|   | 
Details
   web
Records
Author Biscop,; Lin,; Boxem,; Loenhout,; Backer,; Deben,; Dewilde,; Smits,; Bogaerts,
Title Influence of Cell Type and Culture Medium on Determining Cancer Selectivity of Cold Atmospheric Plasma Treatment Type A1 Journal article
Year 2019 Publication Cancers Abbreviated Journal (down) Cancers
Volume 11 Issue 9 Pages 1287
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)
Abstract Increasing the selectivity of cancer treatments is attractive, as it has the potential to reduce side-effects of therapy. Cold atmospheric plasma (CAP) is a novel cancer treatment that disrupts the intracellular oxidative balance. Several reports claim CAP treatment to be selective, but retrospective analysis of these studies revealed discrepancies in several biological factors and culturing methods. Before CAP can be conclusively stated as a selective cancer treatment, the importance of these factors must be investigated. In this study, we evaluated the influence of the cell type, cancer type, and cell culture medium on direct and indirect CAP treatment. Comparison of cancerous cells with their non-cancerous counterparts was performed under standardized conditions to determine selectivity of treatment. Analysis of seven human cell lines (cancerous: A549, U87, A375, and Malme-3M; non-cancerous: BEAS-2B, HA, and HEMa) and five different cell culture media (DMEM, RPMI1640, AM, BEGM, and DCBM) revealed that the tested parameters strongly influence indirect CAP treatment, while direct treatment was less affected. Taken together, the results of our study demonstrate that cell type, cancer type, and culturing medium must be taken into account before selectivity of CAP treatment can be claimed and overlooking these parameters can easily result in inaccurate conclusions of selectivity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000489719000072 Publication Date 2019-09-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-6694 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 9 Open Access
Notes the Research Foundation Flanders, 12S9218N – ; Universiteit Antwerpen, – ; Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @c:irua:162097 Serial 5360
Permanent link to this record
 

 
Author Van Loenhout, J.; Flieswasser, T.; Freire Boullosa, L.; De Waele, J.; Van Audenaerde, J.; Marcq, E.; Jacobs, J.; Lin, A.; Lion, E.; Dewitte, H.; Peeters, M.; Dewilde, S.; Lardon, F.; Bogaerts, A.; Deben, C.; Smits, E.
Title Cold Atmospheric Plasma-Treated PBS Eliminates Immunosuppressive Pancreatic Stellate Cells and Induces Immunogenic Cell Death of Pancreatic Cancer Cells Type A1 Journal article
Year 2019 Publication Cancers Abbreviated Journal (down) Cancers
Volume 11 Issue 10 Pages 1597
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Laboratory for Experimental Hematology (LEH); Center for Oncological Research (CORE)
Abstract Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancers with a low response to treatment and a five-year survival rate below 5%. The ineffectiveness of treatment is partly because of an immunosuppressive tumor microenvironment, which comprises tumor-supportive pancreatic stellate cells (PSCs). Therefore, new therapeutic strategies are needed to tackle both the immunosuppressive PSC and pancreatic cancer cells (PCCs). Recently, physical cold atmospheric plasma consisting of reactive oxygen and nitrogen species has emerged as a novel treatment option for cancer. In this study, we investigated the cytotoxicity of plasma-treated phosphate-buffered saline (pPBS) using three PSC lines and four PCC lines and examined the immunogenicity of the induced cell death. We observed a decrease in the viability of PSC and PCC after pPBS treatment, with a higher efficacy in the latter. Two PCC lines expressed and released damage-associated molecular patterns characteristic of the induction of immunogenic cell death (ICD). In addition, pPBS-treated PCC were highly phagocytosed by dendritic cells (DCs), resulting in the maturation of DC. This indicates the high potential of pPBS to trigger ICD. In contrast, pPBS induced no ICD in PSC. In general, pPBS treatment of PCCs and PSCs created a more immunostimulatory secretion profile (higher TNF-α and IFN-γ, lower TGF-β) in coculture with DC. Altogether, these data show that plasma treatment via pPBS has the potential to induce ICD in PCCs and to reduce the immunosuppressive tumor microenvironment created by PSCs. Therefore, these data provide a strong experimental basis for further in vivo validation, which might potentially open the way for more successful combination strategies with immunotherapy for PDAC.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000498826000194 Publication Date 2019-10-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-6694 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 6 Open Access
Notes Universiteit Antwerpen, NA ; Fonds Wetenschappelijk Onderzoek, 11E7719N 1121016N 1S32316N 12S9218N 12E3916N ; Agentschap Innoveren en Ondernemen, 141433 ; Kom op tegen Kanker, NA ; Stichting Tegen Kanker, STK2014-155 ; The authors express their gratitude to Christophe Hermans, Céline Merlin, Hilde Lambrechts, and Hans de Reu for technical assistance; and to VITO for the use of the MSD reader (Mol, Belgium). Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @c:irua:163328 Serial 5436
Permanent link to this record
 

 
Author Privat-Maldonado, A.; Bengtson, C.; Razzokov, J.; Smits, E.; Bogaerts, A.
Title Modifying the Tumour Microenvironment: Challenges and Future Perspectives for Anticancer Plasma Treatments Type A1 Journal article
Year 2019 Publication Cancers Abbreviated Journal (down) Cancers
Volume 11 Issue 12 Pages 1920
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)
Abstract Tumours are complex systems formed by cellular (malignant, immune, and endothelial cells, fibroblasts) and acellular components (extracellular matrix (ECM) constituents and secreted factors). A close interplay between these factors, collectively called the tumour microenvironment, is required to respond appropriately to external cues and to determine the treatment outcome. Cold plasma (here referred as ‘plasma’) is an emerging anticancer technology that generates a unique cocktail of reactive oxygen and nitrogen species to eliminate cancerous cells via multiple mechanisms of action. While plasma is currently regarded as a local therapy, it can also modulate the mechanisms of cell-to-cell and cell-to-ECM communication, which could facilitate the propagation of its effect in tissue and distant sites. However, it is still largely unknown how the physical interactions occurring between cells and/or the ECM in the tumour microenvironment affect the plasma therapy outcome. In this review, we discuss the effect of plasma on cell-to-cell and cell-to-ECM communication in the context of the tumour microenvironment and suggest new avenues of research to advance our knowledge in the field. Furthermore, we revise the relevant state-of-the-art in three-dimensional in vitro models that could be used to analyse cell-to-cell and cell-to-ECM communication and further strengthen our understanding of the effect of plasma in solid tumours.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000507382100097 Publication Date 2019-12-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-6694 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Figure 4 was created using resources from the ‘Mind the Graph’ platform, free trial version. Spheroid image obtained in collaboration with Sander Bekeschus (INP Greifswald, Germany); organoid image kindly provided by Christophe Deben (Center for Oncological Research, University of Antwerp, Belgium). Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @c:irua:164892 Serial 5437
Permanent link to this record
 

 
Author Privat-Maldonado, A.; Bogaerts, A.
Title Plasma in Cancer Treatment Type Editorial
Year 2020 Publication Cancers Abbreviated Journal (down) Cancers
Volume 12 Issue 9 Pages 2617
Keywords Editorial; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Cancer is the second leading cause of death worldwide, and while science has advanced significantly to improve the treatment outcome and quality of life in cancer patients, there are still many issues with the current therapies, such as toxicity and the development of resistance to treatment [...]
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000581447500001 Publication Date 2020-09-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-6694 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @c:irua:172460 Serial 6413
Permanent link to this record
 

 
Author Verloy, R.; Privat-Maldonado, A.; Smits, E.; Bogaerts, A.
Title Cold Atmospheric Plasma Treatment for Pancreatic Cancer–The Importance of Pancreatic Stellate Cells Type A1 Journal article
Year 2020 Publication Cancers Abbreviated Journal (down) Cancers
Volume 12 Issue 10 Pages 2782
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)
Abstract Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with low five-year survival rates of 8% by conventional treatment methods, e.g., chemotherapy, radiotherapy, and surgery. PDAC shows high resistance towards chemo- and radiotherapy and only 15–20% of all patients can have surgery. This disease is predicted to become the third global leading cause of cancer death due to its significant rise in incidence. Therefore, the development of an alternative or combinational method is necessary to improve current approaches. Cold atmospheric plasma (CAP) treatments could offer multiple advantages to this emerging situation. The plasma-derived reactive species can induce oxidative damage and a cascade of intracellular signaling pathways, which could lead to cell death. Previous reports have shown that CAP treatment also influences cells in the tumor microenvironment, such as the pancreatic stellate cells (PSCs). These PSCs, when activated, play a crucial role in the propagation, growth and survival of PDAC tumors. However, the effect of CAP on PSCs is not yet fully understood. This review focuses on the application of CAP for PDAC treatment and the importance of PSCs in the response to treatment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000584150700001 Publication Date 2020-09-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-6694 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Server Medical Art templates were used for creating figures. Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @c:irua:172454 Serial 6418
Permanent link to this record
 

 
Author Lin, A.; Stapelmann, K.; Bogaerts, A.
Title Advances in Plasma Oncology toward Clinical Translation Type Editorial
Year 2020 Publication Cancers Abbreviated Journal (down) Cancers
Volume 12 Issue 11 Pages 3283
Keywords Editorial; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract This Special Issue on “Advances in Plasma Oncology Toward Clinical Translation” aims to bring together cutting-edge research papers within the field in the context of clinical translation and application [...]
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000592876800001 Publication Date 2020-11-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-6694 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @c:irua:173858 Serial 6434
Permanent link to this record
 

 
Author Clemen, R.; Heirman, P.; Lin, A.; Bogaerts, A.; Bekeschus, S.
Title Physical Plasma-Treated Skin Cancer Cells Amplify Tumor Cytotoxicity of Human Natural Killer (NK) Cells Type A1 Journal article
Year 2020 Publication Cancers Abbreviated Journal (down) Cancers
Volume 12 Issue 12 Pages 3575
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Skin cancers have the highest prevalence of all human cancers, with the most lethal forms being squamous cell carcinoma and malignant melanoma. Besides the conventional local treatment approaches like surgery and radiotherapy, cold physical plasmas are emerging anticancer tools. Plasma technology is used as a therapeutic agent by generating reactive oxygen species (ROS). Evidence shows that inflammation and adaptive immunity are involved in cancer-reducing effects of plasma treatment, but the role of innate immune cells is still unclear. Natural killer (NK)-cells interact with target cells via activating and inhibiting surface receptors and kill in case of dominating activating signals. In this study, we investigated the effect of cold physical plasma (kINPen) on two skin cancer cell lines (A375 and A431), with non-malignant HaCaT keratinocytes as control, and identified a plasma treatment time-dependent toxicity that was more pronounced in the cancer cells. Plasma treatment also modulated the expression of activating and inhibiting receptors more profoundly in skin cancer cells compared to HaCaT cells, leading to significantly higher NK-cell killing rates in the tumor cells. Together with increased pro-inflammatory mediators such as IL-6 and IL-8, we conclude that plasma treatment spurs stress responses in skin cancer cells, eventually augmenting NK-cell activity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000601901900001 Publication Date 2020-11-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-6694 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes This work was funded by the German Federal Ministry of Education and Research (BMBF), grant numbers 03Z22DN11 and 03Z22Di1; The authors acknowledge the technical assistance of Eric Freund, Julia Berner, Sanjeev Kumar Sagwal, Christina Wolff, Felix Niessner, Walison Brito, and Lea Miebach. Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @c:irua:173863 Serial 6442
Permanent link to this record
 

 
Author Lin, A.; Razzokov, J.; Verswyvel, H.; Privat-Maldonado, A.; De Backer, J.; Yusupov, M.; Cardenas De La Hoz, E.; Ponsaerts, P.; Smits, E.; Bogaerts, A.
Title Oxidation of Innate Immune Checkpoint CD47 on Cancer Cells with Non-Thermal Plasma Type A1 Journal article
Year 2021 Publication Cancers Abbreviated Journal (down) Cancers
Volume 13 Issue 3 Pages 579
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Laboratory for Experimental Hematology (LEH); Center for Oncological Research (CORE)
Abstract Non-thermal plasma (NTP) therapy has been emerging as a promising cancer treatment strategy, and recently, its ability to locally induce immunogenic cancer cell death is being unraveled. We hypothesized that the chemical species produced by NTP reduce immunosuppressive surface proteins and checkpoints that are overexpressed on cancerous cells. Here, 3D in vitro tumor models, an in vivo mouse model, and molecular dynamics simulations are used to investigate the effect of NTP on CD47, a key innate immune checkpoint. CD47 is immediately modulated after NTP treatment and simulations reveal the potential oxidized salt-bridges responsible for conformational changes. Umbrella sampling simulations of CD47 with its receptor, signal-regulatory protein alpha (SIRPα), demonstrate that the induced-conformational changes reduce its binding affinity. Taken together, this work provides new insight into fundamental, chemical NTP-cancer cell interaction mechanisms and a previously overlooked advantage of present NTP cancer therapy: reducing immunosuppressive signals on the surface of cancer cells.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000614960600001 Publication Date 2021-02-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-6694 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes We thank Erik Fransen (University of Antwerp; Antwerp, Belgium) for his help and guidance on the statistical analysis. Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @c:irua:176455 Serial 6709
Permanent link to this record
 

 
Author Shaw, P.; Kumar, N.; Privat-Maldonado, A.; Smits, E.; Bogaerts, A.
Title Cold Atmospheric Plasma Increases Temozolomide Sensitivity of Three-Dimensional Glioblastoma Spheroids via Oxidative Stress-Mediated DNA Damage Type A1 Journal article
Year 2021 Publication Cancers Abbreviated Journal (down) Cancers
Volume 13 Issue 8 Pages 1780
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)
Abstract Glioblastoma multiforme (GBM) is the most frequent and aggressive primary malignant brain tumor in adults. Current standard radiotherapy and adjuvant chemotherapy with the alkylating agent temozolomide (TMZ) yield poor clinical outcome. This is due to the stem-like properties of tumor cells and genetic abnormalities in GBM, which contribute to resistance to TMZ and progression. In this study, we used cold atmospheric plasma (CAP) to enhance the sensitivity to TMZ through inhibition of antioxidant signaling (linked to TMZ resistance). We demonstrate that CAP indeed enhances the cytotoxicity of TMZ by targeting the antioxidant specific glutathione (GSH)/glutathione peroxidase 4 (GPX4) signaling. We optimized the threshold concentration of TMZ on five different GBM cell lines (U251, LN18, LN229, U87-MG and T98G). We combined TMZ with CAP and tested it on both TMZ-sensitive (U251, LN18 and LN229) and TMZ-resistant (U87-MG and T98G) cell lines using two-dimensional cell cultures. Subsequently, we used a three-dimensional spheroid model for the U251 (TMZ-sensitive) and U87-MG and T98G (TMZ-resistant) cells. The sensitivity of TMZ was enhanced, i.e., higher cytotoxicity and spheroid shrinkage was obtained when TMZ and CAP were administered together. We attribute the anticancer properties to the release of intracellular reactive oxygen species, through inhibiting the GSH/GPX4 antioxidant machinery, which can lead to DNA damage. Overall, our findings suggest that the combination of CAP with TMZ is a promising combination therapy to enhance the efficacy of TMZ towards the treatment of GBM spheroids.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000644001200001 Publication Date 2021-04-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-6694 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes We thank the Department of Biomedical Sciences, and the Laboratory of Protein Science, Proteomics & Epigenetic Signalling, at the University of Antwerp, for providing the facilities for the cell experiments. We are also grateful to Peter Ponsaerts from the Laboratory of Experimental Haematology, at the University of Antwerp, for providing the fluorescence microscope. Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @c:irua:177779 Serial 6746
Permanent link to this record
 

 
Author Logie, E.; Chirumamilla, C.S.; Perez-Novo, C.; Shaw, P.; Declerck, K.; Palagani, A.; Rangarajan, S.; Cuypers, B.; De Neuter, N.; Mobashar Hussain Urf Turabe, F.; Kumar Verma, N.; Bogaerts, A.; Laukens, K.; Offner, F.; Van Vlierberghe, P.; Van Ostade, X.; Berghe, W.V.
Title Covalent Cysteine Targeting of Bruton’s Tyrosine Kinase (BTK) Family by Withaferin-A Reduces Survival of Glucocorticoid-Resistant Multiple Myeloma MM1 Cells Type A1 Journal article
Year 2021 Publication Cancers Abbreviated Journal (down) Cancers
Volume 13 Issue 7 Pages 1618
Keywords A1 Journal article; ADReM Data Lab (ADReM); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Multiple myeloma (MM) is a hematological malignancy characterized by plasma cells’ uncontrolled growth. The major barrier in treating MM is the occurrence of primary and acquired therapy resistance to anticancer drugs. Often, this therapy resistance is associated with constitutive hyperactivation of tyrosine kinase signaling. Novel covalent kinase inhibitors, such as the clinically approved BTK inhibitor ibrutinib (IBR) and the preclinical phytochemical withaferin A (WA), have, therefore, gained pharmaceutical interest. Remarkably, WA is more effective than IBR in killing BTK-overexpressing glucocorticoid (GC)-resistant MM1R cells. To further characterize the kinase inhibitor profiles of WA and IBR in GC-resistant MM cells, we applied phosphopeptidome- and transcriptome-specific tyrosine kinome profiling. In contrast to IBR, WA was found to reverse BTK overexpression in GC-resistant MM1R cells. Furthermore, WA-induced cell death involves covalent cysteine targeting of Hinge-6 domain type tyrosine kinases of the kinase cysteinome classification, including inhibition of the hyperactivated BTK. Covalent interaction between WA and BTK could further be confirmed by biotin-based affinity purification and confocal microscopy. Similarly, molecular modeling suggests WA preferably targets conserved cysteines in the Hinge-6 region of the kinase cysteinome classification, favoring inhibition of multiple B-cell receptors (BCR) family kinases. Altogether, we show that WA’s promiscuous inhibition of multiple BTK family tyrosine kinases represents a highly effective strategy to overcome GC-therapy resistance in MM.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000638328000001 Publication Date 2021-03-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-6694 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes The authors thank Eva Lion, Head of Tumor Immunology Group of the Laboratory of Experimental Hematology (University of Antwerp), for kindly providing GC‐resistant U266 cells. Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @c:irua:177781 Serial 6751
Permanent link to this record
 

 
Author Bogaerts, A.; Ameye, L.; Bijlholt, M.; Amuli, K.; Heynickx, D.; Devlieger, R.
Title INTER-ACT : prevention of pregnancy complications through an e-health driven interpregnancy lifestyle intervention: study protocol of a multicentre randomised controlled trial Type A1 Journal article
Year 2017 Publication BMC pregnancy and childbirth Abbreviated Journal (down) Bmc Pregnancy Childb
Volume 17 Issue Pages 154
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Centre for Research and Innovation in Care (CRIC)
Abstract Background Excessive maternal pre-pregnancy and gestational weight gain are related to pregnancy- and birth outcomes. The interpregnancy time window offers a unique opportunity to intervene in order to acquire a healthy lifestyle before the start of a new pregnancy. Methods INTER-ACT is an e-health driven multicentre randomised controlled intervention trial targeting women at high risk of pregnancy- and birth related complications. Eligible women are recruited for the study at day 2 or 3 postpartum. At week 6 postpartum, participants are randomised into the intervention or control arm of the study. The intervention focuses on weight, diet, physical activity and mental well-being, and comprises face-to-face coaching, in which behavioural change techniques are central, and use of a mobile application, which is Bluetooth-connected to a weighing scale and activity tracker. The intervention is rolled out postpartum (4 coaching sessions between week 6 and month 6) and in a new pregnancy (3 coaching sessions, one in each trimester of pregnancy); the mobile app is used throughout the two intervention phases. Data collection includes data from the medical record of the participants (pregnancy outcomes and medical history), anthropometric data (height, weight, waist- and hip circumferences, skinfold thickness and body composition by bio-electrical impedance analysis), data from the mobile app (physical activity and weight; intervention group only) and questionnaires (socio-demographics, breastfeeding, food intake, physical activity, lifestyle, psychosocial factors and process evaluation). Medical record data are collected at inclusion and at delivery of the subsequent pregnancy. All other data are collected at week 6 and month 6 postpartum and every subsequent 6 months until a new pregnancy, and in every trimester in the new pregnancy. Primary outcome is the composite endpoint score of pregnancy-induced hypertension, gestational diabetes mellitus, caesarean section, and large-for-gestational-age infant in the subsequent pregnancy.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000402116300002 Publication Date 2017-05-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1471-2393 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.263 Times cited 4 Open Access OpenAccess
Notes Approved Most recent IF: 2.263
Call Number UA @ lucian @ c:irua:143234 Serial 4663
Permanent link to this record
 

 
Author Bergwerf, I.; de Vocht, N.; Tambuyzer, B.; Verschueren, J.; Reekmans, K.; Daans, J.; Ibrahimi, A.; Van Tendeloo, V.; Chatterjee, S.; Goossens, H.; Jorens, P.G.; Baekelandt, V.; Ysebaert, D.; Van Marck, E.; Berneman, Z.N.; Van Der Linden, A.; Ponsaerts, P.
Title Reporter gene-expressing bone marrow-derived stromal cells are immune-tolerated following implantation in the central nervous system of syngeneic immunocompetent mice Type A1 Journal article
Year 2009 Publication BMC biotechnology Abbreviated Journal (down) Bmc Biotechnol
Volume Issue Pages
Keywords A1 Journal article; Antwerp Surgical Training, Anatomy and Research Centre (ASTARC); Laboratory Experimental Medicine and Pediatrics (LEMP); Bio-Imaging lab; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Background Cell transplantation is likely to become an important therapeutic tool for the treatment of various traumatic and ischemic injuries to the central nervous system (CNS). However, in many pre-clinical cell therapy studies, reporter gene-assisted imaging of cellular implants in the CNS and potential reporter gene and/or cell-based immunogenicity, still remain challenging research topics. Results In this study, we performed cell implantation experiments in the CNS of immunocompetent mice using autologous (syngeneic) luciferase-expressing bone marrow-derived stromal cells (BMSC-Luc) cultured from ROSA26-L-S-L-Luciferase transgenic mice, and BMSC-Luc genetically modified using a lentivirus encoding the enhanced green fluorescence protein (eGFP) and the puromycin resistance gene (Pac) (BMSC-Luc/eGFP/Pac). Both reporter gene-modified BMSC populations displayed high engraftment capacity in the CNS of immunocompetent mice, despite potential immunogenicity of introduced reporter proteins, as demonstrated by real-time bioluminescence imaging (BLI) and histological analysis at different time-points post-implantation. In contrast, both BMSC-Luc and BMSC-Luc/eGFP/Pac did not survive upon intramuscular cell implantation, as demonstrated by real-time BLI at different time-points post-implantation. In addition, ELISPOT analysis demonstrated the induction of IFN-ã-producing CD8+ T-cells upon intramuscular cell implantation, but not upon intracerebral cell implantation, indicating that BMSC-Luc and BMSC-Luc/eGFP/Pac are immune-tolerated in the CNS. However, in our experimental transplantation model, results also indicated that reporter gene-specific immune-reactive T-cell responses were not the main contributors to the immunological rejection of BMSC-Luc or BMSC-Luc/eGFP/Pac upon intramuscular cell implantation. Conclusion We here demonstrate that reporter gene-modified BMSC derived from ROSA26-L-S-L-Luciferase transgenic mice are immune-tolerated upon implantation in the CNS of syngeneic immunocompetent mice, providing a research model for studying survival and localisation of autologous BMSC implants in the CNS by real-time BLI and/or histological analysis in the absence of immunosuppressive therapy.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000262698500001 Publication Date 2009-01-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1472-6750 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.415 Times cited 33 Open Access
Notes Approved Most recent IF: 2.415; 2009 IF: 2.723
Call Number UA @ lucian @ c:irua:72911 Serial 4527
Permanent link to this record
 

 
Author Oliveira, M.C.; Yusupov, M.; Bogaerts, A.; Cordeiro, R.M.
Title Molecular dynamics simulations of mechanical stress on oxidized membranes Type A1 Journal article
Year 2019 Publication Biophysical chemistry Abbreviated Journal (down) Biophys Chem
Volume 254 Issue Pages 106266
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Biomembranes are under constant attack of free radicals that may lead to lipid oxidation in conditions of oxidative stress. The products generated during lipid oxidation are responsible for structural and dynamical changes which may jeopardize the membrane function. For instance, the local rearrangements of oxidized lipid molecules may induce membrane rupture. In this study, we investigated the effects of mechanical stress on oxidized phospholipid bilayers (PLBs). Model bilayers were stretched until pore formation (or poration) using nonequilibrium molecular dynamics simulations. We studied single-component homogeneous membranes composed of lipid oxidation products, as well as two-component heterogeneous membranes with coexisting native and oxidized domains. In homogeneous membranes, the oxidation products with —OH and —OOH groups reduced the areal strain required for pore formation, whereas the oxidation product with ]O group behaved similarly to the native membrane. In heterogeneous membranes composed of oxidized and non-oxidized domains, we tested the hypothesis according to which poration may be facilitated at the domain interface region. However, results were inconclusive due to their large statistical variance and sensitivity to simulation setup parameters. We pointed out important technical issues that need to be considered in future simulations of mechanically-induced poration of heterogeneous membranes. This research is of interest for photodynamic therapy and plasma medicine, because ruptured and intact plasma membranes are experimentally considered hallmarks of necrotic and apoptotic cell death.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000502890900015 Publication Date 2019-09-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0301-4622 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.402 Times cited Open Access
Notes São Paulo Research Foundation, 2012/50680-5 ; National Counsel of Technological and Scientific Development, 459270/2014-1 ; We are thankful for the financial support received from the São Paulo Research Foundation (FAPESP) (grant no. 2012/50680-5) and from the National Counsel of Technological and Scientific Development (CNPq) (grant no. 459270/2014-1). MCO acknowledges UFABC for the Master's scholarship granted. Approved Most recent IF: 2.402
Call Number PLASMANT @ plasmant @c:irua:163477 Serial 5374
Permanent link to this record
 

 
Author Marimuthu, P.; Razzokov, J.; Singaravelu, K.; Bogaerts, A.
Title Predicted Hotspot Residues Involved in Allosteric Signal Transmission in Pro-Apoptotic Peptide—Mcl1 Complexes Type A1 Journal article
Year 2020 Publication Biomolecules Abbreviated Journal (down) Biomolecules
Volume 10 Issue 8 Pages 1114
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Mcl1 is a primary member of the Bcl–2 family—anti–apoptotic proteins (AAP)—that is overexpressed in several cancer pathologies. The apoptotic regulation is mediated through the binding of pro-apoptotic peptides (PAPs) (e.g., Bak and Bid) at the canonical hydrophobic binding groove (CBG) of Mcl1. Although all PAPs form amphipathic α-helices, their amino acid sequences vary to different degree. This sequence variation exhibits a central role in the binding partner selectivity towards different AAPs. Thus, constructing a novel peptide or small organic molecule with the ability to mimic the natural regulatory process of PAP is essential to inhibit various AAPs. Previously reported experimental binding free energies (BFEs) were utilized in the current investigation aimed to understand the mechanistic basis of different PAPs targeted to mMcl1. Molecular dynamics (MD) simulations used to estimate BFEs between mMcl1—PAP complexes using Molecular Mechanics-Generalized Born Solvent Accessible (MMGBSA) approach with multiple parameters. Predicted BFE values showed an excellent agreement with the experiment (R2 = 0.92). The van–der Waals (ΔGvdw) and electrostatic (ΔGele) energy terms found to be the main energy components that drive heterodimerization of mMcl1—PAP complexes. Finally, the dynamic network analysis predicted the allosteric signal transmission pathway involves more favorable energy contributing residues. In total, the results obtained from the current investigation may provide valuable insights for the synthesis of a novel peptide or small organic inhibitor targeting Mcl1.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000578895600001 Publication Date 2020-07-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2218-273X ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes P.M. gratefully acknowledges the use of the bioinformatics infrastructure facility supported by Biocenter Finland and the CSC-IT Center for Science (Project: 2000461) for the computational facility; Jukka Lehtonen for the IT support; Mark Johnson (SBL) Åbo Akademi University for providing the lab support and Outi Salo-Ahen (Pharmacy) Åbo Akademi University and Olli T. Pentikäinen (Institute of Biomedicine) University of Turku, for their valuable support and discussion. Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @c:irua:170486 Serial 6396
Permanent link to this record
 

 
Author Abduvokhidov, D.; Yusupov, M.; Shahzad, A.; Attri, P.; Shiratani, M.; Oliveira, M.C.; Razzokov, J.
Title Unraveling the Transport Properties of RONS across Nitro-Oxidized Membranes Type A1 Journal Article
Year 2023 Publication Biomolecules Abbreviated Journal (down) Biomolecules
Volume 13 Issue 7 Pages 1043
Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract The potential of cold atmospheric plasma (CAP) in biomedical applications has received significant interest, due to its ability to generate reactive oxygen and nitrogen species (RONS). Upon exposure to living cells, CAP triggers alterations in various cellular components, such as the cell membrane. However, the permeation of RONS across nitrated and oxidized membranes remains understudied. To address this gap, we conducted molecular dynamics simulations, to investigate the permeation capabilities of RONS across modified cell membranes. This computational study investigated the translocation processes of less hydrophilic and hydrophilic RONS across the phospholipid bilayer (PLB), with various degrees of oxidation and nitration, and elucidated the impact of RONS on PLB permeability. The simulation results showed that less hydrophilic species, i.e., NO, NO2, N2O4, and O3, have a higher penetration ability through nitro-oxidized PLB compared to hydrophilic RONS, i.e., HNO3, s-cis-HONO, s-trans-HONO, H2O2, HO2, and OH. In particular, nitro-oxidation of PLB, induced by, e.g., cold atmospheric plasma, has minimal impact on the penetration of free energy barriers of less hydrophilic species, while it lowers these barriers for hydrophilic RONS, thereby enhancing their translocation across nitro-oxidized PLB. This research contributes to a better understanding of the translocation abilities of RONS in the field of plasma biomedical applications and highlights the need for further analysis of their role in intracellular signaling pathways.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001035160000001 Publication Date 2023-06-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2218-273X ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access Not_Open_Access
Notes This research was funded by the Innovative Development Agency of the Republic of Uzbekistan, grant number FZ-2020092817. Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @c:irua:198154 Serial 8803
Permanent link to this record
 

 
Author Ghasemitarei, M.; Ghorbi, T.; Yusupov, M.; Zhang, Y.; Zhao, T.; Shali, P.; Bogaerts, A.
Title Effects of Nitro-Oxidative Stress on Biomolecules: Part 1—Non-Reactive Molecular Dynamics Simulations Type A1 Journal Article
Year 2023 Publication Biomolecules Abbreviated Journal (down) Biomolecules
Volume 13 Issue 9 Pages 1371
Keywords A1 Journal Article; plasma medicine; reactive oxygen and; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract Plasma medicine, or the biomedical application of cold atmospheric plasma (CAP), is an expanding field within plasma research. CAP has demonstrated remarkable versatility in diverse biological applications, including cancer treatment, wound healing, microorganism inactivation, and skin disease therapy. However, the precise mechanisms underlying the effects of CAP remain incompletely understood. The therapeutic effects of CAP are largely attributed to the generation of reactive oxygen and nitrogen species (RONS), which play a crucial role in the biological responses induced by CAP. Specifically, RONS produced during CAP treatment have the ability to chemically modify cell membranes and membrane proteins, causing nitro-oxidative stress, thereby leading to changes in membrane permeability and disruption of cellular processes. To gain atomic-level insights into these interactions, non-reactive molecular dynamics (MD) simulations have emerged as a valuable tool. These simulations facilitate the examination of larger-scale system dynamics, including protein-protein and protein-membrane interactions. In this comprehensive review, we focus on the applications of non-reactive MD simulations in studying the effects of CAP on cellular components and interactions at the atomic level, providing a detailed overview of the potential of CAP in medicine. We also review the results of other MD studies that are not related to plasma medicine but explore the effects of nitro-oxidative stress on cellular components and are therefore important for a broader understanding of the underlying processes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001071356400001 Publication Date 2023-09-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2218-273X ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access Not_Open_Access
Notes This research received no external funding. Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @c:irua:200380 Serial 8958
Permanent link to this record
 

 
Author Shaw, P.; Kumar, N.; Sahun, M.; Smits, E.; Bogaerts, A.; Privat-Maldonado, A.
Title Modulating the Antioxidant Response for Better Oxidative Stress-Inducing Therapies: How to Take Advantage of Two Sides of the Same Medal? Type A1 Journal article
Year 2022 Publication Biomedicines Abbreviated Journal (down) Biomedicines
Volume 10 Issue 4 Pages 823
Keywords A1 Journal article; Pharmacology. Therapy; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)
Abstract Oxidative stress-inducing therapies are characterized as a specific treatment that involves the production of reactive oxygen and nitrogen species (RONS) by external or internal sources. To protect cells against oxidative stress, cells have evolved a strong antioxidant defense system to either prevent RONS formation or scavenge them. The maintenance of the redox balance ensures signal transduction, development, cell proliferation, regulation of the mechanisms of cell death, among others. Oxidative stress can beneficially be used to treat several diseases such as neurodegenerative disorders, heart disease, cancer, and other diseases by regulating the antioxidant system. Understanding the mechanisms of various endogenous antioxidant systems can increase the therapeutic efficacy of oxidative stress-based therapies, leading to clinical success in medical treatment. This review deals with the recent novel findings of various cellular endogenous antioxidant responses behind oxidative stress, highlighting their implication in various human diseases, such as ulcers, skin pathologies, oncology, and viral infections such as SARS-CoV-2.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000785420400001 Publication Date 2022-03-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2227-9059 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Science and Engineering Research Board (SERB), Core Research Grant, Department of Science and Technology, India., (CRG/2021/001935) ; Department of Biotechnology, BT/RLF/Re-entry/27/2019 ; We are grateful to Charlotta Bengtson for her valuable input. Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @c:irua:187931 Serial 7051
Permanent link to this record
 

 
Author Khosravian, N.; Bogaerts, A.; Huygh, S.; Yusupov, M.; Neyts, E.C.
Title How do plasma-generated OH radicals react with biofilm components? Insights from atomic scale simulations Type A1 Journal article
Year 2015 Publication Biointerphases Abbreviated Journal (down) Biointerphases
Volume 10 Issue 10 Pages 029501
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The application of nonthermal atmospheric pressure plasma is emerging as an alternative and efficient technique for the inactivation of bacterial biofilms. In this study, reactive molecular dynamics simulations were used to examine the reaction mechanisms of hydroxyl radicals, as key reactive oxygen plasma species in biological systems, with several organic molecules (i.e., alkane, alcohol, carboxylic acid, and amine), as prototypical components of biomolecules in the biofilm. Our results demonstrate that organic molecules containing hydroxyl and carboxyl groups may act as trapping agents for the OH radicals. Moreover, the impact of OH radicals on N-acetyl-glucosamine, as constituent component of staphylococcus epidermidis biofilms, was investigated. The results show how impacts of OH radicals lead to hydrogen abstraction and subsequent molecular damage. This study thus provides new data on the reaction mechanisms of plasma species, and particularly the OH radicals, with fundamental components of bacterial biofilms.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000357195600019 Publication Date 2014-12-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1934-8630;1559-4106; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.603 Times cited 10 Open Access
Notes Approved Most recent IF: 2.603; 2015 IF: 3.374
Call Number c:irua:121371 Serial 1492
Permanent link to this record
 

 
Author Wende, K.; Williams, P.; Dalluge, J.; Van Gaens, W.; Aboubakr, H.; Bischof, J.; von Woedtke, T.; Goyal, S.M.; Weltmann, K.D.; Bogaerts, A.; Masur, K.; Bruggeman, P.J.;
Title Identification of the biologically active liquid chemistry induced by a nonthermal atmospheric pressure plasma jet Type A1 Journal article
Year 2015 Publication Biointerphases Abbreviated Journal (down) Biointerphases
Volume 10 Issue 10 Pages 029518
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The mechanism of interaction of cold nonequilibrium plasma jets with mammalian cells in physiologic liquid is reported. The major biological active species produced by an argon RF plasma jet responsible for cell viability reduction are analyzed by experimental results obtained through physical, biological, and chemical diagnostics. This is complemented with chemical kinetics modeling of the plasma source to assess the dominant reactive gas phase species. Different plasma chemistries are obtained by changing the feed gas composition of the cold argon based RF plasma jet from argon, humidified argon (0.27%), to argon/oxygen (1%) and argon/air (1%) at constant power. A minimal consensus physiologic liquid was used, providing isotonic and isohydric conditions and nutrients but is devoid of scavengers or serum constituents. While argon and humidified argon plasma led to the creation of hydrogen peroxide dominated action on the mammalian cells, argonoxygen and argonair plasma created a very different biological action and was characterized by trace amounts of hydrogen peroxide only. In particular, for the argonoxygen (1%), the authors observed a strong negative effect on mammalian cell proliferation and metabolism. This effect was distance dependent and showed a half life time of 30 min in a scavenger free physiologic buffer. Neither catalase and mannitol nor superoxide dismutase could rescue the cell proliferation rate. The strong distance dependency of the effect as well as the low water solubility rules out a major role for ozone and singlet oxygen but suggests a dominant role of atomic oxygen. Experimental results suggest that O reacts with chloride, yielding Cl2 − or ClO−. These chlorine species have a limited lifetime under physiologic conditions and therefore show a strong time dependent biological activity. The outcomes are compared with an argon MHz plasma jet (kinpen) to assess the differences between these (at least seemingly) similar plasma sources.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000357195600036 Publication Date 2015-05-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1934-8630;1559-4106; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.603 Times cited 137 Open Access
Notes Approved Most recent IF: 2.603; 2015 IF: 3.374
Call Number c:irua:126774 Serial 1549
Permanent link to this record
 

 
Author Lin, A.; De Backer, J.; Quatannens, D.; Cuypers, B.; Verswyvel, H.; De La Hoz, E.C.; Ribbens, B.; Siozopoulou, V.; Van Audenaerde, J.; Marcq, E.; Lardon, F.; Laukens, K.; Vanlanduit, S.; Smits, E.; Bogaerts, A.
Title The effect of local non‐thermal plasma therapy on the<scp>cancer‐immunity</scp>cycle in a melanoma mouse model Type University Hospital Antwerp
Year 2022 Publication Bioengineering & Translational Medicine Abbreviated Journal (down) Bioengineering & Transla Med
Volume Issue Pages
Keywords University Hospital Antwerp; A1 Journal article; Pharmacology. Therapy; Engineering sciences. Technology; ADReM Data Lab (ADReM); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE); Proteinscience, proteomics and epigenetic signaling (PPES)
Abstract Melanoma remains a deadly cancer despite significant advances in immune checkpoint blockade and targeted therapies. The incidence of melanoma is also growing worldwide, which highlights the need for novel treatment options and strategic combination of therapies. Here, we investigate non-thermal plasma (NTP), an ionized gas, as a promising, therapeutic option. In a melanoma mouse model, direct treatment of tumors with NTP results in reduced tumor burden and prolonged survival. Physical characterization of NTP treatment in situ reveals the deposited NTP energy and temperature associated with therapy response, and whole transcriptome analysis of the tumor identified several modulated pathways. NTP treatment also enhances the cancer-immunity cycle, as immune cells in both the tumor and tumor-draining lymph nodes appear more stimulated to perform their anti-cancer functions. Thus, our data suggest that local NTP therapy stimulates systemic, anti-cancer immunity. We discuss, in detail, how these fundamental insights will help direct the translation of NTP technology into the clinic and inform rational combination strategies to address the challenges in melanoma therapy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000784103500001 Publication Date 2022-04-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2380-6761 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Vlaamse regering, 1S67621N 1S76421N G044420N 12S9221N 12S9218N ; The authors would like to thank and acknowledge Christophe Hermans, Ho Wa Lau, and Hilde Lambrechts for their help with sectioning and preparing the IHC slides. The authors would also like to thank Dani Banner for designing the ergonomic NTP applicator handle and Hasan Baysal for 3D printing the pieces used in this experiment. We would also like to thank several patrons, as part of this research was funded by donations from different donors, including Dedert Schilde vzw, Mr Willy Floren, and the Vereycken family. Some of the resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) The data that support the findings of this study are available from the Flemish Government. The FWO fellowships and grants that funded this work also include: 12S9218N (Abraham Lin), 12S9221N (Abraham Lin), G044420N (Abraham Lin, Annemie Bogaert, and Steve Vanlanduit), 1S76421N (Delphine Quatannens), and 1S67621N (Hanne Verswyvel). Figure 7 was created with BioRender.com. Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @c:irua:187909 Serial 7056
Permanent link to this record
 

 
Author Yusupov, M.; Van der Paal, J.; Neyts, E.C.; Bogaerts, A.
Title Synergistic effect of electric field and lipid oxidation on the permeability of cell membranes Type A1 Journal article
Year 2017 Publication Biochimica et biophysica acta : G : general subjects Abbreviated Journal (down) Bba-Gen Subjects
Volume 1861 Issue 1861 Pages 839-847
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Background: Strong electric fields are knownto affect cell membrane permeability,which can be applied for therapeutic purposes, e.g., in cancer therapy. A synergistic enhancement of this effect may be accomplished by the presence of reactive oxygen species (ROS), as generated in cold atmospheric plasmas. Little is known about the synergy between lipid oxidation by ROS and the electric field, nor on howthis affects the cell membrane permeability.

Method: We here conduct molecular dynamics simulations to elucidate the dynamics of the permeation process under the influence of combined lipid oxidation and electroporation. A phospholipid bilayer (PLB), consisting of di-oleoyl-phosphatidylcholine molecules covered with water layers, is used as a model system for the plasma membrane.

Results and conclusions:Weshow howoxidation of the lipids in the PLB leads to an increase of the permeability of the bilayer to ROS, although the permeation free energy barriers still remain relatively high. More importantly, oxidation of the lipids results in a drop of the electric field threshold needed for pore formation (i.e., electroporation) in the PLB. The created pores in the membrane facilitate the penetration of reactive plasma species deep into the cell interior, eventually causing oxidative damage.

General significance: This study is of particular interest for plasma medicine, as plasma generates both ROS and electric fields, but it is also of more general interest for applications where strong electric fields and ROS both come into play.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000397366200012 Publication Date 2017-01-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-4165 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.702 Times cited Open Access OpenAccess
Notes This work is financially supported by the Fund for Scientific Research Flanders (FWO; grant numbers: 1200216N and 11U5416N). The work was carried out using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flem Approved Most recent IF: 4.702
Call Number PLASMANT @ plasmant @ c:irua:140095 Serial 4413
Permanent link to this record
 

 
Author Ghasemitarei, M.; Yusupov, M.; Razzokov, J.; Shokri, B.; Bogaerts, A.
Title Transport of cystine across xC-antiporter Type A1 Journal article
Year 2019 Publication Archives of biochemistry and biophysics Abbreviated Journal (down) Arch Biochem Biophys
Volume 664 Issue Pages 117-126
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Extracellular cystine (CYC) uptake by xC antiporter is important for the cell viability. Especially in cancer cells, the upregulation of xC activity is observed, which protects these cells from intracellular oxidative stress. Hence, inhibition of the CYC uptake may eventually lead to cancer cell death. Up to now, the molecular level mechanism of the CYC uptake by xC antiporter has not been studied in detail. In this study, we applied several different simulation techniques to investigate the transport of CYC through xCT, the light subunit of the xC antiporter, which is responsible for the CYC and glutamate translocation. Specifically, we studied the permeation of CYC across three model systems, i.e., outward facing (OF), occluded (OCC) and inward facing (IF) configurations of xCT. We also investigated the effect of mutation of Cys327 to Ala within xCT, which was also studied experimentally in literature. This allowed us to qualitatively compare our computation results with experimental observations, and thus, to validate our simulations. In summary, our simulations provide a molecular level mechanism of the transport of CYC across the xC antiporter, more specifically, which amino acid residues in the xC antiporter play a key role in the uptake, transport and release of CYC.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000461411200014 Publication Date 2019-02-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-9861 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.165 Times cited 3 Open Access OpenAccess
Notes Research Foundation − FlandersResearch Foundation − Flanders (FWO), 1200216N 1200219N ; Hercules FoundationHercules Foundation; Flemish GovernmentFlemish Government (department EWI); UAUA; M. Y. gratefully acknowledges financial support from the Research Foundation − Flanders (FWO), grant numbers 1200216N and 1200219N. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. Finally, we thank A. S. Mashayekh Esfehan and A. Mohseni for their important comments on the manuscript. Approved Most recent IF: 3.165
Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:158571 Serial 5183
Permanent link to this record
 

 
Author Ghasemitarei, M.; Yusupov, M.; Razzokov, J.; Shokri, B.; Bogaerts, A.
Title Effect of oxidative stress on cystine transportation by xC‾ antiporter Type A1 Journal article
Year 2019 Publication Archives of biochemistry and biophysics Abbreviated Journal (down) Arch Biochem Biophys
Volume 674 Issue Pages 108114
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We performed computer simulations to investigate the effect of oxidation on the extracellular cystine (CYC) uptake by the xC− antiporter. The latter is important for killing of cancer cells. Specifically, applying molecular dynamics (MD) simulations we studied the transport of CYC across xCT, i.e., the light subunit of the xC− antiporter, in charge of bidirectional transport of CYC and glutamate. We considered the outward facing (OF) configuration of xCT, and to study the effect of oxidation, we modified the Cys327 residue, located in the vicinity of the extracellular milieu, to cysteic acid (CYO327). Our computational results showed that oxidation of Cys327 results in a free energy barrier for CYC translocation, thereby blocking the access of CYC to the substrate binding site of the OF system. The formation of the energy barrier was found to be due to the conformational changes in the channel. Analysis of the MD trajectories revealed that the reorganization of the side chains of the Tyr244 and CYO327 residues play a critical role in the OF channel blocking. Indeed, the calculated distance between Tyr244 and either Cys327 or CYO327 showed a narrowing of the channel after oxidation. The obtained free energy barrier for CYC translocation was found to be 33.9kJmol−1, indicating that oxidation of Cys327, by e.g., cold atmospheric plasma, is more effective in inhibiting the xC− antiporter than in the mutation of this amino acid to Ala (yielding a barrier of 32.4kJmol−1). The inhibition of the xC− antiporter may lead to Cys starvation in some cancer cells, eventually resulting in cancer cell death.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000525439700011 Publication Date 2019-09-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-9861 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.165 Times cited Open Access
Notes Ministry of Science, Research and Technology of Iran; University of Antwerp; Research Foundation − Flanders, 1200219N ; Universiteit Antwerpen; Hercules Foundation; Flemish Government; UA; M. G. acknowledges funding from the Ministry of Science, Research and Technology of Iran and from the University of Antwerp in Belgium. M. Y. gratefully acknowledges financial support from the Research Foundation − Flanders (FWO), grant number 1200219N. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. Finally, we thank A. S. Mashayekh Esfehan and A. Mohseni for their important comments on the manuscript. Approved Most recent IF: 3.165
Call Number PLASMANT @ plasmant @c:irua:163474 Serial 5372
Permanent link to this record
 

 
Author Oliveira, M.C.; Yusupov, M.; Bogaerts, A.; Cordeiro, R.M.
Title How do nitrated lipids affect the properties of phospholipid membranes? Type A1 Journal article
Year 2020 Publication Archives Of Biochemistry And Biophysics Abbreviated Journal (down) Arch Biochem Biophys
Volume 695 Issue Pages 108548
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Biological membranes are under constant attack of free radicals, which may lead to lipid nitro-oxidation, pro­ ducing a complex mixture of nitro-oxidized lipids that are responsible for structural and dynamic changes on the membrane. Despite the latter, nitro-oxidized lipids are also associated with several inflammatory and neuro­ degenerative diseases, the underlying mechanisms of which remain elusive. We perform atomistic molecular dynamics simulations using several isomers of nitro-oxidized lipids to study their effect on the structure and permeability of the membrane, as well as the interaction between the mixture of these products in the phos­pholipid membrane environment. Our results show that the stereo- and positional isomers have a stronger effect on the properties of the membrane composed of oxidized lipids compared to that containing nitrated lipids. Nevertheless, nitrated lipids lead to three-fold increase in water permeability compared to oxidized lipids. In addition, we show that in a membrane consisting of combined nitro-oxidized lipid products, the presence of oxidized lipids protects the membrane from transient pores. Is well stablished that plasma application and photodynamic therapy produces a number of oxidative species used to kill cancer cells, through membrane damage induced by nitro-oxidative stress. This study is important to elucidate the mechanisms and the molecular level properties involving the reactive species produced during that cancer therapies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000594173400010 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-9861 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.9 Times cited Open Access
Notes CAPES; Flanders Research Foundation, 1200219N ; We thank Universidade Federal do ABC for providing the computa­tional resources needed for completion of this work and CAPES for scholarship granted. M.Y. acknowledges the Flanders Research Foun­dation (grant 1200219N) for financial support. Approved Most recent IF: 3.9; 2020 IF: 3.165
Call Number PLASMANT @ plasmant @c:irua:173861 Serial 6440
Permanent link to this record
 

 
Author Oliveira, M.C.; Yusupov, M.; Bogaerts, A.; Cordeiro, R.M.
Title Distribution of lipid aldehydes in phase-separated membranes: A molecular dynamics study Type A1 Journal article
Year 2022 Publication Archives Of Biochemistry And Biophysics Abbreviated Journal (down) Arch Biochem Biophys
Volume 717 Issue Pages 109136
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract It is well established that lipid aldehydes (LAs) are able to increase the permeability of cell membranes and induce their rupture. However, it is not yet clear how LAs are distributed in phase-separated membranes (PSMs), which are responsible for the transport of selected molecules and intracellular signaling. Thus, we investigate here the distribution of LAs in a PSM by coarse-grained molecular dynamics simulations. Our results reveal that LAs derived from mono-unsaturated lipids tend to accumulate at the interface between the liquid-ordered/liquiddisordered domains, whereas those derived from poly-unsaturated lipids remain in the liquid-disordered domain. These results are important for understanding the effects caused by oxidized lipids in membrane structure, properties and organization.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000767632000001 Publication Date 2022-01-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-9861 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.9 Times cited Open Access OpenAccess
Notes We thank the University of Antwerp and the Coordination of Superior Level Staff Improvement (CAPES, Brazil) for the scholarship granted. The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 3.9
Call Number PLASMANT @ plasmant @c:irua:185874 Serial 6905
Permanent link to this record
 

 
Author Adhami Sayad Mahaleh, M.; Narimisa, M.; Nikiforov, A.; Gromov, M.; Gorbanev, Y.; Bitar, R.; Morent, R.; De Geyter, N.
Title Nitrogen Oxidation in a Multi-Pin Plasma System in the Presence and Absence of a Plasma/Liquid Interface Type A1 Journal Article
Year 2023 Publication Applied Sciences Abbreviated Journal (down) Applied Sciences
Volume 13 Issue 13 Pages 7619
Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract The recent energy crisis revealed that there is a strong need to replace hydrocarbon-fueled industrial nitrogen fixation processes by alternative, more sustainable methods. In light of this, plasma-based nitrogen fixation remains one of the most promising options, considering both theoretical and experimental aspects. Lately, plasma interacting with water has received considerable attention in nitrogen fixation applications as it can trigger a unique gas- and liquid-phase chemistry. Within this context, a critical exploration of plasma-assisted nitrogen fixation with or without water presence is of great interest with an emphasis on energy costs, particularly in plasma reactors which have potential for large-scale industrial application. In this work, the presence of water in a multi-pin plasma system on nitrogen oxidation is experimentally investigated by comparing two pulsed negative DC voltage plasmas in metal–metal and metal–liquid electrode configurations. The plasma setups are designed to create similar plasma properties, including plasma power and discharge regime in both configurations. The system energy cost is calculated, considering nitrogen-containing species generated in gas and liquid phases as measured by a gas analyzer, nitrate sensor, and a colorimetry method. The energy cost profile as a function of specific energy input showed a strong dependency on the plasma operational frequency and the gas flow rate, as a result of different plasma operation regimes and initiated reverse processes. More importantly, the presence of the plasma/liquid interface increased the energy cost up to 14 ± 8%. Overall, the results showed that the presence of water in the reaction zone has a negative impact on the nitrogen fixation process.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001031217300001 Publication Date 2023-06-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2076-3417 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.7 Times cited Open Access Not_Open_Access
Notes NITROPLASM FWO-FNRS Excellence of Science, 30505023 ; European Union-NextGenerationEU, G0G2322N ; Approved Most recent IF: 2.7; 2023 IF: 1.679
Call Number PLASMANT @ plasmant @c:irua:198153 Serial 8802
Permanent link to this record
 

 
Author Adriaensen, L.; Vangaever, F.; Gijbels, R.
Title A comparative study of carbocyanine dyes measured with TOF-SIMS and other mass spectrometric techniques Type A1 Journal article
Year 2004 Publication Applied surface science Abbreviated Journal (down) Appl Surf Sci
Volume 231/232 Issue Pages 348-352
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000222427700067 Publication Date 2004-04-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-4332; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.387 Times cited 7 Open Access
Notes Approved Most recent IF: 3.387; 2004 IF: 1.497
Call Number UA @ lucian @ c:irua:46802 Serial 420
Permanent link to this record
 

 
Author Ignatova, V.A.; Conard, T.; Möller, W.; Vandervorst, W.; Gijbels, R.
Title Depth profiling of ZrO2/SiO2/Si stacks : a TOF-SIMS and computer simulation study Type A1 Journal article
Year 2004 Publication Applied surface science Abbreviated Journal (down) Appl Surf Sci
Volume 231/232 Issue Pages 603-608
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract This study is dedicated to a better understanding of the processes occurring under ion bombardment of ultra-thin ZrO2/SiO2/Si gate dielectric stacks. Complex-shaped depth profiles were obtained by using TOF-SIMS with dual beam (500 eV for sputtering and 10 keV for analysis) Ar+ ions. The SIMS intensities of all the elements depend critically on the amount of oxygen at any moment of the sputtering process. Increased intensity is observed at the surface and at the ZrO2/SiO2 interface. A long tail of the Zr signal is present in the Si substrate, even after the second (SiO2/Si) interface, and a double bump structure in the Zr-90 and ZrO dimer is observed, which is more pronounced with increasing thickness of the interfacial SiO2 layer. Computer simulations using the dynamic Monte Carlo code (TRIDYN) are performed in order to distinguish the ion bombardment-induced effects from changes in the ionization degree. The original code is extended with simple models for the ionization mechanism and for the molecular yield during sputtering. Oxygen preferential sputtering at the surface and ballistic transport of Zr towards and through the interface are clearly demonstrated, but there is also evidence that due to recoil implantation oxygen gets piled-up near the ZrO2/SiO2 interface. (C) 2004 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000222427700118 Publication Date 2004-05-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-4332; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.387 Times cited 4 Open Access
Notes Approved Most recent IF: 3.387; 2004 IF: 1.497
Call Number UA @ lucian @ c:irua:51976 Serial 651
Permanent link to this record
 

 
Author de Mondt, R.; Adriaensen, L.; Vangaever, F.; Lenaerts, J.; van Vaeck, L.; Gijbels, R.
Title Empirical evaluation of metal deposition for the analysis of organic compounds with static secondary ion mass spectrometry (S-SIMS) Type A1 Journal article
Year 2006 Publication Applied surface science Abbreviated Journal (down) Appl Surf Sci
Volume 252 Issue 19 Pages 6652-6655
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000240609900063 Publication Date 2006-05-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-4332; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.387 Times cited 9 Open Access
Notes Approved Most recent IF: 3.387; 2006 IF: 1.436
Call Number UA @ lucian @ c:irua:58812 Serial 1034
Permanent link to this record
 

 
Author van den Broek, B.; Houssa, M.; Scalise, E.; Pourtois, G.; Afanas'ev, V.V.; Stesmans, A.
Title First-principles electronic functionalization of silicene and germanene by adatom chemisorption Type A1 Journal article
Year 2014 Publication Applied surface science Abbreviated Journal (down) Appl Surf Sci
Volume 291 Issue Pages 104-108
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract This study presents first-principles results on the electronic functionalization of silicene and germanene monolayers by means of chemisorption of adatom species H, Li, F, Sc, Ti, V. Three general adatom-monolayer configurations are considered, each having its distinct effect on the electronic structure, yielding metallic or semiconducting dispersions depending on the adatom species and configuration. The induced bandgap is a (in)direct F gap ranging from 0.2 to 2.3 eV for both silicene and germanene. In general the alternating configuration was found to be the most energetically stable. The boatlike and chairlike conformers are degenerate with the former having anisotropic effective carrier masses. The top configuration leads to the planar monolayer and predominately to a gapped dispersion. The hollow configuration with V adatoms retains the Dirac cone, but with strong orbital planar hybridization at the Fermi level. We also observe a planar surface state the Fermi level for the latter systems. (C) 2013 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000329327700023 Publication Date 2013-09-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-4332; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.387 Times cited 32 Open Access
Notes Approved Most recent IF: 3.387; 2014 IF: 2.711
Call Number UA @ lucian @ c:irua:113766 Serial 1208
Permanent link to this record