toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Frolov, A.S.; Sanchez-Barriga, J.; Callaert, C.; Hadermann, J.; Fedorov, A., V; Usachov, D.Y.; Chaika, A.N.; Walls, B.C.; Zhussupbekov, K.; Shvets, I., V.; Muntwiler, M.; Amati, M.; Gregoratti, L.; Varykhalov, A.Y.; Rader, O.; Yashina, L., V. pdf  url
doi  openurl
  Title Atomic and electronic structure of a multidomain GeTe crystal Type A1 Journal article
  Year 2020 Publication Acs Nano Abbreviated Journal (down) Acs Nano  
  Volume 14 Issue 12 Pages 16576-16589  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Renewed interest in the ferroelectric semi-conductor germanium telluride was recently triggered by the direct observation of a giant Rashba effect and a 30-year-old dream about a functional spin field-effect transistor. In this respect, all-electrical control of the spin texture in this material in combination with ferroelectric properties at the nanoscale would create advanced functionalities in spintronics and data information processing. Here, we investigate the atomic and electronic properties of GeTe bulk single crystals and their (111) surfaces. We succeeded in growing crystals possessing solely inversion domains of similar to 10 nm thickness parallel to each other. Using HAADF-TEM we observe two types of domain boundaries, one of them being similar in structure to the van der Waals gap in layered materials. This structure is responsible for the formation of surface domains with preferential Te-termination (similar to 68%) as we determined using photoelectron diffraction and XPS. The lateral dimensions of the surface domains are in the range of similar to 10-100 nm, and both Ge- and Te-terminations reveal no reconstruction. Using spin-ARPES we establish an intrinsic quantitative relationship between the spin polarization of pure bulk states and the relative contribution of different terminations, a result that is consistent with a reversal of the spin texture of the bulk Rashba bands for opposite configurations of the ferroelectric polarization within individual nanodomains. Our findings are important for potential applications of ferroelectric Rashba semiconductors in nonvolatile spintronic devices with advanced memory and computing capabilities at the nanoscale.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000603308800022 Publication Date 2020-11-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 17.1 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 17.1; 2020 IF: 13.942  
  Call Number UA @ admin @ c:irua:175027 Serial 6716  
Permanent link to this record
 

 
Author Sánchez-Iglesias, A.; Zhuo, X.; Albrecht, W.; Bals, S.; Liz-Marzán, L.M. pdf  url
doi  openurl
  Title Tuning Size and Seed Position in Small Silver Nanorods Type A1 Journal article
  Year 2020 Publication ACS materials letters Abbreviated Journal (down) ACS Materials Lett.  
  Volume 2 Issue 9 Pages 1246-1250  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000571390700022 Publication Date 2020-09-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2639-4979 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 9 Open Access OpenAccess  
  Notes Financial support is acknowledged from the European Commission under the Horizon 2020 Programme, by means of Grant Agreement No. 731019 (EUSMI), the ERC Consolidator Grant (No. 815128) (REALNANO), and the ERC Advanced Grant (No. 787510) (4DbioSERS). W.A. acknowledges an Individual Fellowship from the Marie Sklodowska-Curie actions (MSCA), under the EU’s Horizon 2020 program (Grant 797153, SOPMEN). This work was performed under the Maria de Maeztu Units of Excellence Program from the Spanish State Research Agency (Grant No. MDM-2017-0720).; sygma Approved Most recent IF: NA  
  Call Number EMAT @ emat @c:irua:171980 Serial 6439  
Permanent link to this record
 

 
Author Gropp, C.; Canossa, S.; Wuttke, S.; Gándara, F.; Li, Q.; Gagliardi, L.; Yaghi, O.M. pdf  url
doi  openurl
  Title Standard Practices of Reticular Chemistry Type A1 Journal article
  Year 2020 Publication Acs Central Science Abbreviated Journal (down) Acs Central Sci  
  Volume 6 Issue 8 Pages 1255-1273  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Since 1995 when the first of metal−organic frameworks was crystallized with the strong bond approach, where metal ions are joined by charged organic linkers exemplified by carboxylates, followed by proof of their porosity in 1998 and ultrahigh porosity in 1999, a revolution in the development of their chemistry has ensued. This is being reinforced by the discovery of two- and three-dimensional covalent organic frameworks in 2005 and 2007. Currently, the chemistry of such porous, crystalline frameworks is collectively referred to as reticular chemistry, which is being practiced in over 100 countries. The involvement of researchers from various backgrounds and fields, and the vast scope of this chemistry and its societal applications, necessitate articulating the “Standard Practices of Reticular Chemistry”.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000566668400005 Publication Date 2020-08-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2374-7943 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 18.2 Times cited Open Access OpenAccess  
  Notes S.C. acknowledges the Research Foundation Flanders (FWO) for supporting his research (Project 12ZV120N). Approved Most recent IF: 18.2; 2020 IF: 7.481  
  Call Number EMAT @ emat @c:irua:172057 Serial 6423  
Permanent link to this record
 

 
Author Saveleva, V.A.; Wang, L.; Kasian, O.; Batuk, M.; Hadermann, J.; Gallet, J.-j.; Bournel, F.; Alonso-Vante, N.; Ozouf, G.; Beauger, C.; Mayrhofer, K.J.J.; Cherevko, S.; Gago, A.S.; Friedrich, K.A.; Zafeiratos, S.; Savinova, E.R. url  doi
openurl 
  Title Insight into the Mechanisms of High Activity and Stability of Iridium Supported on Antimony-Doped Tin Oxide Aerogel for Anodes of Proton Exchange Membrane Water Electrolyzers Type A1 Journal article
  Year 2020 Publication Acs Catalysis Abbreviated Journal (down) Acs Catal  
  Volume 10 Issue 4 Pages 2508-2516  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The use of high amounts of iridium in industrial proton exchange membrane water electrolysers (PEMWE) could hinder their widespread use for the decarbonisation of society with hydrogen. Non-thermally oxidised Ir nanoparticles supported on antimony-doped tin oxide (SnO2:Sb, ATO) aerogel allow decreasing the use of the precious metal by more than 70 %, while enhancing the electro-catalytic activity and stability. To date the origin of these benefits remains unknown. Here we present clear evidence on the mechanisms that lead to the enhancement of the electrochemical properties of the catalyst. Operando near ambient pressure X-ray photoelectron spectroscopy on membrane electrode assemblies reveals a low degree of Ir oxidation, attributed to the oxygen spill-over from Ir to SnO2:Sb. Furthermore, the formation of highly unstable Ir(III) species is mitigated, while the decrease of Ir dissolution in Ir/SnO2:Sb is confirmed by inductively coupled plasma mass spectrometry (ICP-MS). The mechanisms that lead to the high activity and stability of Ir catalyst supported on SnO2:Sb aerogel for PEMWE are thus unveiled.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000516887400011 Publication Date 2020-02-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.9 Times cited Open Access OpenAccess  
  Notes The research leading to these results has received funding from the European Union’s Seventh Framework Program (FP7/2007-2013) for Fuel Cell and Hydrogen Joint Technology (FCH JU) Initiative under Grant No. 621237 (INSIDE). In addition, A.S.G. and C.B. thank the European Union’s Horizon 2020 research and innovation programme for funding the project PRETZEL under grant agreement No 779478 and it is supported by FCH JU. Solvay is acknowledged for providing Aquivion membrane and ionomer. Approved Most recent IF: 12.9; 2020 IF: 10.614  
  Call Number EMAT @ emat @c:irua:167147 Serial 6341  
Permanent link to this record
 

 
Author Mehta, P.; Barboun, P.M.; Engelmann, Y.; Go, D.B.; Bogaerts, A.; Schneider, W.F.; Hicks, J.C. pdf  url
doi  openurl
  Title Plasma-Catalytic Ammonia Synthesis beyond the Equilibrium Limit Type A1 Journal article
  Year 2020 Publication Acs Catalysis Abbreviated Journal (down) Acs Catal  
  Volume 10 Issue 12 Pages 6726-6734  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We explore the consequences of nonthermal plasma-activation on product yields in catalytic ammonia synthesis, a reaction that is equilibrium-limited at elevated temperatures. We employ a minimal microkinetic model that incorporates the influence of plasma-activation on N2 dissociation rates to predict NH3 yields into and across the equilibrium-limited regime. NH3 yields are predicted to exceed bulk thermodynamic equilibrium limits on materials that are thermal-rate-limited by N2 dissociation. In all cases, yields revert to bulk equilibrium at temperatures at which thermal reaction rates exceed plasma-activated ones. Beyond-equilibrium NH3 yields are observed in a packed bed dielectric barrier discharge reactor and exhibit sensitivity to catalytic material choice in a way consistent with model predictions. The approach and results highlight the opportunity to exploit synergies between nonthermal plasmas and catalysts to affect transformations at conditions inaccessible through thermal routes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000543663800015 Publication Date 2020-06-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.9 Times cited Open Access  
  Notes University of Notre Dame; Basic Energy Sciences, DE-SC-0016543 ; Air Force Office of Scientific Research, FA9550-18-1- 0157 ; This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Sustainable Ammonia Synthesis Program, under Award DE-SC-0016543 and by the U.S. Air Force Office of Scientific Research, under Award FA9550-18-1-0157. P.M. acknowledges support through the Eilers Graduate Fellowship for Energy Related Research from the University of Notre Dame. Computational resources were provided by the Notre Dame Center for Research Computing. We thank the Notre Dame Energy Materials Characterization Facility and the Notre Dame Integrated Imaging Facility for the use of the X-ray diffractometer and the transmission electron microscope, respectively. Approved Most recent IF: 12.9; 2020 IF: 10.614  
  Call Number PLASMANT @ plasmant @c:irua:170713 Serial 6405  
Permanent link to this record
 

 
Author Irtem, E.; Arenas Esteban, D.; Duarte, M.; Choukroun, D.; Lee, S.; Ibáñez, M.; Bals, S.; Breugelmans, T. url  doi
openurl 
  Title Ligand-Mode Directed Selectivity in Cu–Ag Core–Shell Based Gas Diffusion Electrodes for CO2Electroreduction Type A1 Journal article
  Year 2020 Publication Acs Catalysis Abbreviated Journal (down) Acs Catal  
  Volume Issue Pages 13468-13478  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract Bimetallic nanoparticles with tailored size and specific composition have shown promise as stable and selective catalysts for electrochemical reduction of CO2 (CO2R) in batch systems. Yet, limited effort was devoted to understand the effect of ligand coverage and postsynthesis treatments on CO2 reduction, especially under industrially applicable conditions, such as at high currents (>100 mA/cm2) using gas diffusion electrodes (GDE) and flow reactors. In this work, Cu–Ag core–shell nanoparticles (11 ± 2 nm) were prepared with three different surface modes: (i) capped with oleylamine, (ii) capped with monoisopropylamine, and (iii) surfactant free with a reducing borohydride agent; Cu–Ag (OAm), Cu–Ag (MIPA), and Cu–Ag (NaBH4), respectively. The ligand exchange and removal was evidenced by infrared spectroscopy (ATR-FTIR) analysis, whereas high-resolution scanning transmission electron microscopy (HAADF-STEM) showed their effect on the interparticle distance and nanoparticle rearrangement. Later on, we developed a process-on-substrate method to track these effects on CO2R. Cu–Ag (OAm) gave a lower on-set potential for hydrocarbon production, whereas Cu–Ag (MIPA) and Cu–Ag (NaBH4) promoted syngas production. The electrochemical impedance and surface area analysis on the well-controlled electrodes showed gradual increases in the electrical conductivity and active surface area after each surface treatment. We found that the increasing amount of the triple phase boundaries (the meeting point for the electron–electrolyte–CO2 reactant) affect the required electrode potential and eventually the C+2e̅/C2e̅ product ratio. This study highlights the importance of the electron transfer to those active sites affected by the capping agents—particularly on larger substrates that are crucial for their industrial application.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000592978900031 Publication Date 2020-11-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.9 Times cited 23 Open Access OpenAccess  
  Notes The authors also acknowledge financial support from the University Research Fund (BOF-GOA-PS ID No. 33928). S.L. has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie SkłodowskaCurie Grant Agreement No. 665385. Approved Most recent IF: 12.9; 2020 IF: 10.614  
  Call Number EMAT @ emat @c:irua:173803 Serial 6432  
Permanent link to this record
 

 
Author Van Velthoven, N.; Henrion, M.; Dallenes, J.; Krajnc, A.; Bugaev, A.L.; Liu, P.; Bals, S.; Soldatov, A.; Mali, G.; De Vos, D.E. pdf  url
doi  openurl
  Title S,O-functionalized metal-organic frameworks as heterogeneous single-site catalysts for the oxidative alkenylation of arenes via C- H activation Type A1 Journal article
  Year 2020 Publication Acs Catalysis Abbreviated Journal (down) Acs Catal  
  Volume 10 Issue 9 Pages 5077-5085  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Heterogeneous single-site catalysts can combine the R precise active site design of organometallic complexes with the efficient recovery of solid catalysts. Based on recent progress on homogeneous thioether ligands for Pd-catalyzed C-H activation reactions, we here develop a scalable metal-organic framework-based heterogeneous single-site catalyst containing S,O-moieties that increase the catalytic activity of Pd(II) for the oxidative alkenylation of arenes. The structure of the Pd@MOF-808-L1 catalyst was characterized in detail via solid-state nuclear magnetic resonance spectroscopy, N-2 physisorption, and high-angle annular dark field scanning transmission electron microscopy, and the structure of the isolated palladium active sites could be identified by X-ray absorption spectroscopy. A turnover frequency (TOF) of 8.4 h(-1) was reached after 1 h of reaction time, which was 3 times higher than the TOF of standard Pd(OAc)(2), ranking Pd@MOF-808-L1 among the most active heterogeneous catalysts ever reported for the nondirected oxidative alkenylation of arenes. Finally, we showed that the single-site catalyst promotes the oxidative alkenylation of a broad range of electron-rich arenes, and the applicability of this heterogeneous system was demonstrated by the gram-scale synthesis of industrially relevant products.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000530090800026 Publication Date 2020-04-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.9 Times cited 37 Open Access OpenAccess  
  Notes ; The research leading to these results has received funding from the NMBP-01-2016 Program of the European Union's Horizon 2020 Framework Program H2020/2014-2020/under grant agreement no [720996]. N.V.V. and D.E.D.V. thank the FWO for funding (1S32917N and G0F2320N). D.E.D.V. is grateful for KU Leuven's support in the frame of the CASAS Metusalem project and a C3 type project. A.K. and G.M. acknowledge the financial support from the Slovenian Research Agency (research core funding no. P1-0021 and project no. N1-0079). A.L.B and A.V.S. acknowledge Russian Science Foundation grant no. 20-43-01015 for financial support. We thank Alexander Trigub and Alexey Veligzhanin for their support during the beamtime at Kurchatov Institute. We are indebted to Elizaveta Kamyshova and Anna Pnevskaya for their valuable help during EXAFS measurements. P.L. and S.B. thank European Research Council for the ERC Consolidator Grant 815128, REALNANO. Kassem Amro and Guillaume Gracy from Sikemia are gratefully acknowledged for providing ; sygma Approved Most recent IF: 12.9; 2020 IF: 10.614  
  Call Number UA @ admin @ c:irua:169530 Serial 6598  
Permanent link to this record
 

 
Author Agrawal, H.; Patra, B.K.; Altantzis, T.; De Backer, A.; Garnett, E.C. url  doi
openurl 
  Title Quantifying Strain and Dislocation Density at Nanocube Interfaces after Assembly and Epitaxy Type A1 Journal article
  Year 2020 Publication Acs Applied Materials & Interfaces Abbreviated Journal (down) Acs Appl Mater Inter  
  Volume 12 Issue 7 Pages 8788-8794  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract Nanoparticle self-assembly and epitaxy are utilized extensively to make 1D and 2D structures with complex shapes. High-resolution transmission electron microscopy (HRTEM) has shown that single-crystalline interfaces can form, but little is known about the strain and dislocations at these interfaces. Such information is critically important for applications: drastically reducing

dislocation density was the key breakthrough enabling widespread implementation of light-emitting diodes, while strain engineering has been fundamental to modern high-performance transistors, solar cells, and thermoelectrics. In this work, the interfacial defect and strain formation after selfassembly and room temperature epitaxy of 7 nm Pd nanocubes capped with polyvinylpyrrolidone (PVP) is examined. It is observed that, during ligand removal, the cubes move over large distances on the substrate, leading to both spontaneous self-assembly and epitaxy to form single crystals. Subsequently, atomically resolved images are used to quantify the strain and dislocation density at the epitaxial interfaces between cubes with different lateral and angular misorientations. It is shown that dislocation- and strain-free interfaces form when the nanocubes align parallel to each other. Angular misalignment between adjacent cubes does not necessarily lead to grain boundaries but does cause dislocations, with higher densities associated with larger rotations.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000515214300101 Publication Date 2020-02-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.5 Times cited Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek; H2020 Research Infrastructures, 731019 ; Nederlandse Organisatie voor Wetenschappelijk Onderzoek, 14846 ; The work at AMOLF is part of the research program of the “Nederlandse Organisatie voor Wetenschappelijk Onderzoek” (NWO). This work was supported by the NWO VIDI grant (project no. 14846). The authors would like to thank Reinout Jaarsma and Dr. Sven Askes for helping with the XPS measurements. A.D.B. acknowledges a postdoctoral grant from the research foundation Flanders (FWO). The authors acknowledge financial support from the European Commission under the Horizon 2020 Programme by means of the grant agreement no. 731019 EUSMI. Approved Most recent IF: 9.5; 2020 IF: 7.504  
  Call Number EMAT @ emat @c:irua:167770 Serial 6398  
Permanent link to this record
 

 
Author Ben Dkhil, S.; Perkhun, P.; Luo, C.; Mueller, D.; Alkarsifi, R.; Barulina, E.; Quiroz, Y.A.A.; Margeat, O.; Dubas, S.T.; Koganezawa, T.; Kuzuhara, D.; Yoshimoto, N.; Caddeo, C.; Mattoni, A.; Zimmermann, B.; Wuerfel, U.; Pfannmöller, M.; Bals, S.; Ackermann, J.; Videlot-Ackermann, C. pdf  url
doi  openurl
  Title Direct correlation of nanoscale morphology and device performance to study photocurrent generation in donor-enriched phases of polymer solar cells Type A1 Journal article
  Year 2020 Publication Acs Applied Materials & Interfaces Abbreviated Journal (down) Acs Appl Mater Inter  
  Volume 12 Issue 25 Pages 28404-28415  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The nanoscale morphology of polymer blends is a key parameter to reach high efficiency in bulk heterojunction solar cells. Thereby, research typically focusing on optimal blend morphologies while studying nonoptimized blends may give insight into blend designs that can prove more robust against morphology defects. Here, we focus on the direct correlation of morphology and device performance of thieno[3,4-b]-thiophene-alt-benzodithiophene (PTB7):[6,6]phenyl C-71 butyric acid methyl ester (PC71BM) bulk heterojunction (BHJ) blends processed without additives in different donor/acceptor weight ratios. We show that while blends of a 1:1.5 ratio are composed of large donor-enriched and fullerene domains beyond the exciton diffusion length, reducing the ratio below 1:0.5 leads to blends composed purely of polymer-enriched domains. Importantly, the photocurrent density in such blends can reach values between 45 and 60% of those reached for fully optimized blends using additives. We provide here direct visual evidence that fullerenes in the donor-enriched domains are not distributed homogeneously but fluctuate locally. To this end, we performed compositional nanoscale morphology analysis of the blend using spectroscopic imaging of low-energy-loss electrons using a transmission electron microscope. Charge transport measurement in combination with molecular dynamics simulations shows that the fullerene substructures inside the polymer phase generate efficient electron transport in the polymer-enriched phase. Furthermore, we show that the formation of densely packed regions of fullerene inside the polymer phase is driven by the PTB7:PC71BM enthalpy of mixing. The occurrence of such a nanoscale network of fullerene clusters leads to a reduction of electron trap states and thus efficient extraction of photocurrent inside the polymer domain. Suitable tuning of the polymer-acceptor interaction can thus introduce acceptor subnetworks in polymer-enriched phases, improving the tolerance for high-efficiency BHJ toward morphological defects such as donor-enriched domains exceeding the exciton diffusion length.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000543780900058 Publication Date 2020-06-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.5 Times cited 7 Open Access OpenAccess  
  Notes ; J.A., O.M., and C.V.-A. acknowledge financial support by the French Fond Unique Interministeriel (FUI) under the project “SFUMATO” (Grant Number: F1110019V/ 201308815) as well as by the European Commission under the Project “SUNFLOWER” (FP7-ICT-2011-7, Grant Number: 287594). J.A., C.V.-A., and E.B. acknowledge the Association Nationale de la Recherche et de la Technologie (ANRT) and the Ministere de l'Enseignement Superieur, de la Recherche et de l'Innovation, awarded through the company Dracula Technologies (Valence, France), for framework of a CIFRE Ph.D. grant 2017/0529. J.A. and P.P. received funding from the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie Grant agreement no. 713750. They further acknowledge support of the Regional Council of Provence-Alpes-Cote d'Azur, A*MIDEX (no. ANR-11-IDEX-0001-02), and the Investissements d'Avenir project funded by the French Government, managed by the French National Research Agency (ANR). J.A. and Y.A.A.Q. acknowledge the French Research Agency for funding through the project NFA-15 (ANR-17-CE05-0020-01). N.Y. acknowledges that the synchrotron radiation experiments were performed at BL19B2 in SPring-8 with the approval of Japan Synchrotron Radiation Research Institute (JASRI) (proposal nos. 2017B1629 and 2018B1791). S.B. acknowledges financial support from the European Research Council (ERC Consolidator Grant 815128-REALNANO) and from FWO (G.0381.16N). M.P. gratefully acknowledges funding by the Ministerium fur Wissenschaft, Forschung und Kunst Baden-Wurttemberg through the HEiKA materials research centre FunTECH-3D (MWK, 33-753-30-20/3/3) and the Large-Scale-Data-Facility (LSDF) sds@hd through grant INST 35/1314-1 FUGG. A.M. acknowledges Italian MIUR for funding through the project PON04a2 00490 M2M Netergit, PRACE, for awarding access to Marconi KNL at CINECA, Italy, through projects DECONVOLVES (2018184466) and PROVING-IL (2019204911). C.C. acknowledges the CINECA award under the ISCRA initiative for the availability of high-performance computing resources and support (project MITOMASC). ; sygma Approved Most recent IF: 9.5; 2020 IF: 7.504  
  Call Number UA @ admin @ c:irua:170703 Serial 6484  
Permanent link to this record
 

 
Author Kertik, A.; Wee, L.H.; Şentosun, K.; Navarro, J.A.R.; Bals, S.; Martens, J.A.; Vankelecom, I.F.J. url  doi
openurl 
  Title High-performance CO2-selective hybrid membranes by exploiting MOF-breathing effects Type A1 Journal article
  Year 2020 Publication Acs Applied Materials & Interfaces Abbreviated Journal (down) Acs Appl Mater Inter  
  Volume 12 Issue 2 Pages 2952-2961  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Conventional CO2 separation in the petrochemical industry via cryogenic distillation or amine-based absorber-stripper units is energy-intensive and environmentally unfriendly. Membrane-based gas separation technology, in contrast, has contributed significantly to the development of energy-efficient systems for processes such as natural gas purification. The implementation of commercial polymeric membranes in gas separation processes is restricted by their permeability-selectivity trade-off and by their insufficient thermal and chemical stability. Herein, we present the fabrication of a Matrimid-based membrane loaded with a breathing metal-organic framework (MOF) (NH2-MIL-53(Al)) which is capable of separating binary CO2/CH4 gas mixtures with high selectivities without sacrificing much of its CO2 permeabilities. NH2-MIL-53(Al) crystals were embedded in a polyimide (PI) matrix, and the mixed-matrix membranes (MMMs) were treated at elevated temperatures (up to 350 degrees C) in air to trigger PI cross-linking and to create PI-MOF bonds at the interface to effectively seal the grain boundary. Most importantly, the MOF transitions from its narrow-pore form to its large-pore form during this treatment, which allows the PI chains to partly penetrate the pores and cross-link with the amino functions at the pore mouth of the NH2-MIL-53(Al) and stabilizes the open-pore form of NH2-MIL-53(Al). This cross-linked MMM, with MOF pore entrances was made more selective by the anchored PI-chains and achieves outstanding CO2/CH4 selectivities. This approach provides significant advancement toward the design of selective MMMs with enhanced thermal and chemical stabilities which could also be applicable for other potential applications, such as separation of hydrocarbons (olefin/paraffin or isomers), pervaporation, and solvent-resistant nanofiltration.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000508464500108 Publication Date 2019-12-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.5 Times cited 26 Open Access OpenAccess  
  Notes ; A.K. is grateful to the Erasmus Mundus Doctorate in Membrane Engineering (EUDIME) programme. L.H.W. thanks the FWO-Vlaanderen for a postdoctoral research fellowships under contract number 12M1418N. We thank Methusalem and IAP-PAI for research funding. S.B. acknowledges financial support from European Research Council (ERC) (ERC Starting Grant No. 335078-COLOURATOM). We are also grateful to Frank Mathijs (KU Leuven) for the mechanical tests, Bart Goderis and Olivier Verkinderen for the DSC measurements, and Huntsman (Switzerland) for providing the Matrimid polymer. ; Approved Most recent IF: 9.5; 2020 IF: 7.504  
  Call Number UA @ admin @ c:irua:166576 Serial 6534  
Permanent link to this record
 

 
Author Bacaksiz, C.; Yagmurcukardes, M.; Peeters, F.M.; Milošević, M.V. doi  openurl
  Title Hematite at its thinnest limit Type A1 Journal article
  Year 2020 Publication 2d Materials Abbreviated Journal (down) 2D Mater  
  Volume 7 Issue 2 Pages 025029  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Motivated by the recent synthesis of two-dimensional alpha-Fe2O3 (Balan et al 2018 Nat. Nanotechnol. 13 602), we analyze the structural, vibrational, electronic and magnetic properties of single- and few-layer alpha-Fe2O3 compared to bulk, by ab initio and Monte-Carlo simulations. We reveal how monolayer alpha-Fe2O3 (hematene) can be distinguished from the few-layer structures, and how they all differ from bulk through observable Raman spectra. The optical spectra exhibit gradual shift of the prominent peak to higher energy, as well as additional features at lower energy when alpha-Fe2O3 is thinned down to a monolayer. Both optical and electronic properties have strong spin asymmetry, meaning that lower-energy optical and electronic activities are allowed for the single-spin state. Finally, our considerations of magnetic properties reveal that 2D hematite has anti-ferromagnetic ground state for all thicknesses, but the critical temperature for Morin transition increases with decreasing sample thickness. On all accounts, the link to available experimental data is made, and further measurements are prompted.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000537341000002 Publication Date 2020-01-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.5 Times cited 11 Open Access  
  Notes ; This work was supported by Research Foundation-Flanders (FWO-Vlaanderen). Computational resources were provided by Flemish Supercomputer Center(VSC), and TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). Part of this work was also supported by FLAG-ERA project TRANS-2D-TMD and TOPBOF-UAntwerp. MY was supported by a postdoctoral fellowship from the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 5.5; 2020 IF: 6.937  
  Call Number UA @ admin @ c:irua:170301 Serial 6533  
Permanent link to this record
 

 
Author Bigiani, L.; Gasparotto, A.; Andreu, T.; Verbeeck, J.; Sada, C.; Modin, E.; Lebedev, O.I.; Morante, J.R.; Barreca, D.; Maccato, C. pdf  doi
openurl 
  Title Au-manganese oxide nanostructures by a plasma-assisted process as electrocatalysts for oxygen evolution : a chemico-physical investigation Type A1 Journal article
  Year 2020 Publication Advanced sustainable systems Abbreviated Journal (down)  
  Volume Issue Pages 2000177-11  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Earth-abundant and eco-friendly manganese oxides are promising platforms for the oxygen evolution reaction (OER) in water electrolysis. Herein, a versatile and potentially scalable route to gold-decorated manganese oxide-based OER electrocatalysts is reported. In particular, MnxOy(MnO2, Mn2O3) host matrices are grown on conductive glasses by plasma assisted-chemical vapor deposition (PA-CVD), and subsequently functionalized with gold nanoparticles (guest) as OER activators by radio frequency (RF)-sputtering. The final selective obtainment of MnO2- or Mn2O3-based systems is then enabled by annealing under oxidizing or inert atmosphere, respectively. A detailed material characterization evidences the formation of high-purity Mn(x)O(y)dendritic nanostructures with an open morphology and an efficient guest dispersion into the host matrices. The tailoring of Mn(x)O(y)phase composition and host-guest interactions has a remarkable influence on OER activity yielding, for the best performing Au/Mn(2)O(3)system, a current density of approximate to 5 mA cm(-2)at 1.65 V versus the reversible hydrogen electrode (RHE) and an overpotential close to 300 mV at 1 mA cm(-2). Such results, comparing favorably with literature data on manganese oxide-based materials, highlight the importance of compositional control, as well as of surface and interface engineering, to develop low-cost and efficient anode nanocatalysts for water splitting applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000572376000001 Publication Date 2020-09-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2366-7486 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.1 Times cited 4 Open Access Not_Open_Access  
  Notes ; Padova University (DOR 2017-2019 and P-DiSC #03BIRD2018-UNIPD OXYGENA projects), as well as the INSTM Consortium (INSTMPD004 – NETTUNO project) and AMGA Foundation (Mn4Energy project), are gratefully acknowledged for financial support. The Qu-Ant-EM microscope was partially funded by the Hercules fund from the Flemish Government. J.V. acknowledges funding from a GOA project “Solarpaint” from the University of Antwerp and from EU H2020 823717 ESTEEM3 project. The authors thank Dr. Daniele Valbusa, Dr. Gianluca Corr, Dr. Andrea Gallo, and Dr. Dileep Khrishnan for helpful experimental assistance. ; esteem3TA; esteem3reported Approved Most recent IF: 7.1; 2020 IF: NA  
  Call Number UA @ admin @ c:irua:171937 Serial 6457  
Permanent link to this record
 

 
Author Lin, S.-C.; Kuo, C.-T.; Shao, Y.-C.; Chuang, Y.-D.; Geessinck, J.; Huijben, M.; Rueff, J.-P.; Graff, I.L.; Conti, G.; Peng, Y.; Bostwick, A.; Gullikson, E.; Nemsak, S.; Vailionis, A.; Gauquelin, N.; Verbeeck, J.; Ghiringhelli, G.; Schneider, C.M.; Fadley, C.S. url  doi
openurl 
  Title Two-dimensional electron systems in perovskite oxide heterostructures : role of the polarity-induced substitutional defects Type A1 Journal article
  Year 2020 Publication Physical review materials Abbreviated Journal (down)  
  Volume 4 Issue 11 Pages 115002  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The discovery of a two-dimensional electron system (2DES) at the interfaces of perovskite oxides such as LaAlO3 and SrTiO3 has motivated enormous efforts in engineering interfacial functionalities with this type of oxide heterostructures. However, the fundamental origins of the 2DES are still not understood, e.g., the microscopic mechanisms of coexisting interface conductivity and magnetism. Here we report a comprehensive spectroscopic investigation on the depth profile of 2DES-relevant Ti 3d interface carriers using depthand element-specific techniques like standing-wave excited photoemission and resonant inelastic scattering. We found that one type of Ti 3d interface carriers, which give rise to the 2DES are located within three unit cells from the n-type interface in the SrTiO3 layer. Unexpectedly, another type of interface carriers, which are polarity-induced Ti-on-Al antisite defects, reside in the first three unit cells of the opposing LaAlO3 layer (similar to 10 angstrom). Our findings provide a microscopic picture of how the localized and mobile Ti 3d interface carriers distribute across the interface and suggest that the 2DES and 2D magnetism at the LaAlO3/SrTiO3 interface have disparate explanations as originating from different types of interface carriers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000592432200004 Publication Date 2020-11-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.4 Times cited 7 Open Access OpenAccess  
  Notes ; We thank G. M. De Luca and L. Braicovich for discussions. Charles S. Fadley was deceased on August 1, 2019. We are grateful for his significant contributions to this work. We thank Advanced Light Source for the access to Beamline 8.0.3 (qRIXS) via Proposal No. 09892 and beamline 7.0.2 (MAESTRO) via Proposal No. RA-00291 that contributed to the results presented here. We thank synchrotron SOLEIL (via Proposal No. 99180118) for the access to Beamline GALAXIES. This work was supported by the U.S. Department of Energy (DOE) under Contract No. DE-AC02-05CH11231 (Advanced Light Source), and by DOE Contract No. DE-SC0014697 through the University of California, Davis (S.-C.L., C.-T.K, and C.S.F.), and from the Julich Research Center, Peter Grunberg Institute, PGI-6. I. L. G. wishes to thank Brazilian scientific agencies CNPQ (Project No. 200789/2017-1) and CAPES (CAPES-PrInt-UFPR) for their financial support. J.V. and N.G. acknowledge funding from the Geconcentreerde Onderzoekacties (GOA) project “Solarpaint” of the University of Antwerp and the European Union's horizon 2020 research and innovation program ES-TEEM3 under grant agreement no 823717. The Qu-Ant-EM microscope used in this study was partly funded by the Hercules fund from the Flemish Government. ; esteem3TA; esteem3reported Approved Most recent IF: 3.4; 2020 IF: NA  
  Call Number UA @ admin @ c:irua:174316 Serial 6713  
Permanent link to this record
 

 
Author Khan, S.U.; Trashin, S.A.; Korostei, Y.S.; Dubinina, T.V.; Tomilova, L.G.; Verbruggen, S.W.; De Wael, K. pdf  doi
openurl 
  Title Photoelectrochemistry for measuring the photocatalytic activity of soluble photosensitizers Type A1 Journal article
  Year 2020 Publication ChemPhotoChem Abbreviated Journal (down)  
  Volume 4 Issue 4 Pages 300-306  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract We introduce a rapid method to test the photocatalytic activity of singlet‐oxygen‐producing photosensitizers using a batch cell, a LED laser and a conventional potentiostat. The strategy is based on coupling of photo‐oxidation of hydroquinone and simultaneous electrochemical reduction of its oxidized form at a carbon electrode in an organic solvent (methanol). This scheme gives an immediate response and avoids complications related to long‐term experiments such as oxidative photo‐degradation of photosensitizers and singlet oxygen traps by reactive oxygen species (ROS). Among the tested compounds, a fluoro‐substituted subphthalocyanine showed the highest photocurrent and singlet oxygen quantum yield (ΦΔ) in comparison to phenoxy‐ and tert‐butyl‐substituted analogues, whereas the lowest photocurrents and yields were observed for aggregated and dimeric phthalocyanine complexes. The method is useful for fast screening of the photosensitizing activity and represents the first example of one‐pot coupling of electrochemical and photocatalytic reactions in organic media.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000520100400001 Publication Date 2020-01-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2367-0932 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 1 Open Access  
  Notes ; We gratefully acknowledge the financial support by ERA.Net RUS Plus Plasmon Electrolight project (No. 18-53-76006 ERA) and RSF 17-13-01197. ; Approved Most recent IF: 3.7; 2020 IF: NA  
  Call Number UA @ admin @ c:irua:165912 Serial 5771  
Permanent link to this record
 

 
Author Peeters, M.; Compernolle, T.; Van Passel, S. url  doi
openurl 
  Title Simulation of a controlled water heating system with demand response remunerated on imbalance market pricing Type A1 Journal article
  Year 2020 Publication Journal of building engineering Abbreviated Journal (down)  
  Volume 27 Issue 27 Pages 100969  
  Keywords A1 Journal article; Economics; Engineering sciences. Technology; Economics; Engineering Management (ENM)  
  Abstract Buildings are responsible for 40% of our worldwide energy consumption and 50% of this energy is converted for Heating Ventilation Air Conditioning (HVAC) systems in buildings. The increasing share of renewable energy production required to make the transition towards a carbon neutral energy system challenges the stability of the grid. Through demand response it becomes possible to activate these systems in support of grid balancing. However, this flexibility is currently not rewarded in the market. We simulate a domestic water heater participating in the balancing of the electricity net and calculated the revenue from this action. We simulate a water heater in connection with an Economic Model Predictive Controller (EMPC) which takes future usage, energy cost, and reward for delivering balanced power into account. We show that the choice of an EMPC controller is valid as it allows the setpoint to change if certain conditions are met, leading to a more optimal revenue stream from selling flexibility. We find that the economic benefits of participating in delivering balancing power is considerable and offset an increase in energy costs. The increase in energy consumption could be justified as the participation in net stabilisation allows the macro-system to integrate more renewable energy sources. More importantly, the simulations also show that the poorer the energy performance of the water heater, the more flexibility can be sold. From a policy point of view, a minimal energy performance should be determined before allowing participation in net stabilisation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000502361000075 Publication Date 2019-09-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes ; Tine Compernolle thanks the Research Foundation Flanders (FWO) for funding her postdoctoral mandate [grant number 12M7417N]. ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:164236 Serial 6248  
Permanent link to this record
 

 
Author Callaert, C. url  openurl
  Title Characterization of defects, modulations and surface layers in topological insulators and structurally related compounds Type Doctoral thesis
  Year 2020 Publication Abbreviated Journal (down)  
  Volume Issue Pages 180 p.  
  Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:165867 Serial 6288  
Permanent link to this record
 

 
Author Vets, C. pdf  openurl
  Title Growth properties of carbon nanomaterials : towards tuning for electronic applications Type Doctoral thesis
  Year 2020 Publication Abbreviated Journal (down)  
  Volume Issue Pages 130 p.  
  Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:164737 Serial 6299  
Permanent link to this record
 

 
Author Pourbabak, S. url  openurl
  Title Influence of nano and microstructural features and defects in finegrained NiTi on the thermal and mechanical reversibility of the martensitic transformation Type Doctoral thesis
  Year 2020 Publication Abbreviated Journal (down)  
  Volume Issue Pages 166 p.  
  Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:165919 Serial 6305  
Permanent link to this record
 

 
Author Bafekry, A.; Stampfl, C.; Ghergherehchi, M. pdf  url
doi  isbn
openurl 
  Title Strain, electric-field and functionalization induced widely tunable electronic properties in MoS2/BC3, /C3N and / C3N4 van der Waals heterostructures Type A1 Journal article
  Year 2020 Publication Nanotechnology (Bristol. Print) Abbreviated Journal (down)  
  Volume Issue Pages 295202 pp  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract In this paper, the effect of BC3, C3N and C3N4BC(3) and MoS2/C(3)N4 heterostructures are direct semiconductors with band gaps of 0.4 and 1.74 eV, respectively, while MoS2/C3N is a metal. Furthermore, the influence of strain and electric field on the electronic structure of these van der Waals heterostructures is investigated. The MoS2/BC3 heterostructure, for strains larger than -4%, transforms it into a metal where the metallic character is maintained for strains larger than -6%. The band gap decreases with increasing strain to 0.35 eV (at +2%), while for strain (>+6%) a direct-indirect band gap transition is predicted to occur. For the MoS2/C3N heterostructure, the metallic character persists for all strains considered. On applying an electric field, the electronic properties of MoS2/C3N4 are modified and its band gap decreases as the electric field increases. Interestingly, the band gap reaches 30 meV at +0.8 V/angstrom, and with increase above +0.8 V/angstrom, a semiconductor-to-metal transition occurs. Furthermore, we investigated effects of semi- and full-hydrogenation of MoS2/C3N and we found that it leads to a metallic and semiconducting character, respectively.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000532366000001 Publication Date 2020-04-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 0957-4484 Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 19 Open Access  
  Notes ; This work has supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT)(NRF-2017R1A2B2011989). ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:169523 Serial 6444  
Permanent link to this record
 

 
Author Demuynck, R.; Efimova, I.; Lin, A.; Declercq, H.; Krysko, D.V. url  doi
openurl 
  Title A 3D cell death assay to quantitatively determine ferroptosis in spheroids Type A1 Journal article
  Year 2020 Publication Cells Abbreviated Journal (down)  
  Volume 9 Issue 3 Pages 703-713  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The failure of drug efficacy in clinical trials remains a big issue in cancer research. This is largely due to the limitations of two-dimensional (2D) cell cultures, the most used tool in drug screening. Nowadays, three-dimensional (3D) cultures, including spheroids, are acknowledged to be a better model of the in vivo environment, but detailed cell death assays for 3D cultures (including those for ferroptosis) are scarce. In this work, we show that a new cell death analysis method, named 3D Cell Death Assay (3DELTA), can efficiently determine different cell death types including ferroptosis and quantitatively assess cell death in tumour spheroids. Our method uses Sytox dyes as a cell death marker and Triton X-100, which efficiently permeabilizes all cells in spheroids, was used to establish 100% cell death. After optimization of Sytox concentration, Triton X-100 concentration and timing, we showed that the 3DELTA method was able to detect signals from all cells without the need to disaggregate spheroids. Moreover, in this work we demonstrated that 2D experiments cannot be extrapolated to 3D cultures as 3D cultures are less sensitive to cell death induction. In conclusion, 3DELTA is a more cost-effective way to identify and measure cell death type in 3D cultures, including spheroids.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000529337400180 Publication Date 2020-03-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-4409 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 5 Open Access  
  Notes ; Research in the D.V.K. group is supported by Fund for Scientific Research Flanders (1506218N, 1507118N, G051918N and G043219N) and Ghent University (Special Research Fund IOP 01/O3618). ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:167215 Serial 6446  
Permanent link to this record
 

 
Author Paulus, A.; Hendrickx, M.; Bercx, M.; Karakulina, O.M.; Kirsanova, M.A.; Lamoen, D.; Hadermann, J.; Abakumov, A.M.; Van Bael, M.K.; Hardy, A. url  doi
openurl 
  Title An in-depth study of Sn substitution in Li-rich/Mn-rich NMC as a cathode material for Li-ion batteries Type A1 Journal article
  Year 2020 Publication Journal of the Chemical Society : Dalton transactions Abbreviated Journal (down)  
  Volume 49 Issue 30 Pages 10486-10497  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Layered Li-rich/Mn-rich NMC (LMR-NMC) is characterized by high initial specific capacities of more than 250 mA h g(-1), lower cost due to a lower Co content and higher thermal stability than LiCoO2. However, its commercialisation is currently still hampered by significant voltage fade, which is caused by irreversible transition metal ion migration to emptied Li positionsviatetrahedral interstices upon electrochemical cycling. This structural change is strongly correlated with anionic redox chemistry of the oxygen sublattice and has a detrimental effect on electrochemical performance. In a fully charged state, up to 4.8 Vvs.Li/Li+, Mn4+ is prone to migrate to the Li layer. The replacement of Mn4+ for an isovalent cation such as Sn4+ which does not tend to adopt tetrahedral coordination and shows a higher metal-oxygen bond strength is considered to be a viable strategy to stabilize the layered structure upon extended electrochemical cycling, hereby decreasing voltage fade. The influence of Sn4+ on the voltage fade in partially charged LMR-NMC is not yet reported in the literature, and therefore, we have investigated the structure and the corresponding electrochemical properties of LMR-NMC with different Sn concentrations. We determined the substitution limit of Sn4+ in Li1.2Ni0.13Co0.13Mn0.54-xSnxO2 by powder X-ray diffraction and transmission electron microscopy to be x approximate to 0.045. The limited solubility of Sn is subsequently confirmed by density functional theory calculations. Voltage fade for x= 0 andx= 0.027 has been comparatively assessed within the 3.00 V-4.55 V (vs.Li/Li+) potential window, from which it is concluded that replacing Mn4+ by Sn4+ cannot be considered as a viable strategy to inhibit voltage fade within this window, at least with the given restricted doping level.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000555330900018 Publication Date 2020-07-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0300-9246; 1477-9226; 1472-7773 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4 Times cited Open Access OpenAccess  
  Notes ; The authors acknowledge Research Foundation Flanders (FWO) project number G040116N for funding. The authors are grateful to Dr Ken Elen and Greet Cuyvers (imo-imomec, UHasselt and imec) for respectively preliminary PXRD measurements and performing ICP-AES on the monometal precursors. Dr Dmitry Rupasov (Skolkovo Institute of Science and Technology) is acknowledged for performing TGA measurements on the metal sulfate precursors. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO-Vlaanderen and the Flemish Government-department EWI. ; Approved Most recent IF: 4; 2020 IF: 4.029  
  Call Number UA @ admin @ c:irua:171149 Serial 6450  
Permanent link to this record
 

 
Author Kardel, F.; Wuyts, K.; De Wael, K.; Samson, R. pdf  doi
openurl 
  Title Assessing atmospheric dry deposition via water-soluble ionic composition of roadside leaves Type A1 Journal article
  Year 2020 Publication Journal of environmental science and health : part A: toxic/hazardous substances and environmental engineering Abbreviated Journal (down)  
  Volume Issue Pages 1-9  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract This study focuses on the water-soluble ion concentrations in the washing solution of leaves of different roadside tree species at three sites in Iran to estimate the ionic composition of the dry deposition of ambient air particulates. All considered water-soluble ion concentrations were significantly higher next to the roads with high traffic density compared to the reference site with low traffic density. The PCA results showed that Ca2+, Mg2+, and originated mainly from traffic activities and geological sources, and Na+, Cl-, K+ and F- from sea salts. In addition to sea salt, K+ and F- were also originated from anthropogenic sources i.e. industrial activities, biomass burning and fluorite mining. Moreover, the concentration of the water-soluble ions depended on species and site. C. lawsoniana had significantly higher ion concentrations in its leaf washing solution compared to L. japonicum and P. brutia which indicates C. lawsoniana is the most suitable species for accumulating of atmospheric dry deposition. From our results, it can be concluded that sites with similar traffic density can have different particle loads and water-soluble ion species, and that concentrations in leaf-washing solutions depend on site conditions and species-specific leaf surface characteristics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000527821700001 Publication Date 2020-04-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes ; ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:169584 Serial 6451  
Permanent link to this record
 

 
Author Cautaerts, N.; Lamm, S.; Stergar, E.; Pakarinen, J.; Yang, Y.; Hofer, C.; Schnitzer, R.; Felfer, P.; Verwerft, M.; Delville, R.; Schryvers, D. doi  openurl
  Title Atom probe tomography data collection from DIN 1.4970 (15-15Ti) austenitic stainless steel irradiated with Fe ions Type Dataset
  Year 2020 Publication Abbreviated Journal (down)  
  Volume Issue Pages  
  Keywords Dataset; Electron microscopy for materials research (EMAT)  
  Abstract This dataset comprises a large collection of atom probe tomography datasets collected from DIN 1.4970 alloy that was irradiated with Fe ions at different conditions. The DIN 1.4970 alloy is an austenitic stainless steel with 15 wt% Cr, 15 wt% Ni, a small addition of Ti. The full composition and characterization of our material can be found published elsewhere [1,2]. Some of our material was subjected to ageing heat treatments at different temperatures for different times. Small samples of our original material and aged material was irradiated at the Michigan Ion Beam Laboratory in 2017 with 4.5 MeV Fe ions up to 40 dpa at an average dose rate of 2×10−4 dpa/s. This was done at three different temperatures: 300, 450, and 600 ºC. Atom probe samples were made of the irradiated layers (approximately 1.5 micron deep) with focused ion beam and mounted on Microtip coupons. APT measurements took place on three CAMECA LEAP-HR systems located at CAES in Idaho Falls, USA (files beginning with R33), at Montanuniversität Leoben in Leoben, Austria (R21) and at Friedrich–Alexander University in Erlangen, Germany (R56).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes ; ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:169127 Serial 6454  
Permanent link to this record
 

 
Author Chaves, A.; Azadani, J.G.; Alsalman, H.; da Costa, D.R.; Frisenda, R.; Chaves, A.J.; Song, S.H.; Kim, Y.D.; He, D.; Zhou, J.; Castellanos-Gomez, A.; Peeters, F.M.; Liu, Z.; Hinkle, C.L.; Oh, S.-H.; Ye, P.D.; Koester, S.J.; Lee, Y.H.; Avouris, P.; Wang, X.; Low, T. url  doi
openurl 
  Title Bandgap engineering of two-dimensional semiconductor materials Type A1 Journal article
  Year 2020 Publication npj 2D Materials and Applications Abbreviated Journal (down)  
  Volume 4 Issue 1 Pages 29-21  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Semiconductors are the basis of many vital technologies such as electronics, computing, communications, optoelectronics, and sensing. Modern semiconductor technology can trace its origins to the invention of the point contact transistor in 1947. This demonstration paved the way for the development of discrete and integrated semiconductor devices and circuits that has helped to build a modern society where semiconductors are ubiquitous components of everyday life. A key property that determines the semiconductor electrical and optical properties is the bandgap. Beyond graphene, recently discovered two-dimensional (2D) materials possess semiconducting bandgaps ranging from the terahertz and mid-infrared in bilayer graphene and black phosphorus, visible in transition metal dichalcogenides, to the ultraviolet in hexagonal boron nitride. In particular, these 2D materials were demonstrated to exhibit highly tunable bandgaps, achieved via the control of layers number, heterostructuring, strain engineering, chemical doping, alloying, intercalation, substrate engineering, as well as an external electric field. We provide a review of the basic physical principles of these various techniques on the engineering of quasi-particle and optical bandgaps, their bandgap tunability, potentials and limitations in practical realization in future 2D device technologies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000565588500001 Publication Date 2020-08-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2397-7132 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 329 Open Access  
  Notes ; Discussions and interactions with D.R. Reichman, F. Tavazza, N.M.R. Peres, and K. Choudhary are gratefully acknowledged. A.C. acknowledges financial support by CNPq, through the PRONEX/FUNCAP and PQ programs. This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement No. 755655, ERCStG 2017 project 2D-TOPSENSE). Computational support from the Minnesota Supercomputing Institute (MSI) and EU Graphene Flagship funding (Grant Graphene Core 2, 785219) is acknowledged. R.F. acknowledges support from the Netherlands Organization for Scientific Research (NWO) through the research program Rubicon with project number 680-50-1515. D.H., J.Z., and X.W. acknowledge support by National Natural Science Foundation of China 61734003, 61521001, 61704073, 51861145202, and 61851401, and National Key Basic Research Program of China 2015CB921600 and 2018YFB2200500. J.Z. and Z.L. acknowledge support by RG7/18, MOE2017-T2-2-136, MOE2018-T3-1-002, and A*Star QTE program. S.H.S. and Y.H.L. acknowledge the support from IBS-R011-D1. Y.D.K. is supported by Samsung Research and Incubation Funding Center of Samsung Electronics under Project Number SRFC-TB1803-04. S.J.K acknowledges financial support by the National Science Foundation (NSF), under award DMR-1921629. T.L. and J.G.A. acknowledge funding support from NSF/DMREF under Grant Agreement No. 1921629. S.-H.O. acknowledges support from the U.S. National Science Foundation (NSF ECCS 1809723) and Samsung Global Research Outreach (GRO) project. ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:172069 Serial 6459  
Permanent link to this record
 

 
Author Al-Emam, E.; Soenen, H.; Caen, J.; Janssens, K. url  doi
openurl 
  Title Characterization of polyvinyl alcohol-borax/agarose (PVA-B/AG) double network hydrogel utilized for the cleaning of works of art Type A1 Journal article
  Year 2020 Publication Heritage science Abbreviated Journal (down)  
  Volume 8 Issue 1 Pages 106  
  Keywords A1 Journal article; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)  
  Abstract Since cleaning of artworks may cause undesirable physicochemical alterations and is a nonreversible procedure, it is mandatory to adopt the proper cleaning procedure. Such a procedure should remove undesired materials whilst preserving the original surface. In this regard, numerous gels have been developed and exploited for the cleaning of various artwork surfaces. Lately, agarose (AG) and polyvinyl alcohol-borax (PVA-B) hydrogels have been widely employed as cleaning tools by conservators. Both hydrogels show some limitations in specific cleaning practices. In this work, we investigated the influence of including increased levels of agarose into PVA-B systems. For this reason, we performed a detailed characterization on the double network (DN) hydrogel including the chemical structure, the liquid phase retention, the rheological behavior, and the self-healing behavior of various PVA-B/AG double network hydrogels. These new hydrogels revealed better properties than PVA-B hydrogels and obviated their limitations. The inclusion of AG into PVA-B systems enhanced the liquid retention capacity, shape-stability, and mechanical strength of the blend. Furthermore, AG minimized the expelling/syneresis issue that occurs when loading PVA-B systems with low polarity solvents or chelating agents. The resultant double network hydrogel exhibits relevant self-healing properties. The PVA-B/AG double network is a new and useful cleaning tool that can be added to the conservators' tool-kit. It is ideal for cleaning procedures dealing with porous and complex structured surfaces, vertical surfaces and for long time applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000580572500001 Publication Date 2020-10-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7445 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.5 Times cited 1 Open Access  
  Notes ; Ehab Al-Emam thanks the Egyptian Ministry of Higher Education for funding his Ph.D. scholarship in addition to being grateful to University of Antwerp for additional funding. ; Approved Most recent IF: 2.5; 2020 IF: NA  
  Call Number UA @ admin @ c:irua:173594 Serial 6466  
Permanent link to this record
 

 
Author Vermeiren, V. url  openurl
  Title Chemical kinetics modeling of non-equilibrium and thermal effects in vibrationally active CO2 plasmas Type Doctoral thesis
  Year 2020 Publication Abbreviated Journal (down)  
  Volume Issue Pages 207 p.  
  Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:173385 Serial 6468  
Permanent link to this record
 

 
Author Nematollahi, P. url  openurl
  Title Density functional theory calculations for understanding gas conversion reactions on single metal atom embedded carbon-based nanocatalysts Type Doctoral thesis
  Year 2020 Publication Abbreviated Journal (down)  
  Volume Issue Pages 173 p.  
  Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:169310 Serial 6481  
Permanent link to this record
 

 
Author Mulder, J.T.; Kirkwood, N.; De Trizio, L.; Li, C.; Bals, S.; Manna, L.; Houtepen, A.J. url  doi
openurl 
  Title Developing lattice matched ZnMgSe shells on InZnP quantum dots for phosphor applications Type A1 Journal article
  Year 2020 Publication ACS applied nano materials Abbreviated Journal (down)  
  Volume 3 Issue 4 Pages 3859-3867  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Indium phosphide quantum dots (QDs) have drawn attention as alternatives to cadmium- and lead-based QDs that are currently used as phosphors in lamps and displays. The main drawbacks of InP QDs are, in general, a lower photoluminescence quantum yield (PLQY), a decreased color purity, and poor chemical stability. In this research, we attempted to increase the PLQY and stability of indium phosphide QDs by developing lattice matched InP/MgSe core-shell nanoheterostructures. The choice of MgSe comes from the fact that, in theory, it has a near-perfect lattice match with InP, provided MgSe is grown in the zinc blende crystal structure, which can be achieved by alloying with zinc. To retain lattice matching, we used Zn in both the core and shell and we fabricated InZnP/ZnxMg1-xSe core/shell QDs. To identify the most suitable conditions for the shell growth, we first developed a synthesis route to ZnxMg1-xSe nanocrystals (NCs) wherein Mg is effectively incorporated. Our optimized procedure was employed for the successful growth of ZnxMg1-xSe shells around In(Zn)P QDs. The corresponding core/ shell systems exhibit PLQYs higher than those of the starting In(Zn)P QDs and, more importantly, a higher color purity upon increasing the Mg content. The results are discussed in the context of a reduced density of interface states upon using better lattice matched ZnxMg1-xSe shells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000529206200076 Publication Date 2020-03-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2574-0970 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.9 Times cited 22 Open Access OpenAccess  
  Notes ; This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 766900 (testing the large-scale limit of quantum mechanics). A.J.H. acknowledges support from the European Research Council Horizon 2020 ERC Grant Agreement No. 678004 (Doping on Demand). This research is supported by the Dutch Technology Foundation TTW, which is part of The Netherlands Organization for Scientific Research (NWO) and which is partly funded by Ministry of Economic Affairs. The authors thank Wiel Evers for performing the TEM imaging and the EDX analysis. The authors also thank Lea Pasquale and Mirko Prato for their help with performing and analyzing the XPS measurements and Filippo Drago for the ICP measurements. ; Approved Most recent IF: 5.9; 2020 IF: NA  
  Call Number UA @ admin @ c:irua:169563 Serial 6482  
Permanent link to this record
 

 
Author Du, K.; Guo, L.; Peng, J.; Chen, X.; Zhou, Z.-N.; Zhang, Y.; Zheng, T.; Liang, Y.-P.; Lu, J.-P.; Ni, Z.-H.; Wang, S.-S.; Van Tendeloo, G.; Zhang, Z.; Dong, S.; Tian, H. url  doi
openurl 
  Title Direct visualization of irreducible ferrielectricity in crystals Type A1 Journal article
  Year 2020 Publication npj Quantum Materials Abbreviated Journal (down)  
  Volume 5 Issue 1 Pages 49-7  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In solids, charge polarity can one-to-one correspond to spin polarity phenomenologically, e.g., ferroelectricity/ferromagnetism, antiferroelectricity/antiferromagnetism, and even dipole-vortex/magnetic-vortex, but ferrielectricity/ferrimagnetism kept telling a disparate story in microscopic level. Since the definition of a charge dipole involves more than one ion, there may be multiple choices for a dipole unit, which makes most ferrielectric orders equivalent to ferroelectric ones, i.e., this ferrielectricity is not necessary to be a real independent branch of polarity. In this work, by using the spherical aberration-corrected scanning transmission electron microscope, we visualize a nontrivial ferrielectric structural evolution in BaFe2Se3, in which the development of two polar sub-lattices is out-of-sync, for which we term it as irreducible ferrielectricity. Such irreducible ferrielectricity leads to a non-monotonic behavior for the temperature-dependent polarization, and even a compensation point in the ordered state. Our finding unambiguously distinguishes ferrielectrics from ferroelectrics in solids.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000551499400001 Publication Date 2020-07-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2397-4648 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes ; We acknowledge the National Natural Science Foundation of China (Grant Nos. 11834002, 11674055, and 11234011), National Key R&D Program of China 2017YFB0703100, and the 111 Project (Grant No. B16042). K.D. acknowledges the China Scholarship Council (CSC, No.201806320230) for sponsorship and 2019 Zhejiang University Academic Award for Outstanding Doctoral Candidates. We thank Prof. Fang Lin for providing guidance on calculating atoms position and Dr. Andrew Studer for performing neutron powder diffraction. We thank Prof. Sang-Wook Cheong, Prof. Zhigao Sheng, Prof. Qianghua Wang, Prof. Meng Wang, Prof. Renkui Zheng, Prof. Takuya Aoyama, Dr. Zhibo Yan, and Dr. Meifeng Liu for valuable discussion and/or technical help during measurements. ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:171225 Serial 6486  
Permanent link to this record
 

 
Author Pourbabak, S.; Verlinden, B.; Van Humbeeck, J.; Schryvers, D. pdf  doi
openurl 
  Title DSC cycling effects on phase transformation temperatures of micron and submicron grain Ni50.8Ti49.2 microwires Type A1 Journal article
  Year 2020 Publication Shape memory and superelasticity Abbreviated Journal (down)  
  Volume Issue Pages 1-10  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The effect of thermal cycling parameters on the phase transformation temperatures of micron and submicron grain size recrystallized Ni-Ti microwires was investigated. The suppression of martensitic transformation by thermal cycling was found to enhance when combined with room temperature aging between the cycles and enhances even more when aged at elevated temperature of 100 degrees C. While aging at room temperature alone has no clear effect on the martensitic transformation, elevated temperature aging at 100 degrees C alone suppresses the martensitic transformation. All aforementioned effects were found to be stronger in large grain samples than in small grain samples. Martensitic transformation suppression in all cases was in line with the formation of Ni4Ti3 precursors in the form of < 111 & rang;(B2) Ni clusters as concluded from the observed diffuse intensity in the electron diffraction patterns revealing short-range ordering enhancement. Performing thermal cycling in some different temperature ranges to separate the effect of martensitic transformation and high temperature range of DSC cycling revealed that both high temperature- and martensitic transformation-included cycles enhance the short-range ordering.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000530232800001 Publication Date 2020-05-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2199-384x; 2199-3858 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 1 Open Access Not_Open_Access  
  Notes ; S.P. would like to thank the Flemish Science Foundation FWO for financial support under Project G.0366.15N. ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:169514 Serial 6492  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: