|   | 
Details
   web
Records
Author da Costa, D.R.; Chaves, A.; Zarenia, M.; Pereira, J.M.; Farias, G.A.; Peeters, F.M.
Title Geometry and edge effects on the energy levels of graphene quantum rings : a comparison between tight-binding and simplified Dirac models Type A1 Journal article
Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 89 Issue 7 Pages 075418-12
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) We present a systematic study of the energy spectra of graphene quantum rings having different geometries and edge types in the presence of a perpendicular magnetic field. Results are obtained within the tight-binding (TB) and Dirac models and we discuss which features of the former can be recovered by using the approximations imposed by the latter. Energy levels of graphene quantum rings obtained by diagonalizing the TB Hamiltonian are demonstrated to be strongly dependent on the rings geometry and the microscopical structure of the edges. This makes it difficult to recover those spectra by the existing theories that are based on the continuum (Dirac) model. Nevertheless, our results show that both approaches (i.e., TB and Dirac model) may provide similar results, but only for very specific combinations of ring geometry and edge types. The results obtained by a simplified model describing an infinitely thin circular Dirac ring show good agreement with those obtained for hexagonal and rhombus armchair graphene rings within the TB model. Moreover, we show that the energy levels of a circular quantum ring with an infinite mass boundary condition obtained within the Dirac model agree with those for a ring defined by a ring-shaped staggered potential obtained within the TB model.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000332390000009 Publication Date 2014-02-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 56 Open Access
Notes ; This work was financially supported by CNPq, under Contract NanoBioEstruturas 555183/2005-0, PRONEX/FUNCAP, CAPES Foundation under the process number BEX 7178/13-1, the Bilateral programme between CNPq and the Flemish Science Foundation (FWO-Vl), and the Brazilian Program Science Without Borders (CsF). ; Approved Most recent IF: 3.836; 2014 IF: 3.736
Call Number UA @ lucian @ c:irua:115823 Serial 1328
Permanent link to this record
 

 
Author Zhao, C.X.; Xu, W.; Dong, H.M.; Yu, Y.; Qin, H.; Peeters, F.M.
Title Enhancement of plasmon-photon coupling in grating coupled graphene inside a Fabry-Perot cavity Type A1 Journal article
Year 2018 Publication Solid state communications Abbreviated Journal Solid State Commun
Volume 280 Issue 280 Pages 45-49
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) We present a theoretical investigation of the plasmon-polariton modes in grating coupled graphene inside a Fabry-Perot cavity. The cavity or photon modes of the device are determined by the Finite Difference Time Domain (FDTD) simulations and the corresponding plasmon-polariton modes are obtained by applying a many-body self-consistent field theory. We find that in such a device structure, the electric field strength of the incident electromagnetic (EM) field can be significantly enhanced near the edges of the grating strips. Thus, the strong coupling between the EM field and the plasmons in graphene can be achieved and the features of the plasmon-polariton oscillations in the structure can be observed. It is found that the frequencies of the plasmon-polariton modes are in the terahertz (THz) bandwidth and depend sensitively on electron density which can be tuned by applying a gate voltage. Moreover, the coupling between the cavity photons and the plasmons in graphene can be further enhanced by increasing the filling factor of the device. This work can help us to gain an in-depth understanding of the THz plasmonic properties of graphene-based structures.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000439059600008 Publication Date 2018-06-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0038-1098 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.554 Times cited 1 Open Access
Notes ; This work is supported by the National Natural Science Foundation of China (Grand No. 11604192 and Grant No. 11574319); the Center of Science and Technology of Hefei Academy of Science; the Ministry of Science and Technology of China (Grant No. 2011YQ130018); Department of Science and Technology of Yunnan Province; Chinese Academy of Sciences. ; Approved Most recent IF: 1.554
Call Number UA @ lucian @ c:irua:152369UA @ admin @ c:irua:152369 Serial 5024
Permanent link to this record
 

 
Author Dong, H.M.; Xu, W.; Peeters, F.M.
Title High-field transport properties of graphene Type A1 Journal article
Year 2011 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 110 Issue 6 Pages 063704,1-063704,6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) We present a theoretical investigation on the transport properties of graphene in the presence of high dc driving fields. Considering electron interactions with impurities and acoustic and optical phonons in graphene, we employ the momentum- and energy-balance equations derived from the Boltzmann equation to self-consistently evaluate the drift velocity and temperature of electrons in graphene in the linear and nonlinear response regimes. We find that the current-voltage relation exhibits distinctly nonlinear behavior, especially in the high electric field regime. Under the action of high-fields the large source-drain (sd) current density can be achieved and the current saturation in graphene is incomplete with increasing the sd voltage Vsd up to 3 V. Moreover, for high fields, Vsd>0.1 V, the heating of electrons in graphene occurs. It is shown that the sd current and electron temperature are sensitive to electron density and lattice temperature in the graphene device. This study is relevant to the application of graphene as high-field nano-electronic devices such as graphene field-effect transistors.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000295619300059 Publication Date 2011-09-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 17 Open Access
Notes ; This work was supported by the National Natural Science Foundation of China (Grant No. 10974206) and the Department of Science and Technology of Yunnan Province. ; Approved Most recent IF: 2.068; 2011 IF: 2.168
Call Number UA @ lucian @ c:irua:93614 Serial 1433
Permanent link to this record
 

 
Author Zhao, C.X.; Xu, W.; Peeters, F.M.
Title Cerenkov emission of terahertz acoustic-phonons from graphene Type A1 Journal article
Year 2013 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 102 Issue 22 Pages 222101-222104
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) We present a theoretical study of the electrical generation of acoustic-phonon emission from graphene at room temperature. The drift velocity (v(x)) and temperature of electrons driven by dc electric field (F-x) are determined by solving self-consistently the momentum-and energy-balance equations derived from the Boltzmann equation. We find that in the presence of impurity, acoustic-and optic-phonon scattering, v(x) can be much larger than the longitudinal (v(l)) and transverse (v(t)) sound velocities in graphene even within the linear response regime. As a result, although the acoustic Cerenkov effect cannot be obviously seen in the analytical formulas, the enhanced acoustic-phonon emission can be observed with increasing F-x when v(x) > v(l) and v > v(t). The frequency of acoustic-phonon emission from graphene can be above 10 THz, which is much higher than that generated from conventional semiconductor systems. This study is pertinent to the application of graphene as hypersonic devices such as terahertz sound sources. (C) 2013 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000320621600034 Publication Date 2013-06-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 25 Open Access
Notes ; This work was supported by the National Natural Science Foundation of China (Grant No. 10974206), Ministry of Science and Technology of China (Grant No. 2011YQ130018), Department of Science and Technology of Yunnan Province, and by the Chinese Academy of Sciences. ; Approved Most recent IF: 3.411; 2013 IF: 3.515
Call Number UA @ lucian @ c:irua:109607 Serial 305
Permanent link to this record
 

 
Author Shi, J.M.; Koenraad, P.M.; van de Stadt, A.F.W.; Peeters, F.M.; Devreese, J.T.; Wolter, J.H.
Title Electronic structure of a Si \delta-doped layer in a GaAs/AlxGa1-xAs/GaAs quantum barrier Type A1 Journal article
Year 1996 Publication Physical Review B Abbreviated Journal Phys Rev B
Volume 54 Issue 11 Pages 7996-8004
Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems
Abstract (up) We present a theoretical study of the electronic structure of a heavily Si delta-doped layer in a GaAs/AlxGa1-xAs/GaAs quantum barrier. In this class of structures the effect of DX centers on the electronic properties can be tuned by changing the AlxGa1-xAs barrier width and/or the Al concentration, which leads to a lowering of the DX level with respect to the Fermi energy without disturbing the wave functions much. A self-consistent approach is developed in which the effective confinement potential and the Fermi energy of the system, the energies, the wave functions, and the electron densities of the discrete subbands have been obtained as a function of both the material parameters of the samples and the experimental conditions. The effect of DX centers on such structures at nonzero temperature and under an external pressure is investigated for three different models: (1) the DX(nc)(0) model with no correlation effects, (2) the d(+)/DX(0) model, and (3) the d(+)/DX(-) model with inclusion of correlation effects. In the actual calculation, influences of the background accepters, the discontinuity of the effective mass of the electrons at the interfaces of the different materials, band nonparabolicity, and the exchange-correlation energy of the electrons have been taken into account. We have found that (1) introducing a quantum barrier into delta-doped GaAs makes it possible to control the energy gaps between different electronic; subbands; (2) the electron wave functions are mon spread out when the repellent effect of the barriers is increased as compared to those in delta-doped GaAs; (3) increasing the quantum-barrier height and/or the application of hydrostatic pressure are helpful to experimentally observe the effect of the DX centers through a decrease of the total free-electron density; and (4) the correlation effects of the charged impurities are important for the systems under study.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos A1996VL14500066 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.736 Times cited 11 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:104388 Serial 1012
Permanent link to this record
 

 
Author Dhong, H.M.; Zhang, J.; Peeters, F.M.; Xu, W.
Title Optical conductance and transmission in bilayer graphene Type A1 Journal article
Year 2009 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 106 Issue 4 Pages 043103,1-043103,6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) We present a theoretical study of the optoelectronic properties of bilayer graphene. The optical conductance and transmission coefficient are calculated using the energy-balance equation derived from a Boltzmann equation for an air/graphene/dielectric-wafer system. For short wavelengths (<0.2 µm), we obtain the universal optical conductance =e2/(2). Interestingly, there exists an optical absorption window in the wavelength range 10100 µm, which is induced by different transition energies required for inter- and intra-band optical absorptions in the presence of the MossBurstein effect. As a result, the position and width of this absorption window depend sensitively on temperature, carrier density, and sample mobility of the system. These results are relevant for applications of recently developed graphene devices in advanced optoelectronics such as the infrared photodetectors.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000270083800004 Publication Date 2009-08-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 11 Open Access
Notes Approved Most recent IF: 2.068; 2009 IF: 2.072
Call Number UA @ lucian @ c:irua:79315 Serial 2472
Permanent link to this record
 

 
Author Dong, H.M.; Xu, W.; Zhang, J.; Peeters, F.M.; Vasilopoulos, P.
Title Photo-excited carriers and optical conductance and transmission in graphene in the presence of phonon scattering Type A1 Journal article
Year 2010 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E
Volume 42 Issue 4 Pages 748-750
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract (up) We present a theoretical study of the optoelectronic properties of monolayer graphene. Including the effect of the electron-photon-phonon scattering, we employ the mass- and energy-balance equations derived from the Boltzmann equation to evaluate self-consistently the carrier densities, optical conductance and transmission coefficient in graphene in the presence of linearly polarized radiation field. We find that the photo-excited carrier density can be increased under infrared radiation and depend strongly on radiation intensity and frequency. For short wavelengths (lambda <3 mu m), the universal optical conductance sigma(0) = e(2)/4h is obtained and the light transmittance is about 0.97-0.98. Interestingly, there is an optical absorption window in the range 4-100 mu m which is induced by different transition energies required for inter- and intra-band optical absorption. The position and width of this absorption window depend sensitively on temperature and carrier density of the system. These results are relevant for applications of recently developed graphene devices in advanced optoelectronics such as the infrared photodetectors. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher North-Holland Place of Publication Amsterdam Editor
Language Wos 000276541200022 Publication Date 2009-11-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.221 Times cited 7 Open Access
Notes ; ; Approved Most recent IF: 2.221; 2010 IF: 1.304
Call Number UA @ lucian @ c:irua:99216 Serial 2607
Permanent link to this record
 

 
Author Zhao, C.X.; Xu, W.; Dong, H.M.; Peeters, F.M.
Title Plasmon and coupled plasmon-phonon modes in graphene in the presence of a driving electric field Type A1 Journal article
Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 89 Issue 19 Pages 195447
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) We present a theoretical study of the plasmon and coupled plasmon-phonon modes induced by intraband electron-electron interaction in graphene in the presence of driving dc electric field. We find that the electric field dependence of these collective excitation modes in graphene differs significantly from that in a conventional two-dimensional electron gas with a parabolic energy spectrum. This is due mainly to the fact that graphene has a linear energy spectrum and the Fermi velocity of electrons in graphene is much larger than the drift velocity of electrons. The obtained results demonstrate that the plasmon and coupled plasmon-phonon modes in graphene can be tuned by applying not only the gate voltage but also the source-to-drain field. The manipulation of plasmon and coupled plasmon-phonon modes by source-to-drain voltage can let graphene be more conveniently applied as an advanced plasmonic material.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000336841000007 Publication Date 2014-05-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 9 Open Access
Notes ; This work was supported by the Ministry of Science and Technology of China (Grant No. 2011YQ130018), the Department of Science and Technology of Yunnan Province, the Chinese Academy of Sciences, and by the National Natural Science Foundation of China (Grant No. 11247002). ; Approved Most recent IF: 3.836; 2014 IF: 3.736
Call Number UA @ lucian @ c:irua:117764 Serial 2642
Permanent link to this record
 

 
Author Xiao, Y.M.; Xu, W.; Peeters, F.M.
Title Infrared to terahertz absorption window in mono- and multi-layer graphene systems Type A1 Journal article
Year 2014 Publication Optics communications Abbreviated Journal Opt Commun
Volume 328 Issue Pages 135-142
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) We present a theoretical study on optical properties such as optical conductance and light transmission coefficient for mono- and multi-layer graphene systems with AB- and ABC-stacking. Considering an air/graphene/dielectric-water structure, the optical coefficients for those graphene systems are examined and compared. The universal optical conductance sigma(N)(0)=N pi e(2)/(2h) for N layer graphene systems in the visible region is verified. For N 3 layer graphene, the mini-gap induced absorption edges can be observed in odd layers AB-stacked multilayer graphene, where the number and position of the absorption edges are decided by the layers number N. Meanwhile, we can observe the optical absorption windows for those graphene systems in the infrared to terahertz bandwidth (0.2-150 THz). The absorption window is induced by different transition energies required for inter- and intra-band optical absorption channels. We find that the depth and width of the absorption window can be tuned not only via varying temperature and electron density but also by changing the number of graphene layers and the stacking order. These theoretical findings demonstrate that mono- and multi-layer graphene systems can be applied as frequency tunable optoelectronic devices working in infrared to terahertz bandwidth. (C) 2014 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000336970000022 Publication Date 2014-05-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0030-4018; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.588 Times cited 7 Open Access
Notes ; This work was supported by the Ministry of Science and Technology of China (Grant no, 2011YQ130018), Department of Science and Technology of Yunnan Province, and by the Chinese Academy of Sciences. ; Approved Most recent IF: 1.588; 2014 IF: 1.449
Call Number UA @ lucian @ c:irua:118364 Serial 1666
Permanent link to this record
 

 
Author Zhao, C.X.; Xu, W.; Li, L.L.; Zhang, C.; Peeters, F.M.
Title Terahertz plasmon-polariton modes in graphene driven by electric field inside a Fabry-Perot cavity Type A1 Journal article
Year 2015 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 117 Issue 117 Pages 223104
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) We present a theoretical study on plasmon-polariton modes in graphene placed inside an optical cavity and driven by a source-to-drain electric field. The electron velocity and electron temperature are determined by solving self-consistently the momentum-and energy-balance equations in which electron interactions with impurities, acoustic-, and optic-phonons are included. Based on many-body self-consistent field theory, we develop a tractable approach to study plasmon-polariton in an electron gas system. We find that when graphene is placed inside a Fabry-Perot cavity, two branches of the plasmon-polariton modes can be observed and these modes are very much optic-or plasmon-like. The frequencies of these modes depend markedly on driving electric field especially at higher resonant frequency regime. Moreover, the plasmon-polariton frequency in graphene is in terahertz (THz) bandwidth and can be tuned by changing the cavity length, gate voltage, and driving electric field. This work is pertinent to the application of graphene-based structures as tunable THz plasmonic devices. (C) 2015 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000356176100004 Publication Date 2015-06-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979;1089-7550; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 13 Open Access
Notes ; This work was supported by the Ministry of Science and Technology of China (Grant No. 2011YQ130018), Department of Science and Technology of Yunnan Province, and by the Chinese Academy of Sciences. F.M.P. was a specially appointed Professor for foreign expert at the Chinese Academy of Sciences. ; Approved Most recent IF: 2.068; 2015 IF: 2.183
Call Number c:irua:127076 Serial 3507
Permanent link to this record
 

 
Author Xiao, Y.M.; Xu, W.; Zhang, Y.Y.; Peeters, F.M.
Title Optoelectronic properties of ABC-stacked trilayer graphene Type A1 Journal article
Year 2013 Publication Physica status solidi: B: basic research Abbreviated Journal Phys Status Solidi B
Volume 250 Issue 1 Pages 86-94
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) We present a theoretical study on the optoelectronic properties of ABC-stacked trilayer graphene (TLG). The optical conductance and light transmittance are evaluated through using the energy-balance equation derived from the Boltzmann equation for an air/graphene/dielectric-wafer system in the presence of linearly polarized radiation field. The results obtained from two band structure models are examined and compared. For short wavelength radiation, the universal optical conductance sigma(0) = 3e(2)/(4h) can be obtained. Importantly, there exists an optical absorption window in the radiation wavelength range 10-200 mu m, which is induced by different transition energies required for inter- and intra-band optical absorption channels. As a result, we find that the position and width of this window depend sensitively on temperature and carrier density of the system, especially the lower frequency edge. There is a small characteristic absorption peak at about 82 mu m where the largest interband transition states exist in the ABC-stacked TLG model, in contrast to the relatively smooth curves in a simplified model. These theoretical results indicate that TLG has some interesting and important physical properties which can be utilized to realize infrared or THz optoelectronic devices.
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos 000313347500011 Publication Date 2012-08-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-1972; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.674 Times cited 6 Open Access
Notes ; This work was supported by the National Natural Science Foundation of China (grant no. 10974206), Department of Science and Technology of Yunnan Province, and by the Chinese Academy of Sciences. One of us (F.M.P.) was a Specially Appointed Foreign Professor of the Chinese Academy of Sciences. ; Approved Most recent IF: 1.674; 2013 IF: 1.605
Call Number UA @ lucian @ c:irua:110109 Serial 2495
Permanent link to this record
 

 
Author Verberck, B.; Partoens, B.; Peeters, F.M.; Trauzettel, B.
Title Strain-induced band gaps in bilayer graphene Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 85 Issue 12 Pages 125403-125403,10
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) We present a tight-binding investigation of strained bilayer graphene within linear elasticity theory, focusing on the different environments experienced by the A and B carbon atoms of the different sublattices. We find that the inequivalence of the A and B atoms is enhanced by the application of perpendicular strain epsilon(zz), which provides a physical mechanism for opening a band gap, most effectively obtained when pulling the two graphene layers apart. In addition, perpendicular strain introduces electron-hole asymmetry and can result in linear electronic dispersion near the K point. Our findings suggest experimental means for strain-engineered band gaps in bilayer graphene.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000301113200005 Publication Date 2012-03-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 53 Open Access
Notes ; The authors would like to acknowledge O. Leenaerts, E. Mariani, K. H. Michel, and J. Schelter for useful discussions. B. V. was financially supported by the Flemish Science Foundation (FWO-Vl). This work was financially supported by the ESF program EuroGraphene under projects CONGRAN and ENTS as well as by the DFG. ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:97181 Serial 3168
Permanent link to this record
 

 
Author Yampolskii, S.V.; Peeters, F.M.
Title Giant vortices in small mesoscopic disks : an approximate description Type A1 Journal article
Year 2002 Publication Physica: C : superconductivity Abbreviated Journal Physica C
Volume 369 Issue 1/4 Pages 347-350
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) We present an approximate description of the giant vortex state in a thin mesoscopic superconducting disk within the phenomenological Ginzburg-Landau approach. Analytical asymptotic expressions for the energies of the states with fixed vorticity are obtained when a small magnetic flux is accumulated in the disk. The spectrum of the lowest Landau levels of such a disk is also discussed. (C) 2001 Elsevier Science B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000174200000063 Publication Date 2002-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record
Impact Factor 1.404 Times cited Open Access
Notes Approved Most recent IF: 1.404; 2002 IF: 0.912
Call Number UA @ lucian @ c:irua:94930 Serial 1342
Permanent link to this record
 

 
Author Anisimovas, E.; Peeters, F.M.
Title Negative trions in coupled quantum dots Type A1 Journal article
Year 2004 Publication Physica. E: Low-dimensional systems and nanostructures T2 – 15th International Conference on Electronic Properties of, Two-Dimensional Systems (EP2DS-15), JUL 14-18, 2003, Nara, JAPAN Abbreviated Journal Physica E
Volume 22 Issue 1-3 Pages 566-569
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract (up) We present an exact diagonalization study of negatively charged excitonic trions in two vertically coupled parabolic quantum dots. The electrons and the hole are confined to different dots. We obtain the energy spectra as a function of inter-dot separation and external magnetic field strength and identify different ground-state angular momentum transitions which are accompanied by abrupt charge redistributions in the dots. (C) 2003 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher North-Holland Place of Publication Amsterdam Editor
Language Wos 000221140800137 Publication Date 2004-02-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.221 Times cited 1 Open Access
Notes Approved Most recent IF: 2.221; 2004 IF: 0.898
Call Number UA @ lucian @ c:irua:102771 Serial 2292
Permanent link to this record
 

 
Author Schweigert, I.V.; Alexandrov, A.L.; Ariskin, D.A.; Peeters, F.M.; Stefanović, I.; Kovačević, E.; Berndt, J.; Winter, J.
Title Effect of transport of growing nanoparticles on capacitively coupled rf discharge dynamics Type A1 Journal article
Year 2008 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E
Volume 78 Issue 2 Pages 026410,1-026410,6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) We present experimental and numerical studies of the properties of a capacitively coupled 13.56 MHz discharge in a mixture of Ar and C2H2 with growing nanosize particles. It is found that at the initial stage of the growth, nanoparticles are accumulated near the sheath-plasma boundaries, where the ionization by electrons is maximal. The nanoparticles suppress the ionization due to the absorbing fast electrons and stimulate a quick change of the plasma parameters followed by a transition between different modes of discharge operation. At that moment the peaked distribution of the dust particles transforms into a flat one.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000259263700071 Publication Date 2008-08-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 36 Open Access
Notes Approved Most recent IF: 2.366; 2008 IF: 2.508
Call Number UA @ lucian @ c:irua:76552 Serial 851
Permanent link to this record
 

 
Author Peelaers, H.; Partoens, B.; Peeters, F.M.
Title Phonon band structures of Si nanowires Type A1 Journal article
Year 2009 Publication AIP conference proceedings Abbreviated Journal
Volume 1199 Issue Pages 323-324
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) We present full ab initio calculations of the phonon band structure of thin Si nanowires oriented along the [110] direction. Using these phonon dispersion relations we investigate the structural stability of these wires. We found that all studied wires were stable also when doped with either B or P, if the unit cell was taken sufficiently large along the wire axis. The evolution of the phonon dispersion relations and of the sound velocities with respect to the wire diameters is discussed. Softening is observed for acoustic modes and hardening for optical phonon modes with increasing wire diameters.
Address
Corporate Author Thesis
Publisher Place of Publication New York Editor
Language Wos 000281590800153 Publication Date 2010-01-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:84891 Serial 2602
Permanent link to this record
 

 
Author Peelaers, H.; Partoens, B.; Peeters, F.M.
Title Phonon band structure of Si nanowires: a stability analysis Type A1 Journal article
Year 2009 Publication Nano letters Abbreviated Journal Nano Lett
Volume 9 Issue 1 Pages 107-111
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) We present full ab initio calculations of the phonon band structure of thin Si nanowires oriented along the [110] direction. Using these phonon dispersion relations, we investigate the structural stability of these wires. We found that all studied wires were stable also when doped with either B or P, if the unit cell was taken sufficiently large along the wire axis. The evolution of the phonon dispersion relations and of the sound velocities with respect to the wire diameters is discussed. Softening is observed for acoustic modes and hardening for optical phonon modes with increasing wire diameters.
Address
Corporate Author Thesis
Publisher Place of Publication Washington Editor
Language Wos 000262519100020 Publication Date 2008-12-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.712 Times cited 51 Open Access
Notes Approved Most recent IF: 12.712; 2009 IF: 9.991
Call Number UA @ lucian @ c:irua:76022 Serial 2601
Permanent link to this record
 

 
Author Nakhaee, M.; Ketabi, S.A.; Peeters, F.M.
Title Tight-binding studio : a technical software package to find the parameters of tight-binding Hamiltonian Type A1 Journal article
Year 2020 Publication Computer Physics Communications Abbreviated Journal Comput Phys Commun
Volume 254 Issue Pages 107379-10
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) We present the Tight-Binding Studio (TB Studio) software package that calculates the different parameters of a tight-binding Hamiltonian from a set of Bloch energy bands obtained from first principle theories such as density functional theory, Hartree-Fock calculations or semi-empirical band-structure theory. This will be helpful for scientists who are interested in studying electronic and optical properties of structures using Green's function theory within the tight-binding approximation. TB Studio is a cross-platform application written in C++ with a graphical user interface design that is user-friendly and easy to work with. This software is powered by Linear Algebra Package C interface library for solving the eigenvalue problems and the standard high performance OpenGL graphic library for real time plotting. TB Studio and its examples together with the tutorials are available for download from tight-binding.com. Program summary Program Title: Tight-Binding Studio Program Files doi:http://dx.doi.org/10.17632/j6x5mwzm2d.1 Licensing provisions: LGPL Programming language: C++ External routines: BLAS, LAPACK, LAPACKE, wxWidgets, OpenGL, MathGL Nature of problem: Obtaining Tight-Binding Hamiltonian from a set of Bloch energy bands obtained from first-principles calculations. Solution method: Starting from the simplified LCAO method, a tight-binding model in the two-center approximation is constructed. The Slater and Koster (SK) approach is used to calculate the parameters of the TB Hamiltonian. By using non-linear fitting approaches the optimal values of the SK parameters are obtained such that the TB energy eigenvalues are as close as possible to those from first-principles calculations. We obtain the expression for the Hamiltonian and the overlap matrix elements between the different orbitals of the different atoms in an orthogonal or non-orthogonal basis set. (C) 2020 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000541251200030 Publication Date 2020-05-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0010-4655 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.3 Times cited 27 Open Access
Notes ; This work was supported by the Methusalem program of the Flemish government, Belgium and M. Nakhaee was supported by a BOF-fellowship (UAntwerpen), Belgium. ; Approved Most recent IF: 6.3; 2020 IF: 3.936
Call Number UA @ admin @ c:irua:170149 Serial 6630
Permanent link to this record
 

 
Author Suslu, A.; Wu, K.; Sahin, H.; Chen, B.; Yang, S.; Cai, H.; Aoki, T.; Horzum, S.; Kang, J.; Peeters, F.M.; Tongay, S.;
Title Unusual dimensionality effects and surface charge density in 2D Mg(OH)2 Type A1 Journal article
Year 2016 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
Volume 6 Issue 6 Pages 20525
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract (up) We present two-dimensional Mg(OH)(2) sheets and their vertical heterojunctions with CVD-MoS2 for the first time as flexible 2D insulators with anomalous lattice vibration and chemical and physical properties. New hydrothermal crystal growth technique enabled isolation of environmentally stable monolayer Mg(OH)(2) sheets. Raman spectroscopy and vibrational calculations reveal that the lattice vibrations of Mg(OH)(2) have fundamentally different signature peaks and dimensionality effects compared to other 2D material systems known to date. Sub-wavelength electron energy-loss spectroscopy measurements and theoretical calculations show that Mg(OH)(2) is a 6 eV direct-gap insulator in 2D, and its optical band gap displays strong band renormalization effects from monolayer to bulk, marking the first experimental confirmation of confinement effects in 2D insulators. Interestingly, 2D-Mg(OH)(2) sheets possess rather strong surface polarization (charge) effects which is in contrast to electrically neutral h-BN materials. Using 2D-Mg(OH)(2) sheets together with CVD-MoS2 in the vertical stacking shows that a strong change transfer occurs from n-doped CVD-MoS2 sheets to Mg(OH)(2), naturally depleting the semiconductor, pushing towards intrinsic doping limit and enhancing overall optical performance of 2D semiconductors. Results not only establish unusual confinement effects in 2D-Mg(OH)(2), but also offer novel 2D-insulating material with unique physical, vibrational, and chemical properties for potential applications in flexible optoelectronics.
Address
Corporate Author Thesis
Publisher Nature Publishing Group Place of Publication London Editor
Language Wos 000369510300001 Publication Date 2016-02-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited 39 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). HS is supported by a FWO Pegasus Long Marie Curie Fellowship. JK is supported by a FWO Pegasus-short Marie Curie Fellowship. We acknowledge the use of John M. Cowley Center for High Resolution Electron Microscopy at Arizona State University. ; Approved Most recent IF: 4.259
Call Number UA @ lucian @ c:irua:131615 Serial 4272
Permanent link to this record
 

 
Author Covaci, L.; Peeters, F.M.; Berciu, M.
Title Efficient numerical approach to inhomogeneous superconductivity: the Chebyshev-Bogoliubov-de Gennes method Type A1 Journal article
Year 2010 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 105 Issue 16 Pages 167006,1-167006,4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) We propose a highly efficient numerical method to describe inhomogeneous superconductivity by using the kernel polynomial method in order to calculate the Greens functions of a superconductor. Broken translational invariance of any type (impurities, surfaces, or magnetic fields) can be easily incorporated. We show that limitations due to system size can be easily circumvented and therefore this method opens the way for the study of scenarios and/or geometries that were unaccessible before. The proposed method is highly efficient and amenable to large scale parallel computation. Although we only use it in the context of superconductivity, it is applicable to other inhomogeneous mean-field theories.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000282816300018 Publication Date 2010-10-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 80 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), CIfAR, and NSERC. Discussions with Frank Marsiglio are gratefully acknowledged. ; Approved Most recent IF: 8.462; 2010 IF: 7.622
Call Number UA @ lucian @ c:irua:84899 Serial 875
Permanent link to this record
 

 
Author Ivanov, V.A.; Krstajic, P.M.; Peeters, F.M.; Fleurov, V.; Kikoin, K.
Title On the ferromagnetic exchange in Mn-doped III-V semiconductors Type A1 Journal article
Year 2003 Publication Physica: B : condensed matter T2 – 23rd International Conference on Low Temperature Physics (LT23), AUG 20-27, 2002, HIROSHIMA, JAPAN Abbreviated Journal Physica B
Volume 329 Issue Part 2 Pages 1282-1283
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) We propose a microscopic model for double exchange in GaAs:Mn, GaP:Mn which is based on the interaction between the transition metal impurities and the heavy holes of host semiconductor. The kinematic exchange is derived and the Curie temperature is calculated which agrees with recent experiments. (C) 2003 Elsevier Science B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000183802700400 Publication Date 2003-02-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4526; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.386 Times cited 5 Open Access
Notes Approved Most recent IF: 1.386; 2003 IF: 0.908
Call Number UA @ lucian @ c:irua:103813 Serial 2435
Permanent link to this record
 

 
Author Zarenia, M.; Pereira, J.M.; Peeters, F.M.; Farias, G.A.
Title Electrostatically confined quantum rings in bilayer graphene Type A1 Journal article
Year 2009 Publication Nano letters Abbreviated Journal Nano Lett
Volume 9 Issue 12 Pages 4088-4092
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) We propose a new system where electron and hole states are electrostatically confined into a quantum ring in bilayer graphene. These structures can be created by tuning the gap of the graphene bilayer using nanostructured gates or by position-dependent doping. The energy levels have a magnetic field (B0) dependence that is strikingly distinct from that of usual semiconductor quantum rings. In particular, the eigenvalues are not invariant under a B0 ¨ −B0 transformation and, for a fixed total angular momentum index m, their field dependence is not parabolic, but displays two minima separated by a saddle point. The spectra also display several anticrossings, which arise due to the overlap of gate-confined and magnetically confined states.
Address
Corporate Author Thesis
Publisher Place of Publication Washington Editor
Language Wos 000272395400023 Publication Date 2009-08-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.712 Times cited 42 Open Access
Notes Approved Most recent IF: 12.712; 2009 IF: 9.991
Call Number UA @ lucian @ c:irua:80318 Serial 1024
Permanent link to this record
 

 
Author Villegas, C.E.P.; Tavares, M.R.S.; Hai, G.-Q.; Peeters, F.M.
Title Sorting the modes contributing to guidance in strain-induced graphene waveguides Type A1 Journal article
Year 2013 Publication New journal of physics Abbreviated Journal New J Phys
Volume 15 Issue Pages 023015-11
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) We propose a simple way of probing the number of modes contributing to the channeling in graphene waveguides which are formed by a gauge potential produced by mechanical strain. The energy mode structure for both homogeneous and non-homogeneous strain regimes is carefully studied using the continuum description of the Dirac equation. We found that high strain values privilege negative (instead of positive) group velocities throughout the guidance, sorting the types of modes flowing through it. We also show how the effect of a substrate-induced gap competes against the strain.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000314868000002 Publication Date 2013-02-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.786 Times cited 7 Open Access
Notes ; This work was supported by FAPESP, CNPq and the Flemish Science Foundation (FWO-VI). ; Approved Most recent IF: 3.786; 2013 IF: 3.671
Call Number UA @ lucian @ c:irua:107667 Serial 3056
Permanent link to this record
 

 
Author Rezaei, M.; Sisakht, E.T.; Fazileh, F.; Aslani, Z.; Peeters, F.M.
Title Tight-binding model investigation of the biaxial strain induced topological phase transition in GeCH3 Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 96 Issue 8 Pages 085441
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) We propose a tight-binding (TB) model, that includes spin-orbit coupling (SOC), to describe the electronic properties of methyl-substituted germanane (GeCH3). This model gives an electronic spectrum in agreement with first principle results close to the Fermi level. Using the Z(2) formalism, we show that a topological phase transition from a normal insulator (NI) to a quantum spin Hall (QSH) phase occurs at 11.6% biaxial tensile strain. The sensitivity of the electronic properties of this system on strain, in particular its transition to the topological insulating phase, makes it very attractive for applications in strain sensors and other microelectronic applications.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000408570800004 Publication Date 2017-08-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 10 Open Access
Notes ; ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:145697 Serial 4755
Permanent link to this record
 

 
Author Grujić, M.M.; Ezawa, M.; Tadic, M.Z.; Peeters, F.M.
Title Tunable skewed edges in puckered structures Type A1 Journal article
Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 93 Issue 93 Pages 245413
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) We propose a type of edges arising due to the anisotropy inherent in the puckered structure of a honeycomb system such as in phosphorene. Skewed-zigzag and skewed-armchair nanoribbons are semiconducting and metallic, respectively, in contrast to their normal edge counterparts. Their band structures are tunable, and a metal-insulator transition is induced by an electric field. We predict a field-effect transistor based on the edge states in skewed-armchair nanoribbons, where the edge state is gapped by applying arbitrary small electric field E-z. A topological argument is presented, revealing the condition for the emergence of such edge states.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000377802700010 Publication Date 2016-06-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 29 Open Access
Notes ; This work was supported by the Serbian Ministry of Education, Science and Technological Development, and the Flemish Science Foundation (FWO-Vl). M.E. is thankful for the support by the Grants-in-Aid for Scientific Research from MEXT KAKENHI (Grants No. 25400317 and No. 15H05854). ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:134599 Serial 4268
Permanent link to this record
 

 
Author Degani, M.H.; Farias, G.A.; Peeters, F.M.
Title Bound states and lifetime of an electron on a bulk helium surface Type A1 Journal article
Year 2005 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 72 Issue 12 Pages 125408-125408,7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) We propose an effective potential for an excess electron near the helium liquid-vapor interface that takes into account the diffuseness of the liquid-vapor interface and the classical image potential. The splitting of the first two excited states of the excess electron bound to the helium liquid-vapor interface as a function of an external constant electric field applied perpendicular to the interface is in excellent agreement with recent experiments. The effect of a parallel magnetic field on the energy levels are calculated. Single-electron tunneling of the electron out of its surface state is studied as a function of the electric field applied to the system. We found that the tunneling time has a linear dependence on the electric field.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000232229400125 Publication Date 2005-09-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 11 Open Access
Notes Approved Most recent IF: 3.836; 2005 IF: 3.185
Call Number UA @ lucian @ c:irua:94719 Serial 251
Permanent link to this record
 

 
Author Scuracchio, P.; Dobry, A.; Costamagna, S.; Peeters, F.M.
Title Tuning the polarized quantum phonon transmission in graphene nanoribbons Type A1 Journal article
Year 2015 Publication Nanotechnology Abbreviated Journal Nanotechnology
Volume 26 Issue 26 Pages 305401
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract (up) We propose systems that allow a tuning of the phonon transmission function T(omega) in graphene nanoribbons by using C-13 isotope barriers, antidot structures, and distinct boundary conditions. Phonon modes are obtained by an interatomic fifth-nearest neighbor force-constant model (5NNFCM) and T(omega) is calculated using the non-equilibrium Green's function formalism. We show that by imposing partial fixed boundary conditions it is possible to restrict contributions of the in-plane phonon modes to T(omega) at low energy. On the contrary, the transmission functions of out-of-plane phonon modes can be diminished by proper antidot or isotope arrangements. In particular, we show that a periodic array of them leads to sharp dips in the transmission function at certain frequencies omega(nu) which can be pre-defined as desired by controlling their relative distance and size. With this, we demonstrated that by adequate engineering it is possible to govern the magnitude of the ballistic transmission functions T(omega) in graphene nanoribbons. We discuss the implications of these results in the design of controlled thermal transport at the nanoscale as well as in the enhancement of thermo-electric features of graphene-based materials.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000358675900010 Publication Date 2015-07-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0957-4484;1361-6528; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.44 Times cited 5 Open Access
Notes ; Discussions with C E Repetto, C R Stia and K H Michel are gratefully acknowledged. This work was partially supported by the Flemish Science Foundation (FWO-Vl) and PIP 11220090100392 of CONICET (Argentina). We acknowledge funding from the FWO (Belgium)-MINCyT (Argentina) collaborative research project. ; Approved Most recent IF: 3.44; 2015 IF: 3.821
Call Number c:irua:127186 Serial 3759
Permanent link to this record
 

 
Author Zarenia, M.; Perali, A.; Neilson, D.; Peeters, F.M.
Title Enhancement of electron-hole superfluidity in double few-layer graphene Type A1 Journal article
Year 2014 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
Volume 4 Issue 4 Pages 7319
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract (up) We propose two coupled electron-hole sheets of few-layer graphene as a new nanostructure to observe superfluidity at enhanced densities and enhanced transition temperatures. For ABC stacked few-layer graphene we show that the strongly correlated electron-hole pairing regime is readily accessible experimentally using current technologies. We find for double trilayer and quadlayer graphene sheets spatially separated by a nano-thick hexagonal boron-nitride insulating barrier, that the transition temperature for electron-hole superfluidity can approach temperatures of 40 K.
Address
Corporate Author Thesis
Publisher Nature Publishing Group Place of Publication London Editor
Language Wos 000346272900001 Publication Date 2014-12-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited 38 Open Access
Notes ; We thank L. Benfatto, S. De Palo, and G. Senatore for helpful comments. This work was partially supported by the Flemish Science Foundation (FWO-Vl) and the European Science Foundation (POLATOM). ; Approved Most recent IF: 4.259; 2014 IF: 5.578
Call Number UA @ lucian @ c:irua:122743 Serial 1062
Permanent link to this record
 

 
Author Ghosh, S.; Tongay, S.; Hebard, A.F.; Sahin, H.; Peeters, F.M.
Title Ferromagnetism in stacked bilayers of Pd/C60 Type A1 Journal article
Year 2014 Publication Journal of magnetism and magnetic materials Abbreviated Journal J Magn Magn Mater
Volume 349 Issue Pages 128-134
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) We provide experimental evidence for the existence of ferromagnetism in bilayers of Pd/C-60 which is supported by theoretical calculations based on density functional theory (DFT). The observed ferromagnetism is surprising as C-60 and Pd films are both non-ferromagnetic in the non-interacting limit. Magnetization (M) versus applied field (H) data acquired at different temperatures (T) show magnetic hysteresis with typical coercive fields (H-c) on the order of 50 Oe. From the temperature-dependent magnetization M(T) we extract a Curie temperature (T-c >= 550 K) using Bloch-like power law extrapolations to high temperatures. Using DFT calculations we investigated all plausible scenarios for the interaction between the C-60 molecules and the Pd slabs, Pd single atoms and Pd clusters. DFT shows that while the C-60 molecules are nonmagnetic, Pd films have a degenerate ground state that subject to a weak perturbation, can become ferromagnetic. Calculations also show that the interaction of C-60 molecules with excess Pd atoms and with sharp edges of a Pd slab is the most likely configuration that render the system ferromagnetic Interestingly, the calculated charge transfer (0.016 e per surface Pd atom, 0.064 e per Pd for intimate contact region) between C-60 and Pd does not appear to play an important role. (C) 2013 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000326037600022 Publication Date 2013-08-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-8853; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.63 Times cited 8 Open Access
Notes ; We thank Prof. Amlan Biswas and Daniel Grant for Atomic Force Microscopy measurements. This work is supported by the National Science Foundation (NSF) under Contract Number 1005301 (AFH). The authors also thank S. Ciraci for fruitful discussions. All the computational resources have been provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H. Sahin is also supported by a FWO Pegasus Marie Curie Long Fellowship during the study. ; Approved Most recent IF: 2.63; 2014 IF: 1.970
Call Number UA @ lucian @ c:irua:112214 Serial 1184
Permanent link to this record
 

 
Author Latimer, M.L.; Berdiyorov, G.R.; Xiao, Z.L.; Peeters, F.M.; Kwok, W.K.
Title Realization of artificial ice systems for magnetic vortices in a superconducting MoGe thin film with patterned nanostructures Type A1 Journal article
Year 2013 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 111 Issue 6 Pages 067001-67005
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) We report an anomalous matching effect in MoGe thin films containing pairs of circular holes arranged in such a way that four of those pairs meet at each vertex point of a square lattice. A remarkably pronounced fractional matching was observed in the magnetic field dependences of both the resistance and the critical current. At the half matching field the critical current can be even higher than that at zero field. This has never been observed before for vortices in superconductors with pinning arrays. Numerical simulations within the nonlinear Ginzburg-Landau theory reveal a square vortex ice configuration in the ground state at the half matching field and demonstrate similar characteristic features in the field dependence of the critical current, confirming the experimental realization of an artificial ice system for vortices for the first time.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000322799200013 Publication Date 2013-08-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 63 Open Access
Notes ; This work was supported by the US Department of Energy DOE BES under Contract No. DE-AC02-06CH11357 (transport measurements), the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government (numerical simulations). G. R. B. acknowledges an individual grant from FWO-Vl. The nanopatterning and morphological analysis were performed at Argonne's Center for Nanoscale Materials (CNM) which is funded by DOE BES under Contract No. DE-AC02-06CH11357. We are grateful to Dr. Charles Reichhardt in Los Alamos National Laboratory for stimulating discussions and critical comments. Z. L. X. acknowledges DOE BES Grant No. DE-FG02-06ER46334 (sample fabrication and imaging). M. L. L. was a recipient of the NIU/ANL Distinguished Graduate Fellowship grant. ; Approved Most recent IF: 8.462; 2013 IF: 7.728
Call Number UA @ lucian @ c:irua:110750 Serial 2836
Permanent link to this record