toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records
Author Yao, X.; Cao, S.; Zhang, X.P.; Schryvers, D.
  Title Microstructural Characterization and Transformation Behavior of Porous Ni50.8Ti49.2 Type P1 Proceeding
  Year 2015 Publication Materials Today: Proceedings Abbreviated Journal (up)
  Volume 2 Issue 2 Pages S833-S836
  Keywords P1 Proceeding; Electron microscopy for materials research (EMAT)
  Abstract Porous Ni50.8Ti49.2 bulk material was prepared by powder metallurgy sintering. Solid solution and aging treatments were applied to improve the phase homogeneity and phase transformation behavior. Scanning and transmission electron microscopy, aided by energy dispersive X-ray analysis, were used to study the microstructure and chemical phase content of the alloys. In-situ cooling was carried out to observe the phase transformation behavior. As-received material contains dispersed Ni2Ti4O particles while Ni4Ti3 precipitates appear after aging. Close to pore edges, the latter have a preferential orientation due to the induced stress fields in the matrix.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000371032100081 Publication Date 2015-11-05
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2214-7853 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access
  Notes The author gratefully acknowledges the Chinese Scholarship Council (CSC) for providing a scholarship and the Key Project of the Natural Science Foundation of Guangdong Province under grant No. S2013020012805. Approved Most recent IF: NA
  Call Number c:irua:129980 Serial 3989
Permanent link to this record
 

 
Author De Backer, A.; De Wael, A.; Gonnissen, J.; Martinez, G.T.; Béché, A.; MacArthur, K.E.; Jones, L.; Nellist, P.D.; Van Aert, S.
  Title Quantitative annular dark field scanning transmission electron microscopy for nanoparticle atom-counting: What are the limits? Type P1 Proceeding
  Year 2015 Publication Journal of physics : conference series Abbreviated Journal (up)
  Volume 644 Issue 644 Pages 012034
  Keywords P1 Proceeding; Electron microscopy for materials research (EMAT)
  Abstract Quantitative atomic resolution annular dark field scanning transmission electron microscopy (ADF STEM) has become a powerful technique for nanoparticle atom-counting. However, a lot of nanoparticles provide a severe characterisation challenge because of their limited size and beam sensitivity. Therefore, quantitative ADF STEM may greatly benefit from statistical detection theory in order to optimise the instrumental microscope settings such that the incoming electron dose can be kept as low as possible whilst still retaining single-atom precision. The principles of detection theory are used to quantify the probability of error for atom-counting. This enables us to decide between different image performance measures and to optimise the experimental detector settings for atom-counting in ADF STEM in an objective manner. To demonstrate this, ADF STEM imaging of an industrial catalyst has been conducted using the near-optimal detector settings. For this experiment, we discussed the limits for atom-counting diagnosed by combining a thorough statistical method and detailed image simulations.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000366826200034 Publication Date 2015-10-13
  Series Editor Series Title Abbreviated Series Title Electron Microscopy and Analysis Group Conference (EMAG), JUN 02-JUL 02, 2015, Manchester, ENGLAND
  Series Volume Series Issue Edition
  ISSN 1742-6588 ISBN Additional Links UA library record; WoS full record
  Impact Factor Times cited Open Access
  Notes The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project funding (G.0368.15N, G.0369.15N, and G.0374.15N) and a PhD research grant to A De Backer. The research leading to these results has received funding from the European Union Seventh Framework Programme under Grant Agreement 312483 – ESTEEM2 (Integrated Infrastructure Initiative-I3), ERC Starting Grant 278510 Vortex, and the UK Engineering and Physical Sciences Research Council (EP/K032518/1). The authors acknowledge Johnson-Matthey for providing the sample and PhD funding to K E MacArthur. A Rosenauer is acknowledged for providing the STEMsim program.; esteem2jra2; ECASJO; Approved Most recent IF: NA
  Call Number c:irua:130314 c:irua:130314 Serial 4050
Permanent link to this record
 

 
Author Barreca, D.; Carraro, G.; Gasparotto, A.; Maccato, C.; Warwick, M.E.A.; Turner, S.; Van Tendeloo, G.
  Title Fabrication and Characterization of Fe2O3-Based Nanostructures Functionalized with Metal Particles and Oxide Overlayers Type A1 Journal article
  Year 2015 Publication Journal of advanced microscopy research Abbreviated Journal (up)
  Volume 10 Issue 10 Pages 239-243
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract We report on the design of nanosystems based on functionalized -Fe 2 O 3 nanostructures supported on fluorine-doped tin oxide (FTO) substrates. The target materials were developed by means of hybrid vapor phase approaches, combining plasma assisted-chemical vapor deposition (PA-CVD) for the production of iron(III) oxide systems and the subsequent radio frequency (RF)-sputtering or atomic layer deposition (ALD) for the functionalization with Au nanoparticles or TiO 2 overlayers, respectively. The interplay between material characteristics and the adopted processing parameters was investigated by complementary analytical techniques, encompassing X-ray photoelectron spectroscopy (XPS), field emission-scanning electron microscopy (FE-SEM), high angle annular dark field-scanning transmission electron microscopy (HAADF-STEM), and energy dispersive X-ray spectroscopy (EDXS). The obtained results highlight the possibility of fabricating Au/ -Fe 2 O 3 nanocomposites, with a controlled dispersion and distribution of metal particles, and TiO 2 / -Fe 2 O 3 heterostructures, characterized by an intimate coupling between the constituent oxides.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date 2015-12-01
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2156-7573 ISBN Additional Links UA library record
  Impact Factor Times cited Open Access
  Notes The authors acknowledge the financial support under the FP7 project “SOLARO- GENIX” (NMP4-SL-2012-310333), as well as Padova University ex-60% 2012–2015 projects, grant n CPDR132937/13 (SOLLEONE), and Regione Lombardia- INSTM ATLANTE program. Stuart Turner acknowledges the FWO Flanders for a post-doctoral scholarship. Thanks are also due to Dr. L. Borgese and Prof. E. Bontempi (Chemistry for Technologies Laboratory, Brescia Univer- sity, Italy) for precious assistance in ALD experiments. Approved Most recent IF: NA
  Call Number EMAT @ emat @ c:irua:132798 Serial 4058
Permanent link to this record
 

 
Author Schoeters, B.
  Title An ab initio study of the properties of doped semiconducting nanwires Type Doctoral thesis
  Year 2015 Publication Abbreviated Journal (up)
  Volume Issue Pages
  Keywords Doctoral thesis; Condensed Matter Theory (CMT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Antwerpen Editor
  Language Wos Publication Date
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN Additional Links UA library record
  Impact Factor Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:128354 Serial 4133
Permanent link to this record
 

 
Author Verreck, D.; Van de Put, M.L.; Verhulst, A.S.; Sorée, B.; Magnus, W.; Dabral, A.; Thean, A.; Groeseneken, G.
  Title 15-band spectral envelope function formalism applied to broken gap tunnel field-effect transistors Type P1 Proceeding
  Year 2015 Publication 18th International Workshop On Computational Electronics (iwce 2015) Abbreviated Journal (up)
  Volume Issue Pages
  Keywords P1 Proceeding; Condensed Matter Theory (CMT)
  Abstract A carefully chosen heterostructure can significantly boost the performance of tunnel field-effect transistors (TFET). Modelling of these hetero-TFETs requires a quantum mechanical (QM) approach with an accurate band structure to allow for a correct description of band-to-band-tunneling. We have therefore developed a fully QM 2D solver, combining for the first time a full zone 15-band envelope function formalism with a spectral approach, including a heterostructure basis set transformation. Simulations of GaSb/InAs broken gap TFETs illustrate the wide body capabilities and transparant transmission analysis of the formalism.
  Address
  Corporate Author Thesis
  Publisher Ieee Place of Publication New york Editor
  Language Wos 000380398200055 Publication Date 2015-10-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 978-0-692-51523-5 ISBN Additional Links UA library record; WoS full record
  Impact Factor Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:134998 Serial 4131
Permanent link to this record
 

 
Author Moors, K.; Sorée, B.; Magnus, W.
  Title Analytic solution of Ando's surface roughness model with finite domain distribution functions Type P1 Proceeding
  Year 2015 Publication 18th International Workshop On Computational Electronics (iwce 2015) Abbreviated Journal (up)
  Volume Issue Pages
  Keywords P1 Proceeding; Condensed Matter Theory (CMT)
  Abstract Ando's surface roughness model is applied to metallic nanowires and extended beyond small roughness size and infinite barrier limit approximations for the wavefunction overlaps, such as the Prange-Nee approximation. Accurate and fast simulations can still be performed without invoking these overlap approximations by averaging over roughness profiles using finite domain distribution functions to obtain an analytic solution for the scattering rates. The simulations indicate that overlap approximations, while predicting a resistivity that agrees more or less with our novel approach, poorly estimate the underlying scattering rates. All methods show that a momentum gap between left- and right-moving electrons at the Fermi level, surpassing a critical momentum gap, gives rise to a substantial decrease in resistivity.
  Address
  Corporate Author Thesis
  Publisher Ieee Place of Publication New york Editor
  Language Wos Publication Date
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 978-0-692-51523-5 ISBN Additional Links UA library record; WoS full record
  Impact Factor Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:134996 Serial 4140
Permanent link to this record
 

 
Author Somers, W.
  Title Atomic scale simulations of the interactions of plasma species on nickel catalyst surfaces Type Doctoral thesis
  Year 2015 Publication Abbreviated Journal (up)
  Volume Issue Pages
  Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Antwerpen Editor
  Language Wos Publication Date
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN Additional Links UA library record
  Impact Factor Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:127915 Serial 4142
Permanent link to this record
 

 
Author Kurttepeli, M.
  Title Carbon based materials and hybrid nanostructures investigated by advanced transmission electron microscopy Type Doctoral thesis
  Year 2015 Publication Abbreviated Journal (up)
  Volume Issue Pages
  Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Antwerpen Editor
  Language Wos Publication Date
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN Additional Links UA library record
  Impact Factor Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:130502 Serial 4145
Permanent link to this record
 

 
Author Bogaerts, A.; Berthelot, A.; Heijkers, S.; Kozák, T.
  Title Computer modeling of a microwave discharge used for CO2 splitting Type P2 Proceeding
  Year 2015 Publication Abbreviated Journal (up)
  Volume Issue Pages 41-50
  Keywords P2 Proceeding; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher UCO Press Place of Publication Cordoba Editor
  Language Wos Publication Date
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN 978-84-9927-187-3 Additional Links UA library record
  Impact Factor Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:135096 Serial 4154
Permanent link to this record
 

 
Author Berthelot, A.; Kolev, S.; Bogaerts, A.
  Title Different pressure regimes of a surface-wave discharge in argon : a modelling investigation Type P2 Proceeding
  Year 2015 Publication Abbreviated Journal (up)
  Volume Issue Pages 57-62
  Keywords P2 Proceeding; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher UCO Press Place of Publication Cordoba Editor
  Language Wos Publication Date
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN 978-84-9927-187-3 Additional Links UA library record
  Impact Factor Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:135094 Serial 4160
Permanent link to this record
 

 
Author Van Boxem, R.
  Title Electron vortex beams : an in-depth theoretical study Type Doctoral thesis
  Year 2015 Publication Abbreviated Journal (up)
  Volume Issue Pages
  Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Antwerpen Editor
  Language Wos Publication Date
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN Additional Links UA library record
  Impact Factor Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:132968 Serial 4168
Permanent link to this record
 

 
Author Guzzinati, G.
  Title Exploring electron beam shaping in transmission electron microscopy Type Doctoral thesis
  Year 2015 Publication Abbreviated Journal (up)
  Volume Issue Pages
  Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Antwerpen Editor
  Language Wos Publication Date
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN Additional Links UA library record
  Impact Factor Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:130499 Serial 4180
Permanent link to this record
 

 
Author Van Havenbergh, K.
  Title Influence of silicon nanoparticle coating on the electrolyte decomposition in Li-ion batteries Type Doctoral thesis
  Year 2015 Publication Abbreviated Journal (up)
  Volume Issue Pages
  Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Antwerpen Editor
  Language Wos Publication Date
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN Additional Links UA library record
  Impact Factor Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:131647 Serial 4196
Permanent link to this record
 

 
Author Moors, K.; Sorée, B.; Magnus, W.
  Title Modeling and tackling resistivity scaling in metal nanowires Type P1 Proceeding
  Year 2015 Publication International Conference on Simulation of Semiconductor Processes and Devices : [proceedings] T2 – International Conference on Simulation of Semiconductor Processes and, Devices (SISPAD), SEP 09-11, 2015, Washington, DC Abbreviated Journal (up)
  Volume Issue Pages 222-225
  Keywords P1 Proceeding; Condensed Matter Theory (CMT)
  Abstract A self-consistent analytical solution of the multi-subband Boltzmann transport equation with collision term describing grain boundary and surface roughness scattering is presented to study the resistivity scaling in metal nanowires. The different scattering mechanisms and the influence of their statistical parameters are analyzed. Instead of a simple power law relating the height or width of a nanowire to its resistivity, the picture appears to be more complicated due to quantum-mechanical scattering and quantization effects, especially for surface roughness scattering.
  Address
  Corporate Author Thesis
  Publisher Ieee Place of Publication New york Editor
  Language Wos Publication Date
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 978-1-4673-7860-4 ISBN Additional Links UA library record; WoS full record
  Impact Factor Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:135046 Serial 4205
Permanent link to this record
 

 
Author Van de Put, M.L.; Vandenberghe, W.G.; Magnus, W.; Sorée, B.; Fischetti, M.V.
  Title Modeling of inter-ribbon tunneling in graphene Type P1 Proceeding
  Year 2015 Publication 18th International Workshop On Computational Electronics (iwce 2015) Abbreviated Journal (up)
  Volume Issue Pages
  Keywords P1 Proceeding; Condensed Matter Theory (CMT)
  Abstract The tunneling current between two crossed graphene ribbons is described invoking the empirical pseudopotential approximation and the Bardeen transfer Hamiltonian method. Results indicate that the density of states is the most important factor determining the tunneling current between small (similar to nm) ribbons. The quasi-one dimensional nature of graphene nanoribbons is shown to result in resonant tunneling.
  Address
  Corporate Author Thesis
  Publisher Ieee Place of Publication New york Editor
  Language Wos Publication Date
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 978-0-692-51523-5 ISBN Additional Links UA library record; WoS full record
  Impact Factor Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:134997 Serial 4206
Permanent link to this record
 

 
Author Brammertz, G.; Buffiere, M.; Verbist, C.; Bekaert, J.; Batuk, M.; Hadermann, J.; et al.
  Title Process variability in Cu2ZnSnSe4 solar cell devices: Electrical and structural investigations Type P1 Proceeding
  Year 2015 Publication The conference record of the IEEE Photovoltaic Specialists Conference T2 – IEEE 42nd Photovoltaic Specialist Conference (PVSC), JUN 14-19, 2015, New Orleans, LA Abbreviated Journal (up)
  Volume Issue Pages
  Keywords P1 Proceeding; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
  Abstract We have fabricated 9.7% efficient Cu2ZnSnSe4/CdS/ZnO solar cells by H2Se selenization of sequentially sputtered metal layers. Despite the good efficiency obtained, process control appears to be difficult. In the present contribution we compare the electrical and physical properties of two devices with nominal same fabrication procedure, but 1% and 9.7% power conversion efficiency respectively. We identify the problem of the lower performing device to be the segregation of ZnSe phases at the backside of the sample. This ZnSe seems to be the reason for the strong bias dependent photocurrent observed in the lower performing devices, as it adds a potential barrier for carrier collection. The reason for the different behavior of the two nominally same devices is not fully understood, but speculated to be related to sputtering variability.
  Address
  Corporate Author Thesis
  Publisher Ieee Place of Publication New york Editor
  Language Wos Publication Date
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 978-1-4799-7944-8 ISBN Additional Links UA library record; WoS full record
  Impact Factor Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:132335 Serial 4229
Permanent link to this record
 

 
Author Altantzis, T.
  Title Three-dimensional characterization of atomic clusters, nanoparticles and their assemblies by advanced transmission electron microscopy Type Doctoral thesis
  Year 2015 Publication Abbreviated Journal (up)
  Volume Issue Pages
  Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Antwerpen Editor
  Language Wos Publication Date
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN Additional Links UA library record
  Impact Factor Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:130493 Serial 4265
Permanent link to this record
 

 
Author Colin D. Judge, Nicolas Gauquelin, Lori Walters, Mike Wright, James I. Cole, James Madden, Gianluigi A. Botton, Malcolm Griffiths
  Title Intergranular fracture in irradiated Inconel X-750 containing very high concentrations of helium and hydrogen Type A1 Journal Article
  Year 2015 Publication Journal of Nuclear Materials Abbreviated Journal (up)
  Volume 457 Issue 457 Pages 165-172
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
  Abstract In recent years, it has been observed that Inconel X-750 spacers in CANDU reactors exhibits lower ductility with reduced load carrying capacity following irradiation in a reactor environment. The fracture behaviour of ex-service material was also found to be entirely intergranular at high doses. The thermalized flux spectrum in a CANDU reactor leads to transmutation of 58Ni to 59Ni. The 59Ni itself has unusually high thermal neutron reaction cross-sections of the type: (n, γ), (n, p), and (n, α). The latter two reactions, in particular, contribute to a significant enhancement of the atomic displacements in addition to creating high concentrations of hydrogen and helium within the material. Microstructural examinations by transmission electron microscopy (TEM) have confirmed the presence of helium bubbles in the matrix and aligned along grain boundaries and matrix–precipitate interfaces. Helium bubble size and density are found to be highly dependent on the irradiation temperature and material microstructure; the bubbles are larger within grain boundary precipitates. TEM specimens extracted from fracture surfaces and crack tips provide information that is consistent with crack propagation along grain boundaries due to the presence of He bubbles.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000349169100022 Publication Date 2014-11-01
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN Additional Links
  Impact Factor Times cited 29 Open Access
  Notes Approved Most recent IF: NA
  Call Number EMAT @ emat @ Serial 4540
Permanent link to this record
 

 
Author de Backer, A.; De wael, A.; Gonnissen, J.; Martinez, G.T.; Béché, A.; MacArthur, K.E.; Jones, L.; Nellist, P.D.; Van Aert, S.
  Title Quantitative annular dark field scanning transmission electron microscopy for nanoparticle atom-counting : what are the limits? Type A1 Journal article
  Year 2015 Publication Journal of physics : conference series Abbreviated Journal (up)
  Volume 644 Issue Pages 012034-4
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Quantitative atomic resolution annular dark field scanning transmission electron microscopy (ADF STEM) has become a powerful technique for nanoparticle atom-counting. However, a lot of nanoparticles provide a severe characterisation challenge because of their limited size and beam sensitivity. Therefore, quantitative ADF STEM may greatly benefit from statistical detection theory in order to optimise the instrumental microscope settings such that the incoming electron dose can be kept as low as possible whilst still retaining single-atom precision. The principles of detection theory are used to quantify the probability of error for atom-counting. This enables us to decide between different image performance measures and to optimise the experimental detector settings for atom-counting in ADF STEM in an objective manner. To demonstrate this, ADF STEM imaging of an industrial catalyst has been conducted using the near-optimal detector settings. For this experiment, we discussed the limits for atomcounting diagnosed by combining a thorough statistical method and detailed image simulations.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Bristol Editor
  Language Wos Publication Date
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1742-6588; 1742-6596 ISBN Additional Links UA library record
  Impact Factor Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:129198 Serial 4506
Permanent link to this record
 

 
Author Ozaydin, H.D.; Sahin, H.; Kang, J.; Peeters, F.M.; Senger, R.T.
  Title Electronic and magnetic properties of 1T-TiSe2 nanoribbons Type A1 Journal article
  Year 2015 Publication 2D materials Abbreviated Journal (up) 2D Mater
  Volume 2 Issue 2 Pages 044002
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Motivated by the recent synthesis of single layer TiSe2, we used state-of-the-art density functional theory calculations, to investigate the structural and electronic properties of zigzag and armchair-edged nanoribbons (NRs) of this material. Our analysis reveals that, differing from ribbons of other ultra-thin materials such as graphene, TiSe2 NRs have some distinctive properties. The electronic band gap of the NRs decreases exponentially with the width and vanishes for ribbons wider than 20 angstrom. For ultranarrow zigzag-edged NRs we find odd-even oscillations in the band gap width, although their band structures show similar features. Moreover, our detailed magnetic-ground-state analysis reveals that zigzag and armchair edged ribbons have non-magnetic ground states. Passivating the dangling bonds with hydrogen at the edges of the structures influences the band dispersion. Our results shed light on the characteristic properties of T phase NRs of similar crystal structures.
  Address
  Corporate Author Thesis
  Publisher IOP Publishing Place of Publication Bristol Editor
  Language Wos 000368936600005 Publication Date 2015-10-13
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 6.937 Times cited 20 Open Access
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAK-BIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). HS is supported by a FWO Pegasus Long Marie Curie Fellowship. JK is supported by a FWO Pegasus Short Marie Curie Fellowship. HDO, HS and RTS acknowledge the support from TUBITAK through project 114F397. ; Approved Most recent IF: 6.937; 2015 IF: NA
  Call Number UA @ lucian @ c:irua:131602 Serial 4169
Permanent link to this record
 

 
Author Zeng, Y.-J.; Schouteden, K.; Amini, M.N.; Ruan, S.-C.; Lu, Y.-F.; Ye, Z.-Z.; Partoens, B.; Lamoen, D.; Van Haesendonck, C.
  Title Electronic band structures and native point defects of ultrafine ZnO nanocrystals Type A1 Journal article
  Year 2015 Publication ACS applied materials and interfaces Abbreviated Journal (up) Acs Appl Mater Inter
  Volume 7 Issue 7 Pages 10617-10622
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
  Abstract Ultrafine ZnO nanocrystals with a thickness down to 0.25 nm are grown by a metalorganic chemical vapor deposition method. Electronic band structures and native point defects of ZnO nanocrystals are studied by a combination of scanning tunneling microscopy/spectroscopy and first-principles density functional theory calculations. Below a critical thickness of nm ZnO adopts a graphitic-like structure and exhibits a wide band gap similar to its wurtzite counterpart. The hexagonal wurtzite structure, with a well-developed band gap evident from scanning tunneling spectroscopy, is established for a thickness starting from similar to 1.4 nm. With further increase of the thickness to 2 nm, V-O-V-Zn defect pairs are easily produced in ZnO nanocrystals due to the self-compensation effect in highly doped semiconductors.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000355055000063 Publication Date 2015-04-29
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1944-8244;1944-8252; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 7.504 Times cited 15 Open Access
  Notes Hercules; EWI Approved Most recent IF: 7.504; 2015 IF: 6.723
  Call Number c:irua:126408 Serial 999
Permanent link to this record
 

 
Author Buffière, M.; Brammertz, G.; Sahayaraj, S.; Batuk, M.; Khelifi, S.; Mangin, D.; El Mel, A.A.; Arzel, L.; Hadermann, J.; Meuris, M.; Poortmans, J.;
  Title KCN chemical etch for interface engineering in Cu2ZnSnSe4 solar cells Type A1 Journal article
  Year 2015 Publication ACS applied materials and interfaces Abbreviated Journal (up) Acs Appl Mater Inter
  Volume 7 Issue 7 Pages 14690-14698
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract The removal of secondary phases from the surface of the kesterite crystals is one of the major challenges to improve the performances of Cu2ZnSn(S,Se)(4) (CZTSSe) thin film solar cells. In this Contribution, the KCN/KOH Chemical etching approach, originally developed for the removal of CuxSe phases in Cu(In,Ga)(S,Se)(2) thin films) is applied to CZTSe absorbers exhibiting various chemical compositions. Two distinct electrical behaviors were observed on CZTSe/CdS solar cells after treatment: (i) the improvement of the fill factor (FF) after 30 s of etching for the CZTSe absorbers showing initially a distortion of the electrical characteristic; (ii) the progressive degradation Of the FF after long treatment time for all Cu-poor CZTSe solar cell samples. The first effect can be attributed to the action of KCN on the absorber, that is found to clean the absorber free surface from most of the secondary phases surrounding the kesterite grains (e.g., Se-0, CuxSe, SnSex, SnO2, Cu2SnSe3 phases, excepting the ZnSe-based phases). The second observation was identified as a consequence of the preferential etching of Se, Sn, and Zn from the CZTSe surface by the KOH solution, combined with the modification of the alkali content of the absorber. The formation of a Cu-rich shell at the absorber/buffer layer interface, leading to the increase of the recombination rate at the interface, and the increase in the doping of the absorber layer after etching are found to be at the origin of the deterioration of the FF of the solar cells.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000358395200019 Publication Date 2015-06-03
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1944-8244;1944-8252; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 7.504 Times cited 34 Open Access
  Notes Approved Most recent IF: 7.504; 2015 IF: 6.723
  Call Number c:irua:127153 Serial 1755
Permanent link to this record
 

 
Author Zeng, Y.-J.; Gauquelin, N.; Li, D.-Y.; Ruan, S.-C.; He, H.-P.; Egoavil, R.; Ye, Z.-Z.; Verbeeck, J.; Hadermann, J.; Van Bael, M.J.; Van Haesendonck, C.
  Title Co-Rich ZnCoO Nanoparticles Embedded in Wurtzite Zn1-xCoxO Thin Films: Possible Origin of Superconductivity Type A1 Journal article
  Year 2015 Publication ACS applied materials and interfaces Abbreviated Journal (up) Acs Appl Mater Inter
  Volume 7 Issue 7 Pages 22166-22171
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Co-rich ZnCoO nanoparticles embedded in wurtzite Zn0.7Co0.3O thin films are grown by pulsed laser deposition on a Si substrate. Local superconductivity with an onset Tc at 5.9 K is demonstrated in the hybrid system. The unexpected superconductivity probably results from Co(3+) in the Co-rich ZnCoO nanoparticles or from the interface between the Co-rich nanoparticles and the Zn0.7Co0.3O matrix.
  Address Solid State Physics and Magnetism Section, KU Leuven , Celestijnenlaan 200 D, BE-3001 Leuven, Belgium
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language English Wos 000363001500007 Publication Date 2015-09-21
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1944-8244;1944-8252; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 7.504 Times cited 13 Open Access
  Notes This work has been supported by the Research Foundation − Flanders (FWO, Belgium) as well as by the Flemish Concerted Research Action program (BOF KU Leuven, GOA/14/007). N. G. and J. V. acknowledge funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant 278510 VORTEX. The Qu-Ant-EM microscope was partly funded by the Flemish Hercules Foundation. The work at Shenzhen University was supported by National Natural Science Foundation of China under Grant No. 61275144 and Natural Science Foundation of SZU. Y.-J. Z. acknowledges funding under grant No. SKL2015-12 from the State Key Laboratory of Silicon Materials; ECASJO_; Approved Most recent IF: 7.504; 2015 IF: 6.723
  Call Number c:irua:129195 c:irua:129195UA @ admin @ c:irua:129195 Serial 3949
Permanent link to this record
 

 
Author Warwick, M.E.A.; Kaunisto, K.; Barreca, D.; Carraro, G.; Gasparotto, A.; Maccato, C.; Bontempi, E.; Sada, C.; Ruoko, T.P.; Turner, S.; Van Tendeloo, G.;
  Title Vapor phase processing of \alpha-Fe2O3 photoelectrodes for water splitting : an insight into the structure/property interplay Type A1 Journal article
  Year 2015 Publication ACS applied materials and interfaces Abbreviated Journal (up) Acs Appl Mater Inter
  Volume 7 Issue 7 Pages 8667-8676
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Harvesting radiant energy to trigger water photoelectrolysis and produce clean hydrogen is receiving increasing attention in the search of alternative energy resources. In this regard, hematite (alpha-Fe2O3) nanostructures with controlled nano-organization have been fabricated and investigated for use as anodes in photoelectrochemical (PEC) cells. The target systems have been grown on conductive substrates by plasma enhanced-chemical vapor deposition (PE-CVD) and subjected to eventual ex situ annealing in air to further tailor their structure and properties. A detailed multitechnique approach has enabled to elucidate between system characteristics and the generated photocurrent. The present alpha-Fe2O3 systems are characterized by a high purity and hierarchical morphologies consisting of nanopyramids/organized dendrites, offering a high contact area with the electrolyte. PEC data reveal a dramatic response enhancement upon thermal treatment, related to a more efficient electron transfer. The reasons underlying such a phenomenon are elucidated and discussed by transient absorption spectroscopy (TAS) studies of photogenerated charge carrier kinetics, investigated on different time scales for the first time on PE-CVD Fe2O3 nanostructures.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000353931300037 Publication Date 2015-04-08
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1944-8244;1944-8252; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 7.504 Times cited 51 Open Access
  Notes 246791 Countatoms; Fwo Approved Most recent IF: 7.504; 2015 IF: 6.723
  Call Number c:irua:126059 Serial 3836
Permanent link to this record
 

 
Author Ao, Z.; Jiang, Q.; Li, S.; Liu, H.; Peeters, F.M.; Li, S.; Wang, G.
  Title Enhancement of the stability of fluorine atoms on defective graphene and at graphene/fluorographene interface Type A1 Journal article
  Year 2015 Publication ACS applied materials and interfaces Abbreviated Journal (up) Acs Appl Mater Inter
  Volume 7 Issue 7 Pages 19659-19665
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract Fluorinated graphene is one of the most important derivatives of graphene and has been found to have great potential in optoelectronic and photonic nanodevices. However, the stability of F atoms on fluorinated graphene under different conditions, which is essential to maintain the desired properties of fluorinated graphene, is still unclear. In this work, we investigate the diffusion of F atoms on pristine graphene, graphene with defects, and at graphene/fluorographene interfaces by using density functional theory calculations. We find that an isolated F atom diffuses easily on graphene, but those F atoms can be localized by inducing vacancies or absorbates in graphene and by creating graphene/fluorographene interfaces, which would strengthen the binding energy of F atoms on graphene and increase the diffusion energy barrier of F atoms remarkably.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000361252400018 Publication Date 2015-08-24
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 7.504 Times cited 35 Open Access
  Notes ; We acknowledge the financial supports from the Chancellor's Research Fellowship Program of the University of Technology Sydney, the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish Government. This research was also supported by the National Computational Infrastructure (NCI) through the merit allocation scheme and used the NCI resources and facilities in Canberra, Australia. ; Approved Most recent IF: 7.504; 2015 IF: 6.723
  Call Number UA @ lucian @ c:irua:128703 Serial 4177
Permanent link to this record
 

 
Author Ennaert, T.; Geboers, J.; Gobechiya, E.; Courtin, C.M.; Kurttepeli, M.; Houthoofd, K.; Kirschhock, C.E.A.; Magusin, P.C.M.M.; Bals, S.; Jacobs, P.A.; Sels, B.F.
  Title Conceptual frame rationalizing the self-stabilization of H-USY zeolites in hot liquid water Type A1 Journal article
  Year 2015 Publication ACS catalysis Abbreviated Journal (up) Acs Catal
  Volume 5 Issue 5 Pages 754-768
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The wide range of liquid-phase reactions required for the catalytic conversion of biomass compounds into new bioplatform molecules defines a new set of challenges for the development of active, selective, and stable catalysts. The potential of bifunctional Ru/H-USY catalysts for conversions in hot liquid water (HLW) is assessed in terms of physicochemical stability and long-term catalytic performance of acid sites and noble metal functionality, as probed by hydrolytic hydrogenation of cellulose. It is shown that zeolite desilication is the main zeolite degradation mechanism in HLW. USY zeolite stability depends on two main parameters, viz., framework and extra-framework aluminum content. The former protects the zeolite lattice by counteracting hydrolysis of framework bonds, and the latter, when located at the external crystal surface, prevents solubilization of the zeolite framework which is the result of its low water-solubility. Hence, the hot liquid water stability of commercial H-USY zeolites, in contrast to their steam stability, increased with decreasing Si/AI ratio. As a result, mildly steamed USY zeolites containing a high amount of both Al species exhibit the highest resistance to HLW. During an initial period of transformations, Al-rich zeolites form additional protective extra-framework Al species at the outer surface, self-stabilizing the framework. A critical bulk Si/AI ratio of 3 was determined whereby USY zeolites with a lower Si/AI ratio will self-stabilize over time. Besides, due to the initial transformation period, the accessibility of the catalytic active sites is extensively enhanced resulting in a material that is more stable and drastically more accessible to large substrates than the original zeolite. When these findings are applied in the hydrolytic hydrogenation of cellulose, unprecedented nearly quantitative hexitol yields were obtained with a stable catalytic system.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000349275300031 Publication Date 2014-12-09
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2155-5435;2155-5435; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 10.614 Times cited 65 Open Access OpenAccess
  Notes 335078 Colouratom; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 10.614; 2015 IF: 9.312
  Call Number c:irua:125288 Serial 474
Permanent link to this record
 

 
Author Lentijo-Mozo, S.; Tan, R.P.; Garcia-Marcelot, C.; Altantzis, T.; Fazzini, P.F.; Hungria, T.; Cormary, B.; Gallagher, J.R.; Miller, J.T.; Martinez, H.; Schrittwieser, S.; Schotter, J.; Respaud, M.; Bals, S.; Van Tendeloo, G.; Gatel, C.; Soulantica, K.
  Title Air- and water-resistant noble metal coated ferromagnetic cobalt nanorods Type A1 Journal article
  Year 2015 Publication ACS nano Abbreviated Journal (up) Acs Nano
  Volume 9 Issue 9 Pages 2792-2804
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Cobalt nanorods possess ideal magnetic properties for applications requiring magnetically hard nanoparticles. However, their exploitation is undermined by their sensitivity toward oxygen and water, which deteriorates their magnetic properties. The development of a continuous metal shell inert to oxidation could render them stable, opening perspectives not only for already identified applications but also for uses in which contact with air and/or aqueous media is inevitable. However, the direct growth of a conformal noble metal shell on magnetic metals is a challenge. Here, we show that prior treatment of Co nanorods with a tin coordination compound is the crucial step that enables the subsequent growth of a continuous noble metal shell on their surface, rendering them air- and water-resistant, while conserving the monocrystallity, metallicity and the magnetic properties of the Co core. Thus, the as-synthesized coreshell ferromagnetic nanorods combine high magnetization and strong uniaxial magnetic anisotropy, even after exposure to air and water, and hold promise for successful implementation in in vitro biodiagnostics requiring probes of high magnetization and anisotropic shape.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000351791800055 Publication Date 2015-03-03
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 13.942 Times cited 25 Open Access OpenAccess
  Notes 312483 Esteem2; 246791 Countatoms; 335078 Colouratom; esteem2ta; ECASSara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 13.942; 2015 IF: 12.881
  Call Number c:irua:125380 c:irua:125380 Serial 87
Permanent link to this record
 

 
Author Javon, E.; Gaceur, M.; Dachraoui, W.; Margeat, O.; Ackermann, J.; Ilenia Saba, M.; Delugas, P.; Mattoni, A.; Bals, S.; Van Tendeloo, G.
  Title Competing forces in the self-assembly of coupled ZnO nanopyramids Type A1 Journal article
  Year 2015 Publication ACS nano Abbreviated Journal (up) Acs Nano
  Volume 9 Issue 9 Pages 3685-3694
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Self-assembly (SA) of nanostructures has recently gained increasing interest. A clear understanding of the process is not straightforward since SA of nanoparticles is a complex multiscale phenomenon including different driving forces. Here, we study the SA between aluminum doped ZnO nanopyramids into couples by combining inorganic chemistry and advanced electron microscopy techniques with atomistic simulations. Our results show that the SA of the coupled nanopyramids is controlled first by morphology, as coupling only occurs in the case of pyramids with well-developed facets of the basal planes. The combination of electron microscopy and atomistic modeling reveals that the coupling is further driven by strong ligandligand interaction between the bases of the pyramids as dominant force, while screening effects due to Al doping or solvent as well as corecore interaction are only minor contributions. Our combined approach provides a deeper understanding of the complex interplay between the interactions at work in the coupled SA of ZnO nanopyramids.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000353867000030 Publication Date 2015-03-12
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 13.942 Times cited 21 Open Access OpenAccess
  Notes Esmi; 335078 Colouratom; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 13.942; 2015 IF: 12.881
  Call Number c:irua:125978 Serial 434
Permanent link to this record
 

 
Author Chen, B.; Sahin, H.; Suslu, A.; Ding, L.; Bertoni, M.I.; Peeters, F.M.; Tongay, S.
  Title Environmental changes in MoTe2 excitonic dynamics by defects-activated molecular interaction Type A1 Journal article
  Year 2015 Publication ACS nano Abbreviated Journal (up) Acs Nano
  Volume 9 Issue 9 Pages 5326-5332
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract Monolayers of group VI transition metal dichalcogenides possess direct gaps in the visible spectrum with the exception of MoTe2, where its gap is suitably located in the infrared region but its stability is of particular interest, as tellurium compounds are acutely sensitive to oxygen exposure. Here, our environmental (time-dependent) measurements reveal two distinct effects on MoTe2 monolayers: For weakly luminescent monolayers, photoluminescence signal and optical contrast disappear, as if they are decomposed, but yet remain intact as evidenced by AFM and Raman measurements. In contrast, strongly luminescent monolayers retain their optical contrast for a prolonged amount of time, while their PL peak blue-shifts and PL intensity saturates to slightly lower values. Our X-ray photoelectron spectroscopy measurements and DFT calculations suggest that the presence of defects and functionalization of these defect sites with O-2 molecules strongly dictate their material properties and aging response by changing the excitonic dynamics due to deep or shallow states that are created within the optical band gap. Presented results not only shed light on environmental effects on fundamental material properties and excitonic dynamics of MoTe2 monolayers but also highlight striking material transformation for metastable 20 systems such as WTe2, silicone, and phosphorene.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000355383000068 Publication Date 2015-04-14
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 13.942 Times cited 150 Open Access
  Notes ; This work was supported by the Arizona State University seeding program. The authors thank Hui Cai and Kedi Wu for useful discussions. We gratefully acknowledge the use of facilities at the LeRoy Eyring Center for Solid State Science at Arizona State University. This work was supported by the Flemish Science Foundation (FWO-VI) and the Methusalem Foundation of the Flemish government. H.S. is supported by a FWO Pegasus Long Marie Curie Fellowship. ; Approved Most recent IF: 13.942; 2015 IF: 12.881
  Call Number c:irua:126441 Serial 1068
Permanent link to this record
 

 
Author Sanz-Ortiz, M.N.; Sentosun, K.; Bals, S.; Liz-Marzan, L.M.
  Title Templated Growth of Surface Enhanced Raman Scattering -Active Branched Au Nanoparticles within Radial Mesoporous Silica Shells Type A1 Journal article
  Year 2015 Publication ACS nano Abbreviated Journal (up) Acs Nano
  Volume 9 Issue 9 Pages 10489-10497
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Noble metal nanoparticles are widely used as probes or substrates for surface-enhanced Raman scattering (SERS), due to their characteristic plasmon resonances in the visible and NIR spectral ranges. Aiming at obtaining a versatile system with high SERS performance we developed the synthesis of quasi-monodisperse, non-aggregated gold nanoparticles protected by radial mesoporous silica shells. The radial channels of such shells were used as templates for the growth of gold tips branching from the cores, thereby improving the plasmonic performance of the particles while favoring the localization of analyte molecules at high electric field regions: close to the tips, inside the pores. The method, which allows control over tip length, was successfully applied to various gold nanoparticle shapes, leading to materials with highly efficient SERS performance. The obtained nanoparticles are stable in ethanol and water upon thermal consolidation and can be safely stored as a powder.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language English Wos 000363915300105 Publication Date 2015-09-15
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 13.942 Times cited 110 Open Access OpenAccess
  Notes This work has been funded by the European Research Council (ERC Advanced Grant 267867 Plasmaquo and Starting Grant Colouratom). The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013 under grant agreement no. 312184, SACS). Help from Mert Kurttepeli is acknowledged. Pentatwinned nanorods and nanotriangles were synthesized by L. Scarabelli.; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 13.942; 2015 IF: 12.881
  Call Number c:irua:129194 Serial 3947
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: