toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Ignatova, V.A.; Conard, T.; Möller, W.; Vandervorst, W.; Gijbels, R. doi  openurl
  Title Depth profiling of ZrO2/SiO2/Si stacks : a TOF-SIMS and computer simulation study Type A1 Journal article
  Year (down) 2004 Publication Applied surface science Abbreviated Journal Appl Surf Sci  
  Volume 231/232 Issue Pages 603-608  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract This study is dedicated to a better understanding of the processes occurring under ion bombardment of ultra-thin ZrO2/SiO2/Si gate dielectric stacks. Complex-shaped depth profiles were obtained by using TOF-SIMS with dual beam (500 eV for sputtering and 10 keV for analysis) Ar+ ions. The SIMS intensities of all the elements depend critically on the amount of oxygen at any moment of the sputtering process. Increased intensity is observed at the surface and at the ZrO2/SiO2 interface. A long tail of the Zr signal is present in the Si substrate, even after the second (SiO2/Si) interface, and a double bump structure in the Zr-90 and ZrO dimer is observed, which is more pronounced with increasing thickness of the interfacial SiO2 layer. Computer simulations using the dynamic Monte Carlo code (TRIDYN) are performed in order to distinguish the ion bombardment-induced effects from changes in the ionization degree. The original code is extended with simple models for the ionization mechanism and for the molecular yield during sputtering. Oxygen preferential sputtering at the surface and ballistic transport of Zr towards and through the interface are clearly demonstrated, but there is also evidence that due to recoil implantation oxygen gets piled-up near the ZrO2/SiO2 interface. (C) 2004 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000222427700118 Publication Date 2004-05-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.387 Times cited 4 Open Access  
  Notes Approved Most recent IF: 3.387; 2004 IF: 1.497  
  Call Number UA @ lucian @ c:irua:51976 Serial 651  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: