of adsorption and catalysis group of the University of Antwerp for the XRD, Raman and FTIR characterization of samples (GO and ZnO QDs). ; Approved Most recent IF: 5.401; 2014 IF: 4.097
  Call Number UA @ admin @ c:irua:110566 Serial 5636
Permanent link to this record
 

 
Author Kundu, P.; Heidari, H.; Bals, S.; Ravishankar, N.; Van Tendeloo, G.
  Title Formation and thermal stability of gold-silica nanohybrids : insight into the mechanism and morphology by electron tomography Type A1 Journal article
  Year 2014 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit
  Volume 53 Issue 15 Pages 3970-3974
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract (down) Gold-silica hybrids are appealing in different fields of applications like catalysis, sensorics, drug delivery, and biotechnology. In most cases, the morphology and distribution of the heterounits play significant roles in their functional behavior. Methods of synthesizing these hybrids, with variable ordering of the heterounits, are replete; however, a complete characterization in three dimensions could not be achieved yet. A simple route to the synthesis of Au-decorated SiO2 spheres is demonstrated and a study on the 3D ordering of the heterounits by scanning transmission electron microscopy (STEM) tomography is presentedat the final stage, intermediate stages of formation, and after heating the hybrid. The final hybrid evolves from a soft self-assembled structure of Au nanoparticles. The hybrid shows good thermal stability up to 400 degrees C, beyond which the Au particles start migrating inside the SiO2 matrix. This study provides an insight in the formation mechanism and thermal stability of the structures which are crucial factors for designing and applying such hybrids in fields of catalysis and biotechnology. As the method is general, it can be applied to make similar hybrids based on SiO2 by tuning the reaction chemistry as needed.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Weinheim Editor
  Language Wos 000333634800036 Publication Date 2014-03-05
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1433-7851; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 11.994 Times cited 10 Open Access OpenAccess
  Notes This research has received funding from the European Community’s Seventh Framework Program (ERC; grant number 246791)— COUNTATOMS, COLOURATOMS, as well as from the IAP 7/05 Programme initiated by the Belgian Science Policy Office. Funding from the Department of Science and Technology (DST) is also acknowledged.; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 11.994; 2014 IF: 11.261
  Call Number UA @ lucian @ c:irua:117186 Serial 1251
Permanent link to this record
 

 
Author Hoeks, C.; Azadi, H.; Khachak, P.R.; Troyo-Dieguez, E.; Van Passel, S.; Witlox, F.
  Title Reforming land-tenure systems in South Africa : routes to socio-economic and agricultural sustainability Type A1 Journal article
  Year 2014 Publication Development policy review Abbreviated Journal
  Volume 32 Issue 6 Pages 647-674
  Keywords A1 Journal article; Economics; Law
  Abstract (down) Given the historical development of land tenure in South Africa, the aim of this article is to examine the best routes to alleviate poverty and retain sustainable agriculture in the country. First, a theoretical framework is presented that relates land tenure to sustainability, and three historical periods (pre-colonial, colonial, and apartheid) are then considered to explain the changes in land tenure and their consequences. The progress and main limitations of post-apartheid land reform to approach agricultural sustainability and alleviate poverty are discussed. Based on the analysis, different possibilities for future land reform are elaborated, followed by some recommendations for future land-reform policies in South Africa.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000342755600001 Publication Date 2014-09-29
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited 3 Open Access
  Notes ; ; Approved Most recent IF: NA
  Call Number UA @ admin @ c:irua:122509 Serial 6241
Permanent link to this record
 

 
Author Goris, B.; Polavarapu, L.; Bals, S.; Van Tendeloo, G.; Liz-Marzán, L.M.
  Title Monitoring galvanic replacement through three-dimensional morphological and chemical mapping Type A1 Journal article
  Year 2014 Publication Nano letters Abbreviated Journal Nano Lett
  Volume 14 Issue 6 Pages 3220-3226
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract (down) Galvanic replacement reactions on metal nanoparticles are often used for the preparation of hollow nanostructures with tunable porosity and chemical composition, leading to tailored optical and catalytic properties. However, the precise interplay between the three-dimensional (3D) morphology and chemical composition of nanostructures during galvanic replacement is not always well understood as the 3D chemical imaging of nanoscale materials is still challenging. It is especially far from straightforward to obtain detailed information from the inside of hollow nanostructures using electron microscopy techniques such as SEM or TEM. We demonstrate here that a combination of state-of-the-art EDX mapping with electron tomography results in the unambiguous determination of both morphology transformation and elemental composition of nanostructures in 3D, during galvanic replacement of Ag nanocubes. This work provides direct and unambiguous experimental evidence toward understanding the galvanic replacement reaction. In addition, the powerful approach presented here can be applied to a wide range of nanoscale transformation processes, which will undoubtedly guide the development of novel nanostructures.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington Editor
  Language Wos 000337337100038 Publication Date 2014-05-05
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 12.712 Times cited 120 Open Access OpenAccess
  Notes 267867 Plasmaquo; 246791 Countatoms; 335078 Colouratom; 262348 Esmi; Fwo; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 12.712; 2014 IF: 13.592
  Call Number UA @ lucian @ c:irua:116954 Serial 2189
Permanent link to this record
 

 
Author Lueangchaichaweng, W.; Brooks, N.R.; Fiorilli, S.; Gobechiya, E.; Lin, K.; Li, L.; Parres-Esclapez, S.; Javon, E.; Bals, S.; Van Tendeloo, G.; Martens, J.A.; Kirschhock, C.E.A.; Jacobs, P.A.; Pescarmona, P.P.;
  Title Gallium oxide nanorods : novel, template-free synthesis and high catalytic activity in epoxidation reactions Type A1 Journal article
  Year 2014 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit
  Volume 53 Issue 6 Pages 1585-1589
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract (down) Gallium oxide nanorods with unprecedented small dimensions (20-80nm length and 3-5nm width) were prepared using a novel, template-free synthesis method. This nanomaterial is an excellent heterogeneous catalyst for the sustainable epoxidation of alkenes with H2O2, rivaling the industrial benchmark microporous titanosilicate TS-1 with linear alkenes and being much superior with bulkier substrates. A thorough characterization study elucidated the correlation between the physicochemical properties of the gallium oxide nanorods and their catalytic performance, and underlined the importance of the nanorod morphology for generating a material with high specific surface area and a high number of accessible acid sites.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Weinheim Editor
  Language Wos 000330558400021 Publication Date 2014-01-22
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1433-7851; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 11.994 Times cited 61 Open Access OpenAccess
  Notes START 1; Methusalem; Prodex; IAP-PAI; and the ERC (grant number 24691-COUNTATOMS and grant number 335078-COLOURATOM) projects; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 11.994; 2014 IF: 11.261
  Call Number UA @ lucian @ c:irua:115726 Serial 1314
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Neek-Amal, M.; Peeters, F.M.; van Duin, A.C.T.
  Title Stabilized silicene within bilayer graphene : a proposal based on molecular dynamics and density-functional tight-binding calculations Type A1 Journal article
  Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 89 Issue 2 Pages 024107-6
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract (down) Freestanding silicene is predicted to display comparable electronic properties as graphene. However, the yet synthesized silicenelike structures have been only realized on different substrates which turned out to exhibit versatile crystallographic structures that are very different from the theoretically predicted buckled phase of freestanding silicene. This calls for a different approach where silicene is stabilized using very weakly interacting surfaces. We propose here a route by using graphene bilayer as a scaffold. The confinement between the flat graphene layers results in a planar clustering of Si atoms with small buckling, which is energetically unfavorable in vacuum. Buckled hexagonal arrangement of Si atoms similar to freestanding silicene is observed for large clusters, which, in contrast to Si atoms on metallic surfaces, is only very weakly van der Waals coupled to the graphene layers. These clusters are found to be stable well above room temperature. Our findings, which are supported by density-functional tight-binding calculations, show that intercalating bilayer graphene with Si is a favorable route to realize silicene.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000332226200002 Publication Date 2014-01-24
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 43 Open Access
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government. M.N.-A. was supported by the EU-Marie Curie IIF postdoc Fellowship/299855. One of us (F. M. P.) acknowledges discussions with Professor Hongjun Gao. G. R. B acknowledges the support of the King Fahd University of Petroleum and Minerals, Saudi Arabia, under the TPRG131-CS-15 DSR project. A.C.T.vD acknowledges funding from AFOSR Grants No. FA9550-10-1-0563 and No. FA9550-11-1-0158. ; Approved Most recent IF: 3.836; 2014 IF: 3.736
  Call Number UA @ lucian @ c:irua:115829 Serial 3140
Permanent link to this record
 

 
Author Xu, P.; Dong, L.; Neek-Amal, M.; Ackerman, M.L.; Yu, J.; Barber, S.D.; Schoelz, J.K.; Qi, D.; Xu, F.; Thibado, P.M.; Peeters, F.M.;
  Title Self-organized platinum nanoparticles on freestanding graphene Type A1 Journal article
  Year 2014 Publication ACS nano Abbreviated Journal Acs Nano
  Volume 8 Issue 3 Pages 2697-2703
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract (down) Freestanding graphene membranes were successfully functionalized with platinum nanoparticles (Pt NPs). High-resolution transmission electron microscopy revealed a homogeneous distribution of single-crystal Pt NPs that tend to exhibit a preferred orientation. Unexpectedly, the NPs were also found to be partially exposed to the vacuum with the top Pt surface raised above the graphene substrate, as deduced from atomic-scale scanning tunneling microscopy images and detailed molecular dynamics simulations. Local strain accumulation during the growth process is thought to be the origin of the NP self-organization. These findings are expected to shape future approaches in developing Pt NP catalysts for fuel cells as well as NP-functionalized graphene-based high-performance electronics.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000333539400085 Publication Date 2014-02-05
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 13.942 Times cited 38 Open Access
  Notes ; M.N.A. acknowledges financial support by the EU-Marie Curie IIF postdoc Fellowship/299855. F.M.P. acknowledges financial support by the ESF-EuroGRAPHENE project CONGRAN, the Flemish Science Foundation (FWO-VI), and the Methusalem Foundation of the Flemish Government. L.D. acknowledges financial support by the Taishan Overseas Scholar program (tshw20091005), the International Science & Technology Cooperation Program of China (2014DFA60150), the National Natural Science Foundation of China (51172113), the Shandong Natural Science Foundation (JQ201118), the Qingdao Municipal Science and Technology Commission (12-1-4-136-hz), and the National Science Foundation (DMR-0821159). P.M.T. is thankful for the financial support of the Office of Naval Research under Grant No. N00014-10-1-0181 and the National Science Foundation under Grant No. DMR-0855358. ; Approved Most recent IF: 13.942; 2014 IF: 12.881
  Call Number UA @ lucian @ c:irua:116881 Serial 2978
Permanent link to this record
 

 
Author Clima, S.; Govoreanu, B.; Jurczak, M.; Pourtois, G.
  Title HfOx as RRAM material : first principles insights on the working principles Type A1 Journal article
  Year 2014 Publication Microelectronic engineering Abbreviated Journal Microelectron Eng
  Volume 120 Issue Pages 13-18
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract (down) First-principles simulations were employed to gain atomistic insights on the working principles of amorphous HfO2 based Resistive Random Access Memory stack: the nature of the defect responsible for the switching between the High and Low Resistive States has been unambiguously identified to be the substoichiometric Hf sites (commonly called oxygen vacancy-V-O) and the kinetics of the process have been investigated through the study of O diffusion. Also the role of each material layer in the TiN/HfO2/Hf/TiN RRAM stack and the impact of the deposition techniques have been examined: metallic Hf sputtering is needed to provide an oxygen exchange layer that plays the role of defect buffer. TiN shall be a good defect barrier for O but a bad defect buffer layer. A possible scenario to explain the device degradation (switching failure) mechanism has been proposed – the relaxation of the metastable amorphous phase towards crystalline structure leads to denser, more structured cluster that can increase the defect migration barriers. (C) 2013 Elsevier B.V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos 000336697300004 Publication Date 2013-08-19
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0167-9317; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.806 Times cited 22 Open Access
  Notes Approved Most recent IF: 1.806; 2014 IF: 1.197
  Call Number UA @ lucian @ c:irua:117767 Serial 3535
Permanent link to this record
 

 
Author Sen, H.S.; Sahin, H.; Peeters, F.M.; Durgun, E.
  Title Monolayers of MoS2 as an oxidation protective nanocoating material Type A1 Journal article
  Year 2014 Publication Journal of applied physics Abbreviated Journal J Appl Phys
  Volume 116 Issue 8 Pages 083508
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract (down) First-principle calculations are employed to investigate the interaction of oxygen with ideal and defective MoS2 monolayers. Our calculations show that while oxygen atoms are strongly bound on top of sulfur atoms, the oxygen molecule only weakly interacts with the surface. The penetration of oxygen atoms and molecules through a defect-free MoS2 monolayer is prevented by a very high diffusion barrier indicating that MoS2 can serve as a protective layer for oxidation. The analysis is extended to WS2 and similar coating characteristics are obtained. Our calculations indicate that ideal and continuous MoS2 and WS2 monolayers can improve the oxidation and corrosion-resistance of the covered surface and can be considered as an efficient nanocoating material. (C) 2014 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000342821600017 Publication Date 2014-08-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0021-8979;1089-7550; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.068 Times cited 52 Open Access
  Notes ; This work was supported by the bilateral project between TUBITAK (through Grant No. 113T050) and Flemish Science Foundation (FWO-Vl). The calculations were performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). E.D. acknowledges support from Bilim Akademisi-The Science Academy, Turkey under the BAGEP program. H.S. is supported by an FWO Pegasus-long Marie Curie Fellowship. ; Approved Most recent IF: 2.068; 2014 IF: 2.183
  Call Number UA @ lucian @ c:irua:121101 Serial 2194
Permanent link to this record
 

 
Author Nelen, D.; Manshoven, S.; Peeters, J.R.; Vanegas, P.; D'Haese, N.; Vrancken, K.
  Title A multidimensional indicator set to assess the benefits of WEEE material recycling Type A1 Journal article
  Year 2014 Publication Journal of cleaner production Abbreviated Journal
  Volume 83 Issue Pages 305-316
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
  Abstract (down) EU strategies for waste management have long recognized the key role of recycling to move towards sustainable consumption and production. This resulted in a range of regulatory measures, among which the Waste Electrical and Electronic Equipment (WEEE) directive, which sets weight-based targets for recovery, preparation for re-use and recycling. The increasing strategic relevance of the supply of raw materials has, however, spurred a more integrated approach towards resource efficiency. In addition to the prevention of disposal, recycling practices are now also meant to contribute to sustainable materials management by pursuing (i) a higher degree of material cycle closure, (ii) an improved recovery of strategically relevant materials, and (iii) the avoidance of environmental burdens associated with the extraction and refining of primary raw materials. In response to this evolution, this paper reports about the development of an indicator set that allows to quantitatively demonstrate these recycling benefits, hence going further than the weight-based objectives employed in the WEEE directive. The indicators can be calculated for WEEE recycling processes for which information is available on both input and output fractions. It offers a comprehensive framework that aims to support decision making processes on product design, to identify opportunities for the optimization of WEEE End-of-Life scenarios, and to assess the achieved (or expected) results of implemented (or planned) recycling optimization strategies. The paper is illustrated by a case study on the recycling of LCD televisions. (C) 2014 Elsevier Ltd. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000343781500030 Publication Date 2014-07-11
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0959-6526 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access
  Notes Approved no
  Call Number UA @ admin @ c:irua:121160 Serial 7393
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: