|   | 
Details
   web
Records
Author Martinez-Villarreal, S.; Breitenstein, A.; Nimmegeers, P.; Perez Saura, P.; Hai, B.; Asomaning, J.; Eslami, A.A.; Billen, P.; Van Passel, S.; Bressler, D.C.; Debecker, D.P.; Remacle, C.; Richel, A.
Title Drop-in biofuels production from microalgae to hydrocarbons : microalgal cultivation and harvesting, conversion pathways, economics and prospects for aviation Type A1 Journal article
Year 2022 Publication Biomass & Bioenergy Abbreviated Journal Biomass Bioenerg
Volume 165 Issue Pages 106555-22
Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM); Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)
Abstract (down) In the last few years, governments all around the world have agreed upon migrating towards carbon-neutral economies as a strategy for restraining the effects of climate change. A major obstacle limiting this achievement is greenhouse gases emissions, for which the aviation sector is a key contributor because of its dependence on fossil fuels. As an alternative, biofuels with similar characteristics to current fossil-fuels and fully compatible with the existing petroleum infrastructure (i.e., drop-in biofuels) are being developed. In this regard, microalgae are a promising feedstock thanks to, among other aspects, their potential for lipid accumulation. This review outlines the development status, opportunities, and challenges of different technologies that are capable of or applicable to transform microalgae into aviation fuels. To this effect, a baseline of the existing jet fuels and the requirements for potential aviation biofuels is initially presented. Then, microalgae production and valorization techniques are discussed with an emphasis on the thermochemical pathways. Finally, an assessment of the present techno-economic feasibility of microalgae-derived aviation fuels is discussed, along with the authors’ point of view on the suitability of these techniques. Further developments are needed to reduce the costs of cultivation and harvesting of microalgae, and a biorefinery approach might improve the economics of the overall process. In addition, while each of the conversion routes described has its advantages and drawbacks, they converge upon the need of optimizing the deoxygenation techniques and the proportion of the suitable type of hydrocarbons that match fuel requirements.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000861095400001 Publication Date 2022-08-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0961-9534 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 6
Call Number UA @ admin @ c:irua:189953 Serial 7354
Permanent link to this record
 

 
Author Kashiwar, A.
Title TEM investigations of deformation mechanisms in nanocrystalline metals and multilayered composites Type Doctoral thesis
Year 2022 Publication Abbreviated Journal
Volume Issue Pages xvi, 129 p.
Keywords Doctoral thesis; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract (down) In the last few decades, nanostructuring has driven significant attention towards the development of novel metallic materials with advanced mechanical properties. Nanocrystalline (nc) metals are a class of nanostructured materials with grain sizes smaller than about 100 nm. These exhibit outstanding mechanical strength and fatigue properties compared to their coarse-grained (cg) counterparts. These are promising candidates for application as structural or functional materials. Nc metals in the form of thin films are employed as hard coatings on bulk components, structural components, and conductive layers in various micro-/nanoscale devices. These structural components and devices are often subjected to cyclic stresses or fatigue loading. Under these cyclic stresses, nc metals tend to exhibit the Bauschinger effect (BE). The strength loss during the BE is of great importance concerning the strength-ductility trade-off in nc metals. Furthermore, contact surfaces of the engineering components in service often undergo relative motion and are subject to both friction and wear. These extreme loading conditions demand nc metals with tailored interfacial characteristics for improved tribological performance. Aiming at ensuring high reliability and mechanical robustness for optimum performance of these components, there has been a strong motivation for understanding the mechanical properties and governing deformation mechanisms in nc metallic materials. This thesis aimed at in-depth investigation of microstructures at micro-/nanoscales using state-of-the-art in situ and ex situ transmission electron microscopy (TEM) to develop a closer link between the deformation structure and underlying deformation mechanisms in some nc metallic materials. The thesis has primarily focused on the in situ TEM nanomechanics of the BE and rotational deformation of grains in nc palladium thin films. A sputtered thin film of nc Pd was deformed inside TEM by cyclic loading-unloading experiments and the evolving microstructure was studied in real-time under different TEM imaging modes. The stress-strain response of the film exhibited a characteristic non-linear unloading behavior confirming the BE in the film. The corresponding bright-field TEM imaging revealed evidence of partially reversible dislocation activity. Towards a quantitative understanding of the deformation structure in real-time, in situ nanomechanical testing was coupled with precession-assisted automated crystal orientation mapping in scanning TEM (ACOM-STEM). Global ACOM-STEM analysis offered crystal orientation of a large number of grains at different states of deformation and confirmed partially reversible rotations of nanosized grains fitting to the observed BE during loading and unloading. Analysis of intragranular rotations showed substantial changes in the sub-structure within most of these grains indicating a dominant role of dislocation-based processes in driving these rotations. Globally, an unusually random evolution of texture was seen that demonstrated the influence of deformation heterogeneity and grain interactions on the resulting texture characteristics in nc metals. In the quest of understanding the grain interactions, local investigations based on annular dark-field STEM imaging during loading-unloading showed reversible changes in the contrast of grains with sets of adjoining grains exhibiting a unique cooperative rotation. Local analysis of the density of geometrically necessary dislocations (GNDs) showed the formation of dislocation pile-up at grain boundaries due to the generation of back-stresses during unloading. Critical observations of the evolution of GND density offered greater insights into the mechanism of cooperative grain rotations and these rotations were related to grain structure and grain boundary characteristics. In addition to understanding the influence of grain structure and grain boundaries, the thesis has further investigated the role of heterointerfaces in sputtered Au-Cu and Cu-Cr nanocrystalline multilayered composites (NMCs) deformed under cyclic sliding contact. The microstructural evolution in the NMCs was investigated at different deformation states by classical TEM imaging, ACOM-STEM as well as energy-filtered TEM (EFTEM). Au-Cu NMC with an initial high density of twin boundaries deformed by stress-driven detwinning with a concurrent change in grain structure in both Au and Cu. The formation of a vortex structure was observed due to plastic flow instabilities at Au-Cu interfaces that led to codeformation and mechanical intermixing. Cu-Cr NMC showed a preferential grain growth in Cu layers whereas no noticeable change in the grain sizes was seen in Cr layers. The phase maps revealed sharp interfaces between Cu and Cr layers indicating no intermixing between the immiscible phases. EFTEM results exposed the cracking processes in Cr layers with a concurrent migration of Cu in the cracks. Overall, the thesis has attempted to analyze the competing deformation processes and relate these with the microstructural heterogeneity in terms of grain structure and GB and interfacial characteristics in nc metallic materials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access OpenAccess
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:189013 Serial 7343
Permanent link to this record
 

 
Author Chen, B.; Gauquelin, N.; Strkalj, N.; Huang, S.; Halisdemir, U.; Nguyen, M.D.; Jannis, D.; Sarott, M.F.; Eltes, F.; Abel, S.; Spreitzer, M.; Fiebig, M.; Trassin, M.; Fompeyrine, J.; Verbeeck, J.; Huijben, M.; Rijnders, G.; Koster, G.
Title Signatures of enhanced out-of-plane polarization in asymmetric BaTiO3 superlattices integrated on silicon Type A1 Journal article
Year 2022 Publication Nature communications Abbreviated Journal Nat Commun
Volume 13 Issue 1 Pages 265
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract (down) In order to bring the diverse functionalities of transition metal oxides into modern electronics, it is imperative to integrate oxide films with controllable properties onto the silicon platform. Here, we present asymmetric LaMnO<sub>3</sub>/BaTiO<sub>3</sub>/SrTiO<sub>3</sub>superlattices fabricated on silicon with layer thickness control at the unit-cell level. By harnessing the coherent strain between the constituent layers, we overcome the biaxial thermal tension from silicon and stabilize<italic>c</italic>-axis oriented BaTiO<sub>3</sub>layers with substantially enhanced tetragonality, as revealed by atomically resolved scanning transmission electron microscopy. Optical second harmonic generation measurements signify a predominant out-of-plane polarized state with strongly enhanced net polarization in the tricolor superlattices, as compared to the BaTiO<sub>3</sub>single film and conventional BaTiO<sub>3</sub>/SrTiO<sub>3</sub>superlattice grown on silicon. Meanwhile, this coherent strain in turn suppresses the magnetism of LaMnO<sub>3</sub>as the thickness of BaTiO<sub>3</sub>increases. Our study raises the prospect of designing artificial oxide superlattices on silicon with tailored functionalities.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000741852200073 Publication Date 2022-01-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 16.6 Times cited 11 Open Access OpenAccess
Notes This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 823717—ESTEEM3. B.C. is sponsored by Shanghai Sailing Program 21YF1410700. J.V. and N.G. acknowledge funding through the GOA project “Solarpaint” of the University of Antwerp. The microscope used in this work was partly funded by the Hercules Fund from the Flemish Government. D.J. acknowledges funding from FWO Project G093417N from the Flemish fund for scientific research. M.T., N.S., M.F.S. and M.F. acknowledge the financial support by the EU European Research Council (Advanced Grant 694955—INSEETO). M.T. acknowledges the Swiss National Science Foundation under Project No. 200021-188414. N.S. acknowledges support under the Swiss National Science Foundation under Project No. P2EZP2-199913. M.S. acknowledges funding from Slovenian Research Agency (Grants No. J2-2510, N2-0149 and P2-0091). B.C. acknowledges Prof. C.D.; Prof. F.Y.; Prof. B.T. and Dr. K.J. for valuable discussions.; esteem3reported; esteem3TA Approved Most recent IF: 16.6
Call Number EMAT @ emat @c:irua:185179 Serial 6902
Permanent link to this record
 

 
Author Poppe, R.; Vandemeulebroucke, D.; Neder, R.B.; Hadermann, J.
Title Quantitative analysis of diffuse electron scattering in the lithium-ion battery cathode material Li1.2Ni0.13Mn0.54Co0.13O2 Type A1 Journal article
Year 2022 Publication IUCrJ Abbreviated Journal Iucrj
Volume 9 Issue 5 Pages 695-704
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down) In contrast to perfectly periodic crystals, materials with short-range order produce diffraction patterns that contain both Bragg reflections and diffuse scattering. To understand the influence of short-range order on material properties, current research focuses increasingly on the analysis of diffuse scattering. This article verifies the possibility to refine the short-range order parameters in submicrometre-sized crystals from diffuse scattering in single-crystal electron diffraction data. The approach was demonstrated on Li<sub>1.2</sub>Ni<sub>0.13</sub>Mn<sub>0.54</sub>Co<sub>0.13</sub>O<sub>2</sub>, which is a state-of-the-art cathode material for lithium-ion batteries. The intensity distribution of the 1D diffuse scattering in the electron diffraction patterns of Li<sub>1.2</sub>Ni<sub>0.13</sub>Mn<sub>0.54</sub>Co<sub>0.13</sub>O<sub>2</sub>depends on the number of stacking faults and twins in the crystal. A model of the disorder in Li<sub>1.2</sub>Ni<sub>0.13</sub>Mn<sub>0.54</sub>Co<sub>0.13</sub>O<sub>2</sub>was developed and both the stacking fault probability and the percentage of the different twins in the crystal were refined using an evolutionary algorithm in<italic>DISCUS</italic>. The approach was applied on reciprocal space sections reconstructed from 3D electron diffraction data since they exhibit less dynamical effects compared with in-zone electron diffraction patterns. A good agreement was achieved between the calculated and the experimental intensity distribution of the diffuse scattering. The short-range order parameters in submicrometre-sized crystals can thus successfully be refined from the diffuse scattering in single-crystal electron diffraction data using an evolutionary algorithm in<italic>DISCUS</italic>.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000852551800018 Publication Date 2022-09-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2052-2525 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.9 Times cited Open Access OpenAccess
Notes The research leading to these results has received funding from the Research Foundation Flanders, G035619N G040116N ; Approved Most recent IF: 3.9
Call Number EMAT @ emat @c:irua:190647 Serial 7105
Permanent link to this record
 

 
Author Shafiei, M.; Fazileh, F.; Peeters, F.M.; Milošević, M.V.
Title Controlling the hybridization gap and transport in a thin-film topological insulator : effect of strain, and electric and magnetic field Type A1 Journal article
Year 2022 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 106 Issue 3 Pages 035119-7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) In a thin-film topological insulator (TI), the edge states on two surfaces may couple by quantum tunneling, opening a gap known as the hybridization gap. Controlling the hybridization gap and transport has a variety of potential uses in photodetection and energy-harvesting applications. In this paper, we report the effect of strain, and electric and magnetic field, on the hybridization gap and transport in a thin Bi2Se3 film, investigated within the tight-binding theoretical framework. We demonstrate that vertical compression decreases the hybridization gap, as does tensile in-plane strain. Applying an electric field breaks the inversion symmetry and leads to a Rashba-like spin splitting proportional to the electric field, hence closing and reopening the gap. The influence of a magnetic field on thin-film TI is also discussed, starting from the role of an out-of-plane magnetic field on quantum Hall states. We further demonstrate that the hybridization gap can be controlled by an in-plane magnetic field, and that by applying a sufficiently strong field a quantum phase transition from an insulator to a semimetal can be achieved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000832277500001 Publication Date 2022-07-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited 7 Open Access Not_Open_Access
Notes Approved Most recent IF: 3.7
Call Number UA @ admin @ c:irua:189515 Serial 7140
Permanent link to this record
 

 
Author Joosten, F.; Parrilla, M.; van Nuijs, A.L.N.; Ozoemena, K.Id; De Wael, K.
Title Electrochemical detection of illicit drugs in oral fluid : potential for forensic drug testing Type A1 Journal article
Year 2022 Publication Electrochimica acta Abbreviated Journal
Volume 2022 Issue 436 Pages 141309-141315
Keywords A1 Journal article; Pharmacology. Therapy; Engineering sciences. Technology; Toxicological Centre; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract (down) Illicit drugs continue to pose a serious threat to society and public health. Drug (ab)use is linked to organised crime and violence. Therefore, to fight the so-called war on drugs, police and law enforcement agencies need to be equipped with accurate and efficient sensors for the detection of illicit drugs and drug use. Even though colour tests (for powders) and lateral flow immunoassays (for biological samples) lack accuracy, they are relied upon for fast and easy on-site detection. Alternatively, in recent years, there has been an increasing interest in electrochemical sensors as a promising technique for the rapid and accurate on-site detection of illicit drugs. While a myriad of literature exists on the use of electrochemical sensors for drug powder analysis, literature on their use for the detection of drug use in biological samples is scarce. To this end, this review presents an overview of strategies for the electrochemical detection of illicit drugs in oral fluid. First, pharmacokinetics of drugs in oral fluid and the legal limit dilemma regarding the analytical cut-offs for roadside drug detection tests are elaborated to present the reader with the background knowledge required to develop such a test. Subsequently, an overview of electrochemical strategies developed for the detection of illicit drugs in oral fluid is given. Importantly, key challenges to address in the development of roadside tests are highlighted to improve the design of the next electrochemical devices and to bring them to the field. Overall, electrochemical sensors for illicit drugs detection in oral fluid show promise to disrupt current strategies for roadside testing.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000882442300001 Publication Date 2022-10-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved no
Call Number UA @ admin @ c:irua:191107 Serial 8855
Permanent link to this record
 

 
Author Ngo, K.N.; Tampon, P.; Van Winckel, T.; Massoudieh, A.; Sturm, B.; Bott, C.; Wett, B.; Murthy, S.; Vlaeminck, S.E.; DeBarbadillo, C.; De Clippeleir, H.
Title Introducing bioflocculation boundaries in process control to enhance effluent quality of high‐rate contact‐stabilization systems Type A1 Journal article
Year 2022 Publication Water environment research Abbreviated Journal Water Environ Res
Volume 94 Issue 8 Pages e10772-17
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract (down) High-rate activated sludge (HRAS) systems suffer from high variability of effluent quality, clarifier performance, and carbon capture. This study proposed a novel control approach using bioflocculation boundaries for wasting control strategy to enhance effluent quality and stability while still meeting carbon capture goals. The bioflocculation boundaries were developed based on the oxygen uptake rate (OUR) ratio between contactor and stabilizer (feast/famine) in a high-rate contact stabilization (CS) system and this OUR ratio was used to manipulate the wasting setpoint. Increased oxidation of carbon or decreased wasting was applied when OUR ratio was <0.52 or >0.95 to overcome bioflocculation limitation and maintain effluent quality. When no bioflocculation limitations (OUR ratio within 0.52–0.95) were detected, carbon capture was maximized. The proposed control concept was shown for a fully automated OUR-based control system as well as for a simplified version based on direct waste flow control. For both cases, significant improvements in effluent suspended solids level and stability (<50-mg TSS/L), solids capture over the clarifier (>90%), and COD capture (median of 32%) were achieved. This study shows how one can overcome the process instability of current HRAS systems and provide a path to achieve more reliable outcomes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000840360100001 Publication Date 2022-07-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1061-4303; 1554-7531 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.1 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.1
Call Number UA @ admin @ c:irua:189409 Serial 7174
Permanent link to this record
 

 
Author Van Winckel, T.; Ngo, N.; Sturm, B.; Al-Omari, A.; Wett, B.; Bott, C.; Vlaeminck, S.E.; De Clippeleir, H.
Title Enhancing bioflocculation in high-rate activated sludge improves effluent quality yet increases sensitivity to surface overflow rate Type A1 Journal article
Year 2022 Publication Chemosphere Abbreviated Journal Chemosphere
Volume 308 Issue 2 Pages 136294-11
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract (down) High-rate activated sludge (HRAS) relies on good bioflocculation and subsequent solid-liquid separation to maximize the capture of organics. However, full-scale applications often suffer from poor and unpredictable effluent suspended solids (ESS). While the biological aspects of bioflocculation are thoroughly investigated, the effects of fines (settling velocity < 0.6 m3/m2/h), shear and surface overflow rate (SOR) are unclear. This work tackled the impact of fines, shear, and SOR on the ESS in absence of settleable influent solids. This was assessed on a full-scale HRAS step-feed (SF) and pilot-scale HRAS contact-stabilization (CS) configuration using batch settling tests, controlled clarifier experiments, and continuous operation of reactors. Fines contributed up to 25% of the ESS in the full-scale SF configuration. ESS decreased up to 30 mg TSS/L when bioflocculation was enhanced with the CS configuration. The feast-famine regime applied in CS promoted the production of high-quality extracellular polymeric substances (EPS). However, this resulted in a narrow and unfavorable settling velocity distribution, with 50% ± 5% of the sludge mass settling between 0.6 and 1.5 m3/m2/h, thus increasing sensitivity towards SOR changes. A low shear environment (20 s−1) before the clarifier for at least one min was enough to ensure the best possible settling velocity distribution, regardless of prior shear conditions. Overall, this paper provides a more complete view on the drivers of ESS in HRAS systems, creating the foundation for the design of effective HRAS clarifiers. Tangible recommendations are given on how to manage fines and establish the optimal settling velocity of the sludge.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000863979600006 Publication Date 2022-09-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0045-6535; 1879-1298 ISBN Additional Links UA library record; WoS full record
Impact Factor 8.8 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 8.8
Call Number UA @ admin @ c:irua:190187 Serial 7154
Permanent link to this record
 

 
Author Ying, J.; Lenaerts, S.; Symes, M.D.; Yang, X.-Y.
Title Hierarchical design in nanoporous metals Type A1 Journal article
Year 2022 Publication Advanced Science Abbreviated Journal Adv Sci
Volume 9 Issue 27 Pages 2106117-2106120
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract (down) Hierarchically porous metals possess intriguing high accessibility of matter molecules and unique continuous metallic frameworks, as well as a high level of exposed active atoms. High rates of diffusion and fast energy transfer have been important and challenging goals of hierarchical design and porosity control with nanostructured metals. This review aims to summarize recent important progress toward the development of hierarchically porous metals, with special emphasis on synthetic strategies, hierarchical design in structure-function and corresponding applications. The current challenges and future prospects in this field are also discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000831201000001 Publication Date 2022-07-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2198-3844 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 15.1 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 15.1
Call Number UA @ admin @ c:irua:189646 Serial 7170
Permanent link to this record
 

 
Author Zhang, Y.; Sahoo, P.K.; Ren, P.; Qin, Y.; Cauwenbergh, R.; Nimmegeers, P.; Gandhi, S.R.; Van Passel, S.; Guidetti, A.; Das, S.
Title Transition metal-free approach for the late-stage benzylic C(sp3)-H etherifications and esterifications Type A1 Journal article
Year 2022 Publication Chemical Communications Abbreviated Journal Chem Commun
Volume 58 Issue 81 Pages 11454-11457
Keywords A1 Journal article; Engineering Management (ENM); Organic synthesis (ORSY); Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)
Abstract (down) Herein, we report a transition metal-free approach for the regioselective functionalisation of benzylic C(sp3)-H bonds using alcohols and carboxylic acids as the nucleophiles. This approach provides a straightforward route for the synthesis of various benzylic ethers and esters to provide a wide generality of this system. Expediently, twelve pharmaceutically relevant compounds have been synthesized using this strategy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000857171200001 Publication Date 2022-09-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-7345; 1364-548x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.9 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 4.9
Call Number UA @ admin @ c:irua:190191 Serial 7372
Permanent link to this record
 

 
Author Van Putte, N.; Meire, P.; Seuntjens, P.; Joris, I.; Verreydt, G.; Hambsch, L.; Temmerman, S.
Title Solving hindered groundwater dynamics in restored tidal marshes by creek excavation and soil amendments : a model study Type A1 Journal article
Year 2022 Publication Ecological engineering: the journal of ecotechnology Abbreviated Journal Ecol Eng
Volume 178 Issue Pages 106583-15
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL); Ecosphere
Abstract (down) Groundwater fluxes in tidal marshes largely control key ecosystem functions and services, such as vegetation growth, soil carbon sequestration, and nutrient cycling. In tidal marshes restored on formerly embanked agricultural land, groundwater fluxes are often limited as compared to nearby natural marshes, as a result of historical agricultural soil compaction. To improve the functioning of restored tidal marshes, knowledge is needed on how much certain design options can optimize soil-groundwater interactions in future restoration projects. Based on measured data on soil properties and tidally induced groundwater dynamics, we calibrated and evaluated a 2D vertical model of a creek-marsh cross-section, accounting for both saturated and unsaturated groundwater flow and solute transport in a variably saturated groundwater flow model. We found that model simulations of common restoration practices such as soil amendments (increasing the depth of porous soil on top of the compact layer) and creek excavation (increasing the creek density) increase the soil aeration depth and time, the drainage depth and the solute flux, and decrease the residence time of solutes in the porewater. Our simulations indicate that increasing the depth to the compact layer from 20 cm to 40 cm, or increasing the creek density from 1 creek to 2 creeks along a 50 m marsh transect (while maintaining the total creek cross-sectional area), in both cases more than doubles the volume of water processed by the marsh soil. We discuss that this may stimulate nutrient cycling. As such, our study demonstrates that groundwater modelling can support the design of marsh restoration measures aiming to optimize groundwater fluxes and related ecosystem services.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000795478200005 Publication Date 2022-03-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-8574 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.8 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.8
Call Number UA @ admin @ c:irua:186605 Serial 7210
Permanent link to this record
 

 
Author Choo, P.; Arenas-Esteban, D.; Jung, I.; Chang, W.J.; Weiss, E.A.; Bals, S.; Odom, T.W.
Title Investigating Reaction Intermediates during the Seedless Growth of Gold Nanostars Using Electron Tomography Type A1 Journal article
Year 2022 Publication ACS nano Abbreviated Journal Acs Nano
Volume 16 Issue 3 Pages 4408-4414
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract (down) Good’s buffers can act both as nucleating and shape- directing agents during the synthesis of anisotropic gold nanostars (AuNS). Although different Good’s buffers can produce AuNS shapes with branches that are oriented along specific crystallographic directions, the mechanism is not fully understood. This paper reports how an analysis of the intermediate structures during AuNS synthesis from HEPES, EPPS, and MOPS Good’s buffers can provide insight into the formation of seedless AuNS. Electron tomography of AuNS structures quenched at early times (minutes) was used to characterize the morphology of the incipient seeds, and later times were used to construct the growth maps. Through this approach, we identified how the crystallinity and shape of the first structures synthesized with different Good’s buffers determine the final AuNS morphologies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000780214300084 Publication Date 2022-03-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 17.1 Times cited 12 Open Access OpenAccess
Notes This work was supported by the National Science Foundation (NSF) under award NSF CHE-1808502 (P.C. and I.J.). This work made use of the EPIC facility of Northwestern University’s NUANCE Center, which has received support from the SHyNE Resource (NSF ECCS-2025633), the IIN, and Northwestern’s MRSEC program (NSF DMR-1720139). D.A E. and S.B. acknowledge funding from the European Research Council under the European Union’s Horizon 2020 research and innovation program (ERC Consolidator Grants No. 815128 REALNANO and Grant Agreement No. 731019 EUSMI).; sygmaSB Approved Most recent IF: 17.1
Call Number EMAT @ emat @c:irua:187930 Serial 7055
Permanent link to this record
 

 
Author Gielis, J.; Grigolia, R.
Title Lamé curves and Rvachev's R-functions Type A3 Journal article
Year 2022 Publication Sn – 1512-0066 Abbreviated Journal
Volume 37 Issue Pages 1-4
Keywords A3 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract (down) Gielis transformations are a generalization of Lame curves. To combine domains, we can make use of the natural alliance between Lame's work and Rvachev's R-functions. A logical next step is the extension to n-valued logic dening dierent partitions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:189316 Serial 7178
Permanent link to this record
 

 
Author Park, D.-s.; Hadad, M.; Riemer, L.M.; Ignatans, R.; Spirito, D.; Esposito, V.; Tileli, V.; Gauquelin, N.; Chezganov, D.; Jannis, D.; Verbeeck, J.; Gorfman, S.; Pryds, N.; Muralt, P.; Damjanovic, D.
Title Induced giant piezoelectricity in centrosymmetric oxides Type A1 Journal article
Year 2022 Publication Science Abbreviated Journal Science
Volume 375 Issue 6581 Pages 653-657
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract (down) Giant piezoelectricity can be induced in centrosymmetric oxides by controlling the long-range motion of oxygen vacancies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000753975300036 Publication Date 2022-02-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0036-8075 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 56.9 Times cited 51 Open Access OpenAccess
Notes D.-S.P., V.E., N.P., P.M., and D.D. acknowledge the European Commission for project Biowings H2020 Fetopen 2018-2022 (grant no. 80127). N.P. acknowledges funding from the Villum Fonden for the NEED project (grant no. 00027993) and the Danish Council for Independent Research Technology and Production Sciences for the DFF-Research Project 3 (grant no. 00069B). S.G. acknowledges funding from the Israel Science Foundation (research grant 1561/18 and equipment grant 2247/18). This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant no. 823717 – ESTEEM3. D.C. acknowledges TOP/BOF funding of the University of Antwerp. M.H. and P.M. acknowledge funding from the Swiss National Science Foundation (grant nos. 200020-162664/1 and 200021-143424/1); esteem3reported; esteem3TA Approved Most recent IF: 56.9
Call Number EMAT @ emat @c:irua:185876 Serial 6909
Permanent link to this record
 

 
Author Tessema, G.A.; van der Borg, J.; Van Rompaey, A.; Van Passel, S.; Adgo, E.; Minale, A.S.; Asrese, K.; Frankl, A.; Poesen, J.
Title Benefit segmentation of tourists to geosites and its implications for sustainable development of geotourism in the Southern Lake Tana Region, Ethiopia Type A1 Journal article
Year 2022 Publication Sustainability Abbreviated Journal Sustainability-Basel
Volume 14 Issue 6 Pages 3411-3425
Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)
Abstract (down) Geotourism is a sustainable type of tourism that focuses on the geological and geomorphological heritages of an area, and the associated cultural and biodiversity features. Though the popularity of geotourism is rapidly growing, research on the demand side, particularly on segmenting tourists to geosites and understanding their profiles, is limited. This obviously makes the designing of effective tourism policies that aim at developing geotourism sustainably very difficult. Hence, the main objectives of this study were to segment and profile tourists to geosites based on the benefits sought, and to show its implications for sustainable development of geotourism. With a survey of 415 tourists, this study clustered tourists to geosites in the southern Lake Tana region in Ethiopia based on the benefits sought. A factor-cluster method was applied to segment the tourists. The study identified four distinct segments: Activity-Nature Lovers, Culture Lovers, Nature-Culture Lovers, and Want-It-Alls. These segments differed in their demographic, trip, and behavioral characteristics. The findings implied that for sustainable development, destination managers and marketers need to customize their geotourism product development and marketing strategies based on the needs and characteristics of each market segment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000774527600001 Publication Date 2022-03-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2071-1050 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.9 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.9
Call Number UA @ admin @ c:irua:188043 Serial 7353
Permanent link to this record
 

 
Author Oliveira, M.C.; Verswyvel, H.; Smits, E.; Cordeiro, R.M.; Bogaerts, A.; Lin, A.
Title The pro- and anti-tumoral properties of gap junctions in cancer and their role in therapeutic strategies Type A1 Journal article
Year 2022 Publication Redox Biology Abbreviated Journal Redox Biol
Volume 57 Issue Pages 102503
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)
Abstract (down) Gap junctions (GJs), essential structures for cell-cell communication, are made of two hemichannels (commonly called connexons), one on each adjacent cell. Found in almost all cells, GJs play a pivotal role in many physi­ological and cellular processes, and have even been linked to the progression of diseases, such as cancer. Modulation of GJs is under investigation as a therapeutic strategy to kill tumor cells. Furthermore, GJs have also been studied for their key role in activating anti-cancer immunity and propagating radiation- and oxidative stress-induced cell death to neighboring cells, a process known as the bystander effect. While, gap junction (GJ)based therapeutic strategies are being developed, one major challenge has been the paradoxical role of GJs in both tumor progression and suppression, based on GJ composition, cancer factors, and tumoral context. Therefore, understanding the mechanisms of action, regulation, and the dual characteristics of GJs in cancer is critical for developing effective therapeutics. In this review, we provide an overview of the current under­ standing of GJs structure, function, and paradoxical pro- and anti-tumoral role in cancer. We also discuss the treatment strategies to target these GJs properties for anti-cancer responses, via modulation of GJ function.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000871090800004 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2213-2317 ISBN Additional Links UA library record; WoS full record
Impact Factor 11.4 Times cited Open Access OpenAccess
Notes We thank Coordination of Superior Level Staff Improvement (CAPES, Brazil) for the scholarship granted, and the Turing HPC infrastructure at the CalcUA core facility of the University of Antwerp, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Founda­tion, the Flemish Government (department EWI) and the University of Antwerp, for providing the computational resources needed for running the simulations. This work was also funded in part by the funded by the Research Foundation – Flanders (FWO) and the Flemish Government. The FWO fellowships and grants that funded this work include: 12S9221N (Abraham Lin), G044420N (Abraham Lin and Annemie Bogaerts), and 1S67621N (Hanne Verswyvel). Figs. 1, 4 and 5 were created in BioRender.com. Approved Most recent IF: 11.4
Call Number PLASMANT @ plasmant @c:irua:191362 Serial 7112
Permanent link to this record
 

 
Author Jannis, D.; Hofer, C.; Gao, C.; Xie, X.; Béché, A.; Pennycook, Tj.; Verbeeck, J.
Title Event driven 4D STEM acquisition with a Timepix3 detector: Microsecond dwell time and faster scans for high precision and low dose applications Type A1 Journal article
Year 2022 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 233 Issue Pages 113423
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract (down) Four dimensional scanning transmission electron microscopy (4D STEM) records the scattering of electrons in a material in great detail. The benefits offered by 4D STEM are substantial, with the wealth of data it provides facilitating for instance high precision, high electron dose efficiency phase imaging via centre of mass or ptychography based analysis. However the requirement for a 2D image of the scattering to be recorded at each probe position has long placed a severe bottleneck on the speed at which 4D STEM can be performed. Recent advances in camera technology have greatly reduced this bottleneck, with the detection efficiency of direct electron detectors being especially well suited to the technique. However even the fastest frame driven pixelated detectors still significantly limit the scan speed which can be used in 4D STEM, making the resulting data susceptible to drift and hampering its use for low dose beam sensitive applications. Here we report the development of the use of an event driven Timepix3 direct electron camera that allows us to overcome this bottleneck and achieve 4D STEM dwell times down to 100 ns; orders of magnitude faster than what has been possible with frame based readout. We characterize the detector for different acceleration voltages and show that the method is especially well suited for low dose imaging and promises rich datasets without compromising dwell time when compared to conventional STEM imaging.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000734396800003 Publication Date 2021-11-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.2 Times cited 31 Open Access OpenAccess
Notes This project has received funding from the Euro- pean Union’s Horizon 2020 Research Infrastructure – Integrating Activities for Advanced Communities under grant agreement No 823717 – ESTEEM3. J.V. and A.B. acknowledge funding from FWO project G093417N (‘Compressed sensing enabling low dose imaging in transmission electron microscopy’). J.V. and D.J. ac- knowledge funding from FWO project G042920N ‘Co- incident event detection for advanced spectroscopy in transmission electron microscopy’. We acknowledge funding under the European Union’s Horizon 2020 re- search and innovation programme (J.V. and D.J un- der grant agreement No 101017720, FET-Proactive EBEAM, and C.H., C.G., X.X. and T.J.P. from the Eu- ropean Research Council (ERC) Grant agreement No. 802123-HDEM).; esteem3JRA; esteem3reported Approved Most recent IF: 2.2
Call Number EMAT @ emat @c:irua:183948 Serial 6828
Permanent link to this record
 

 
Author Ma, X.; Pavlidis, G.; Dillon, E.; Beltran, V.; Schwartz, J.J.; Thoury, M.; Borondics, F.; Sandt, C.; Kjoller, K.; Berrie, B.H.; Centrone, A.
Title Micro to nano : multiscale IR analyses reveal zinc soap heterogeneity in a 19th-century painting by Corot Type A1 Journal article
Year 2022 Publication Analytical chemistry Abbreviated Journal
Volume 94 Issue 7 Pages 3103-3110
Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract (down) Formation and aggregation of metal carboxylates (metal soaps) can degrade the appearance and integrity of oil paints, challenging efforts to conserve painted works of art. Endeavors to understand the root cause of metal soap formation have been hampered by the limited spatial resolution of Fourier transform infrared microscopy (mu-FTIR). We overcome this limitation using optical photothermal infrared spectroscopy (O-PTIR) and photothermal-induced resonance (PTIR), two novel methods that provide IR spectra with approximate to 500 and approximate to 10 nm spatial resolutions, respectively. The distribution of chemical phases in thin sections from the top layer of a 19th-century painting is investigated at multiple scales (mu-FTIR approximate to 10(2) mu m(3), O-PTIR approximate to 10(-1) mu m(3), PTIR approximate to 10(-5) mu m(3)). The paint samples analyzed here are found to be mixtures of pigments (cobalt green, lead white), cured oil, and a rich array of intermixed, small (often << 0.1 mu m(3)) zinc soap domains. We identify Zn stearate and Zn oleate crystalline soaps with characteristic narrow IR peaks (approximate to 1530-1558 cm(-1)) and a heterogeneous, disordered, water-permeable, tetrahedral zinc soap phase, with a characteristic broad peak centered at approximate to 1596 cm(-1). We show that the high signal-to-noise ratio and spatial resolution afforded by O-PTIR are ideal for identifying phase-separated (or locally concentrated) species with low average concentration, while PTIR provides an unprecedented nanoscale view of distributions and associations of species in paint. This newly accessible nanocompositional information will advance our knowledge of chemical processes in oil paint and will stimulate new art conservation practices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000766206700011 Publication Date 2022-02-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved no
Call Number UA @ admin @ c:irua:187380 Serial 8897
Permanent link to this record
 

 
Author Van Echelpoel, R.; Kranenburg, R.; van Asten, A.; De Wael, K.
Title Electrochemical detection of MDMA and 2C-B in ecstasy tablets using a selectivity enhancement strategy by in-situ derivatization Type A1 Journal article
Year 2022 Publication Forensic chemistry Abbreviated Journal
Volume 27 Issue Pages 100383
Keywords A1 Journal article; Pharmacology. Therapy; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract (down) Forensic drug laboratories are confronted with increasing amounts of drugs and a demand for faster results that are directly available on-site. In addition, the drug market is getting more complex with hundreds of new psychoactive substances (NPS) entering the market in recent years. Rapid and on-scene presumptive drug testing therefore faces a shift from manual colorimetric tests towards approaches that can detect a wider range of components and process results automatically. Electrochemical detection offers these desired characteristics, making it a suitable candidate for on-site drug detection. In this study, a two-step electrochemical sensor is introduced for the detection of MDMA and 2C-B. Firstly, a direct electrochemical analysis was performed to detect MDMA. Validation experiments on over 70 substances revealed that 2C-B was the only frequently encountered drug that gave a false positive result for MDMA in this first analysis. A second step using in-situ derivatization was subsequently introduced. To this end, formaldehyde was used for N-methylation of 2C-B thereby enhancing its electrochemical profile. The enriched electrochemical fingerprint in the second step allowed for clear differentiation between MDMA and 2C-B. The applicability of this approach was demonstrated with 71 ecstasy tablets seized by the Amsterdam Police. The MDMA/2C-B sensor correctly identified all 39 MDMA-containing tablets and 10 out of 11 tablets containing 2C-B. Most notably, correct results were also obtained for dark colored tablets in which both spectroscopic analysis and colorimetric tests failed due to obscured signals.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000725708200002 Publication Date 2021-11-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2468-1709 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.7 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 2.7
Call Number UA @ admin @ c:irua:183340 Serial 7149
Permanent link to this record
 

 
Author Batuk, M.; Vandemeulebroucke, D.; Ceretti, M.; Paulus, W.; Hadermann, J.
Title Topotactic redox cycling in SrFeO2.5+δ explored by 3D electron diffraction in different gas atmospheres Type A1 Journal article
Year 2022 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A
Volume Issue Pages
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract (down) For oxygen conducting materials applied in solid oxide fuel cells and chemical-looping processes, the understanding of the oxygen diffusion mechanism and the materials’ crystal structure at different stages of the redox reactions is a key parameter to control their performance. In this paper we report the first ever in situ 3D ED experiment in a gas environment and with it uncover the structure evolution of SrFeO2.5 as notably different from that reported from in situ X-ray and in situ neutron powder diffraction studies in gas environments. Using in situ 3D ED on submicron sized single crystals obtained from a high quality monodomain SrFeO2.5 single crystal , we observe the transformation under O2 flow of SrFeO2.5 with an intra- and interlayer ordering of the left and right twisted (FeO4) tetrahedral chains (space group Pcmb) into consecutively SrFeO2.75 with space group Cmmm (at 350°C, 33% O2) and SrFeO3-δ with space group Pm3 ̅m (at 400°C, 100% O2). Upon reduction in H2 flow, the crystals return to the brownmillerite structure with intralayer order, but without regaining the interlayer order of the pristine crystals. Therefore, redox cycling of SrFeO2.5 crystals in O2 and H2 introduces stacking faults into the structure, resulting in an I2/m(0βγ)0s symmetry with variable β.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000891928400001 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7488 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.9 Times cited Open Access OpenAccess
Notes Financial support is acknowledged from the FWO-Hercules fund I003218N ‘Infrastructure for imaging nanoscale processes in gas/vapor or liquid environments’, from the University of Antwerp through grant BOF TOP 38689. This work was supported by the European Commission Horizon 2020 NanED grant number 956099. Financial support from the French National Research Agency (ANR) through the project “Structural induced Electronic Complexity controlled by low temperature Topotactic Reaction” (SECTOR No. ANR-14-CE36- 0006-01) is gratefully acknowledged. Approved Most recent IF: 11.9
Call Number EMAT @ emat @c:irua:192325 Serial 7229
Permanent link to this record
 

 
Author Zhang, Z.; Chen, X.; Shi, X.; Hu, Y.; Huang, J.; Liu, S.; Ren, Z.; Huang, H.; Han, G.; Van Tendeloo, G.; Tian, H.
Title Morphotropic phase boundary in pure perovskite lead titanate at room temperature Type A1 Journal article
Year 2022 Publication Materials Today Nano Abbreviated Journal
Volume 20 Issue Pages 100275-5
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract (down) For many decades, great efforts have been devoted to pursue a large piezoelectric response by an intelligent design of morphotropic phase boundaries (MPB) in solid solutions, where tetragonal (T) and rhombohedral (R) structures coexist. For example, classical PbZrxTi1-xO3 and Pb(Mg1/3Nb2/3)O-3-PbTiO3 single crystals demonstrate a giant piezoelectric response near MPB. However, as the end member of these solids, perovskite-structured PbTiO3 always adopts the T phase at room temperature. Here, we report a pathway to create room temperature MPB in a single-phase PbTiO3. The uniaxial stress along the c-axis drives a T-R phase transition bridged by a monoclinic (M) phase, which facilitates a polarization rotation in the monodomain PbTiO3. Meanwhile, we demonstrate that the coexistence of T and R phases at room temperature can be achieved via an extremely mismatched heterointerface system. The uniaxial pressure is proved as an efficient way to break the inherent symmetry and able to substantially tailor the phase transition temperature Tc. These findings provide new insights into MPB, offering the opportunity to explore the giant piezoelectric response in single-phase materials. (c) 2022 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000906548600002 Publication Date 2022-10-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2588-8420 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 10.3 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 10.3
Call Number UA @ admin @ c:irua:193477 Serial 7324
Permanent link to this record
 

 
Author Chen, H.; Xu, J.; Wang, Y.; Wang, D.; Ferrer-Espada, R.; Wang, Y.; Zhou, J.; Pedrazo-Tardajos, A.; Yang, M.; Tan, J.-H.; Yang, X.; Zhang, L.; Sychugov, I.; Chen, S.; Bals, S.; Paulsson, J.; Yang, Z.
Title Color-switchable nanosilicon fluorescent probes Type A1 Journal article
Year 2022 Publication ACS nano Abbreviated Journal Acs Nano
Volume 16 Issue 9 Pages 15450-15459
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract (down) Fluorescent probes are vital to cell imaging by allowing specific parts of cells to be visualized and quantified. Color-switchable probes (CSPs), with tunable emission wavelength upon contact with specific targets, are particularly powerful because they not only eliminate the need to wash away all unbound probe but also allow for internal controls of probe concentrations, thereby facilitating quantification. Several such CSPs exist and have proven very useful, but not for all key cellular targets. Here we report a pioneering CSP for in situ cell imaging using aldehydefunctionalized silicon nanocrystals (SiNCs) that switch their intrinsic photoluminescence from red to blue quickly when interacting with amino acids in live cells. Though conventional probes often work better in cell-free extracts than in live cells, the SiNCs display the opposite behavior and function well and fast in universal cell lines at 37 ? while requiring much higher temperature in extracts. Furthermore, the SiNCs only disperse in cytoplasm not nucleus, and their fluorescence intensity correlated linearly with the concentration of fed amino acids. We believe these nanosilicon probes will be promising tools to visualize distribution of amino acids and potentially quantify amino acid related processes in live cells.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000861080700001 Publication Date 2022-09-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 17.1 Times cited 1 Open Access Not_Open_Access
Notes Z.Y. and H.C. acknowledge the funding support from the National Natural Science Foundation of China (21905316, 22175201) , the Science and Technology Planning Project of Guangdong Province (2019A050510018) , the Pearl River Recruitment Program of Talent (2019QN01C108) , the EU Infrastructure Project EUSMI (Grant No. E190700310) , and Sun Yat-sen University. S.C. acknowledge the funding support from the National Natural Science Foundation of China (32171192) . D.W. acknowledges an Individual Fellowship funded by the Marie Sklodowska-Curie Actions (MSCA) in Horizon 2020 program (Grant No. 894254 SuprAtom) . S.B. and A.P.-T. acknowledge financial support from the European Commission under the Horizon 2020 Programme by means of the grant agreement No. 731019 (EUSMI) and the ERC Consolidator Grant No. 815128 (REALNANO) . J.Z. acknowledged the funding support from the China Scholarship Council (CSC) . L.Z and J.X. thank Huzhou Li-in Biotechnology Co., Ltd. for the instrumentational and financial support. J.X. and R.F.-E. appreciate fruitful discussion with Dr. Emanuele Leoncini and Dr. Noah Olsman. J.X. and R.F.-E. also thank Mr. Daniel Eaton and Mr. Carlos Sanchez for their help with microscope setups. Approved Most recent IF: 17.1
Call Number UA @ admin @ c:irua:191574 Serial 7288
Permanent link to this record
 

 
Author Borah, R.; Smets, J.; Ninakanti, R.; Tietze, M.L.; Ameloot, R.; Chigrin, D.N.; Bals, S.; Lenaerts, S.; Verbruggen, S.W.
Title Self-assembled ligand-capped plasmonic Au nanoparticle films in the Kretschmann configuration for sensing of volatile organic compounds Type A1 Journal article
Year 2022 Publication ACS applied nano materials Abbreviated Journal
Volume 5 Issue 8 Pages acsanm.2c02524-12
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)
Abstract (down) Films of close-packed Au nanoparticles are coupled electrodynamically through their collective plasmon resonances. This collective optical response results in enhanced light–matter interactions, which can be exploited in various applications. Here, we demonstrate their application in sensing volatile organic compounds, using methanol as a test case. Ordered films over several cm2 were obtained by interfacial self-assembly of colloidal Au nanoparticles (∼10 nm diameter) through controlled evaporation of the solvent. Even though isolated nanoparticles of this size are inherently nonscattering, when arranged in a close-packed film the plasmonic coupling results in a strong reflectance and absorbance. The in situ tracking of vapor phase methanol concentration through UV–vis transmission measurements of the nanoparticle film is first demonstrated. Next, in situ ellipsometry of the self-assembled films in the Kretschmann (also known as ATR) configuration is shown to yield enhanced sensitivity, especially with phase difference measurements, Δ. Our study shows the excellent agreement between theoretical models of the spectral response of self-assembled films with experimental in situ sensing experiments. At the same time, the theoretical framework provides the basis for the interpretation of the various observed experimental trends. Combining periodic nanoparticle films with ellipsometry in the Kretschmann configuration is a promising strategy toward highly sensitive and selective plasmonic thin-film devices based on colloidal fabrication methods for volatile organic compound (VOC) sensing applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000834348300001 Publication Date 2022-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2574-0970 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.9 Times cited 11 Open Access OpenAccess
Notes R.B. acknowledges financial support from the University of Antwerp Special Research Fund (BOF) for a DOCPRO4 doctoral scholarship. J.S. acknowledges financial support from the Research Foundation Flanders (FWO) by a Ph.D. fellowship (11H8121N) . M.L.T. acknowledges financial support from the Research Foundation Flanders (FWO) by a senior postdoctoral fellowship (12ZK720N) . Approved Most recent IF: 5.9
Call Number UA @ admin @ c:irua:189295 Serial 7095
Permanent link to this record
 

 
Author Larraín, M.; Billen, P.; Van Passel, S.
Title The effect of plastic packaging recycling policy interventions as a complement to extended producer responsibility schemes : a partial equilibrium model Type A1 Journal article
Year 2022 Publication Waste Management Abbreviated Journal Waste Manage
Volume 153 Issue Pages 355-366
Keywords A1 Journal article; Engineering Management (ENM); Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)
Abstract (down) Extended producer responsibility (EPR) schemes have effectively increased the plastic waste that is separately collected. However, due to the structure of the recycling industry, EPR cannot increase recycling rates up to the target levels.Additional policy instruments to increase recycling rates such as recycled content targets, green dot fees bonus for recycled content, recycling targets and taxes on non-recycled plastic packaging have been discussed on a political level in the last years. However, very little research has quantitatively studied the effectiveness of these policy interventions.Using a partial equilibrium model, this paper examines the effectiveness of the implementation of the aforementioned policy instruments to increase recycling rates and the impact on different stakeholders of the value chain: plastic producers, consumers, producer responsibility organization and recyclers.Results show that direct interventions (recycled content standards and recycling targets) have the benefit of decoupling the recycling industry from external markets such as the oil market. They can be a good starting point to increase recycling, but in the long term they may be restricting by not presenting incentives to achieve recycling levels beyond the targeted amounts and by limiting technological innovation. On the contrary, eco-nomic interventions such as a green dot fee bonus or a packaging tax create economic incentives for recycling. However, these incentives are diminished by the lower perceived quality of packaging with higher recycled content levels.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000868915000004 Publication Date 2022-09-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0956-053x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.1 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 8.1
Call Number UA @ admin @ c:irua:191367 Serial 7370
Permanent link to this record
 

 
Author Pacquets, L.
Title Towards stable Cu-Ag bimetallic nanoparticles to boost the electrocatalytic CO2 reduction Type Doctoral thesis
Year 2022 Publication Abbreviated Journal
Volume Issue Pages xvi, 188 p.
Keywords Doctoral thesis; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)
Abstract (down) Ever since the industrial revolution, the emission of greenhouse gasses dramatically increased, resulting in high CO2 concentration in the atmosphere. The electrochemical conversion of CO2 to value added products, such as carbon monoxide, formic acid, methane, ethylene and ethanol is a very promising strategy to inhibit CO2 emissions. Nevertheless, at the moment, the electrochemical CO2 reduction (eCO2R) is not yet industrially viable, mainly due to the lack of good electrocatalysts. On the other hand, core-shell nanoparticles (NPs) have emerged over the last couple of years as promising candidates. It is believed that bimetallic enhancement effects are behind the improved performance of these core-shell NPs when compared to the individual metals. Although widely investigated, there are still some remaining issues and/or open questions. Indeed, the development of a robust and straightforward synthesis method along with fundamental insight into their resistance towards electrochemical stress remains absent. A good control over morphology, size and composition is key in determining which properties are beneficial for the eCO2R. Since these catalysts are designed to be implemented in electrolyzers, they have to maintain long-term performance. This makes the design of a reproducible method, unveiling structure-performance relationships the effect of electrochemical stress, a crucial aspect. Exploring and modifying existing synthesis methods, have led to the acquisition of a robust and reproducible synthesis method where thermal decomposition of the Cu core is combined with the galvanic replacement of Ag in organic solvents. The implementation of this method has led to the design of a wide variety of Cu-Ag bimetallic NPs and enabled to investigate their composition-selectivity profile. Introducing Ag on Cu suppressed hydrogen and increased the CO formation. CO production was boosted by using Cu@Ag core-shells and was promoted even more by changing the type of electrolyte. As these nanoparticles suffered from degradation, the 3D mapping of the structural changes of Cu@Ag core-shells under operating conditions led to the hypothesis of a two-step degradation mechanism where initially Cu leaching was observed with the subsequent sintering of the Ag shells. One approach to avoid this electrochemical degradation, investigated in this research, was the application of an ultrathin carbon layer to protect the active layer. This ultrathin carbon layer operated as a protective layer, suppressing hydrogen production and increasing the stability of the electrocatalyst. In conclusion, the product selectivity can be tuned by using different Cu-Ag bimetallic nanoparticles synthesized through a robust method. Their unique degradation pathway of Cu@Ag core-shell nanoparticles has led to the proposition of a more accurate stabilization strategy. These findings can contribute significantly in the quest for improved electrocatalysts for the eCO2R.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:190236 Serial 7221
Permanent link to this record
 

 
Author Dobrota, A.S.; Vlahovic, J.; V. Skorodumova, N.; Pasti, I.A.
Title First-principles analysis of aluminium interaction with nitrogen-doped graphene nanoribbons – from adatom bonding to various Type A1 Journal article
Year 2022 Publication Materials Today Communications Abbreviated Journal
Volume 31 Issue Pages 103388-10
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) Enhancing aluminium interaction with graphene-based materials is of crucial importance for the development of Al-storage materials and novel functional materials via atomically precise doping. Here, DFT calculations are employed to investigate Al interactions with non-doped and N-doped graphene nanoribbons (GNRs) and address the impact of the edge sites and N-containing defects on the material's reactivity towards Al. The presence of edges does not influence the energetics of Al adsorption significantly (compared to pristine graphene sheet). On the other hand, N-doping of graphene nanoribbons is found to affect the adsorption energy of Al to an extent that strongly depends on the type of N-containing defect. The introduction of edge-NO group and doping with in -plane pyridinic N result in Al adsorption nearly twice as strong as on pristine graphene. Moreover, double n-type doping via N and Al significantly alters the electronic structure of Al,N-containing GNRs. Our results suggest that selectively doped GNRs with pyridinic N can have enhanced Al-storage capacity and could be potentially used for selective Al electrosorption and removal. On the other hand, Al,N-containing GNRs with pyridinic N could also be used in resistive sensors for mechanical deformation. Namely, strain along the longitudinal axis of these dual doped GNRs does not affect the binding of Al but tunes the bandgap and causes more than 700-fold change in the conductivity. Thus, careful defect engineering and selective doping of GNRs with N (and Al) could lead to novel multifunctional materials with exceptional properties. [GRAPHICS]
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000820987400002 Publication Date 2022-03-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2352-4928 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:189563 Serial 7163
Permanent link to this record
 

 
Author Zhang, H.; Pryds, N.; Park, D.-S.; Gauquelin, N.; Santucci, S.; Christensen, D., V.; Jannis, D.; Chezganov, D.; Rata, D.A.; Insinga, A.R.; Castelli, I.E.; Verbeeck, J.; Lubomirsky, I.; Muralt, P.; Damjanovic, D.; Esposito, V.
Title Atomically engineered interfaces yield extraordinary electrostriction Type A1 Journal article
Year 2022 Publication Nature Abbreviated Journal
Volume 609 Issue 7928 Pages 695-700
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract (down) Electrostriction is a property of dielectric materials whereby an applied electric field induces a mechanical deformation proportional to the square of that field. The magnitude of the effect is usually minuscule (<10(-19) m(2) V-2 for simple oxides). However, symmetry-breaking phenomena at the interfaces can offer an efficient strategy for the design of new properties(1,2). Here we report an engineered electrostrictive effect via the epitaxial deposition of alternating layers of Gd2O3-doped CeO2 and Er2O3-stabilized delta-Bi2O3 with atomically controlled interfaces on NdGaO3 substrates. The value of the electrostriction coefficient achieved is 2.38 x 10(-14) m(2) V-2, exceeding the best known relaxor ferroelectrics by three orders of magnitude. Our theoretical calculations indicate that this greatly enhanced electrostriction arises from coherent strain imparted by interfacial lattice discontinuity. These artificial heterostructures open a new avenue for the design and manipulation of electrostrictive materials and devices for nano/micro actuation and cutting-edge sensors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000859073900001 Publication Date 2022-09-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1476-4687 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 12 Open Access OpenAccess
Notes This research was supported by the BioWings project, funded by the European Union’s Horizon 2020, Future and Emerging Technologies programme (grant no. 801267), and by the Danish Council for Independent Research Technology and Production Sciences for the DFF—Research Project 2 (grant no. 48293). N.P. and D.V.C. acknowledge funding from Villum Fonden for the NEED project (no. 00027993) and from the Danish Council for Independent Research Technology and Production Sciences for the DFF—Research Project 3 (grant no. 00069 B). V.E. acknowledges funding from Villum Fonden for the IRIDE project (no. 00022862). N.G. and J.V. acknowledge funding from the GOA project ('Solarpaint') of the University of Antwerp. The microscope used in this work was partly funded by the Hercules Fund from the Flemish Government. D.J. acknowledges funding from the FWO Project (no. G093417N) from the Flemish Fund for Scientific Research. D.C. acknowledges TOP/BOF funding from the University of Antwerp. This project has received funding from the European Union’s Horizon 2020 Research Infrastructure—Integrating Activities for Advanced Communities—under grant agreement no. 823717-ESTEEM3. We thank T. D. Pomar and A. J. Bergne for English proofreading.; esteem3reported; esteem3TA Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:190576 Serial 7129
Permanent link to this record
 

 
Author Hajizadeh, A.; Shahalizade, T.; Riahifar, R.; Yaghmaee, M.S.; Raissi, B.; Gholam, S.; Aghaei, A.; Rahimisheikh, S.; Ghazvini, A.S.
Title Electrophoretic deposition as a fabrication method for Li-ion battery electrodes and separators : a review Type A1 Journal article
Year 2022 Publication Journal of power sources Abbreviated Journal J Power Sources
Volume 535 Issue Pages 231448-26
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract (down) Electrophoretic Deposition (EPD) is one of the alternative methods to fabricate and enhance the performance of Li-ion batteries. It enables the fabrication of electrodes with outstanding qualities and different electrochemical properties by the great domination over various parameters. EPD facilitates the processing of electrodes by binder-free grafting of nanomaterials, such as graphene derivatives, carbon nanotube, and nanoparticles, into the battery electrodes. It also enables the assembly of the free-standing electrodes with 3D structure and provides possibilities, such as the fabrication of the electrodes with an oriented microstructure, even on 3D substrates to improve the energy or power density. In this review, after an introduction to EPD, the effect of EPD parameters on the properties of the prepared electrodes is reviewed. Then, EPD is compared with tape cast, and its advantages over the conventional method are evaluated. Also, employing the EPD method as an intermediate process is discussed. Finally, the application of EPD in the fabrication of separators is assessed, and the prospects for the future are described.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000913348500001 Publication Date 2022-04-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0378-7753 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.2 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 9.2
Call Number UA @ admin @ c:irua:194403 Serial 7303
Permanent link to this record
 

 
Author Neven, L.; Barich, H.; Ching, H.Y.V.; Khan, S.U.; Colomier, C.; Patel, H.H.; Gorun, S.M.; Verbruggen, S.; Van Doorslaer, S.; De Wael, K.
Title Correlation between the fluorination degree of perfluorinated zinc phthalocyanines, their singlet oxygen generation ability, and their photoelectrochemical response for phenol sensing Type A1 Journal article
Year 2022 Publication Analytical chemistry Abbreviated Journal Anal Chem
Volume 94 Issue 13 Pages 5221-5230
Keywords A1 Journal article; Organic synthesis (ORSY); Sustainable Energy, Air and Water Technology (DuEL); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract (down) Electron-withdrawing perfluoroalkyl peripheral groups grafted on phthalocyanine (Pc) macrocycles improve their single-site isolation, solubility, and resistance to self-oxidation, all beneficial features for catalytic applications. A high degree of fluorination also enhances the reducibility of Pcs and could alter their singlet oxygen (1O2) photoproduction. The ethanol/toluene 20:80 vol % solvent mixture was found to dissolve perfluorinated FnPcZn complexes, n = 16, 52, and 64, and minimize the aggregation of the sterically unencumbered F16PcZn. The 1O2 production ability of FnPcZn complexes was examined using 9,10-dimethylanthracene (DMA) and 2,2,6,6-tetramethylpiperidine (TEMP) in combination with UV–vis and electron paramagnetic resonance (EPR) spectroscopy, respectively. While the photoreduction of F52PcZn and F64PcZn in the presence of redox-active TEMP lowered 1O2 production, DMA was a suitable 1O2 trap for ranking the complexes. The solution reactivity was complemented by solid-state studies via the construction of photoelectrochemical sensors based on TiO2-supported FnPcZn, FnPcZn|TiO2. Phenol photo-oxidation by 1O2, followed by its electrochemical reduction, defines a redox cycle, the 1O2 production having been found to depend on the value of n and structural features of the supported complexes. Consistent with solution studies, F52PcZn was found to be the most efficient 1O2 generator. The insights on reactivity testing and structural–activity relationships obtained may be useful for designing efficient and robust sensors and for other 1O2-related applications of FnPcZn.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000786254500002 Publication Date 2022-03-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.4 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 7.4
Call Number UA @ admin @ c:irua:187522 Serial 7141
Permanent link to this record
 

 
Author Jenkinson, K.; Liz-Marzan, L.M.; Bals, S.
Title Multimode electron tomography sheds light on synthesis, structure, and properties of complex metal-based nanoparticles Type A1 Journal article
Year 2022 Publication Advanced materials Abbreviated Journal Adv Mater
Volume 34 Issue 36 Pages 2110394-19
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract (down) Electron tomography has become a cornerstone technique for the visualization of nanoparticle morphology in three dimensions. However, to obtain in-depth information about a nanoparticle beyond surface faceting and morphology, different electron microscopy signals must be combined. The most notable examples of these combined signals include annular dark-field scanning transmission electron microscopy (ADF-STEM) with different collection angles and the combination of ADF-STEM with energy-dispersive X-ray or electron energy loss spectroscopies. Here, the experimental and computational development of various multimode tomography techniques in connection to the fundamental materials science challenges that multimode tomography has been instrumental to overcoming are summarized. Although the techniques can be applied to a wide variety of compositions, the study is restricted to metal and metal oxide nanoparticles for the sake of simplicity. Current challenges and future directions of multimode tomography are additionally discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000831332200001 Publication Date 2022-04-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 29.4 Times cited 10 Open Access OpenAccess
Notes The authors thank the financial support of the European Research Council (ERC-AdG-2017 787510, ERC-CoG-2019 815128) and of the European Commission (EUSMI, Grant 731019 and ESTEEM3, Grant 823717). Approved Most recent IF: 29.4
Call Number UA @ admin @ c:irua:189616 Serial 7087
Permanent link to this record