toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Lefrancois, P.; Girard-Sahun, F.; Badets, V.; Clement, F.; Arbault, S. pdf  url
doi  openurl
  Title Electroactivity of superoxide anion in aqueous phosphate buffers analyzed with platinized microelectrodes Type A1 Journal article
  Year 2020 Publication Electroanalysis Abbreviated Journal (up) Electroanal  
  Volume Issue Pages  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The reactivity of platinized ultramicroelectrodes (Pt-black UMEs) towards superoxide anion O-2(.-), an unstable Reactive Oxygen Species (ROS), and its relatives, H2O2 and O-2, was studied. Voltammetric studies in PBS demonstrate that Pt-black UMEs provide: i) a well-resolved reversible redox signature for O-2(.-) detected in both alkaline and physiological buffers (pH 12 and 7.4); ii) irreversible oxidation and reduction waves for H2O2 at pH 7.4. The oxygen reduction reaction (ORR) at Pt-black surfaces solely yields H2O2 (2 electrons/2 H+) at physiological pH. Consequently, Pt-black UMEs allow to sense different ROS including superoxide anion for future biomedical or physico-chemical investigations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000590291800001 Publication Date 2020-11-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1040-0397 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3 Times cited Open Access  
  Notes Approved Most recent IF: 3; 2020 IF: 2.851  
  Call Number UA @ admin @ c:irua:174264 Serial 6764  
Permanent link to this record
 

 
Author Ustarroz, J.; Gupta, U.; Hubin, A.; Bals, S.; Terryn, H. pdf  doi
openurl 
  Title Electrodeposition of Ag nanoparticles onto carbon coated TEM grids : a direct approach to study early stages of nucleation Type A1 Journal article
  Year 2010 Publication Electrochemistry communications Abbreviated Journal (up) Electrochem Commun  
  Volume 12 Issue 12 Pages 1706-1709  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract An innovative experimental approach to study the electrodeposition of small nanoparticles and the early stages of electrochemical nucleation and growth is presented. Carbon coated gold TEM grids are used as substrates for the electrodeposition of silver nanoparticles so that electrochemical data, FESEM, HAADFSTEM and HRTEM data can be acquired from the same sample without the need to remove the particles from the substrate. It is shown that the real distribution of nanoparticles cannot be resolved by FESEM whereas HAADFSTEM analysis confirms that a distribution of small nanoparticles (d ≈ 12 nm) coexist with large nanoparticles corresponding to a bimodal size distribution. Besides, particles grown under the same conditions have been found to present different structures such as monocrystals, polycrystals or aggregates of smaller particles.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000285904700010 Publication Date 2010-10-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1388-2481; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.396 Times cited 52 Open Access  
  Notes Fwo Approved Most recent IF: 4.396; 2010 IF: 4.287  
  Call Number UA @ lucian @ c:irua:87612 Serial 900  
Permanent link to this record
 

 
Author Zhang, L.; Batuk, D.; Chen, G.; Tarascon, J.-M. pdf  url
doi  openurl
  Title Electrochemically activated MnO as a cathode material for sodium-ion batteries Type A1 Journal article
  Year 2017 Publication Electrochemistry communications Abbreviated Journal (up) Electrochem Commun  
  Volume 77 Issue Pages 81-84  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Besides classical electrode materials pertaining to Li-ion batteries, recent interest has been devoted to pairs of active redox composites having a redox center and an intercalant source. Taking advantage of the NaPFG salt decomposition above 4.2 V. we extrapolate this concept to the electrochemical in situ preparation of F-based MnO composite electrodes for Na-ion batteries. Such electrodes exhibit a reversible discharge capacity of 145 mAh g(-1) at room temperature. The amorphization of pristine MnO electrode after activation is attributed to the electrochemical grinding effect caused by substantial atomic migration and lattice strain build-up upon cycling. (C) 2017 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000399510400019 Publication Date 2017-02-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1388-2481 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.396 Times cited 8 Open Access OpenAccess  
  Notes ; This work was partially supported by the Hong Kong Research Grants Council under the General Research Fund Project #611213. L.Z. thanks the HKUST for his Postgraduate Studentship. ; Approved Most recent IF: 4.396  
  Call Number UA @ lucian @ c:irua:143648 Serial 4650  
Permanent link to this record
 

 
Author Pauwels, D.; Pilehvar, S.; Geboes, B.; Hubin, A.; De Wael, K.; Breugelmans, T. pdf  url
doi  openurl
  Title A new multisine-based impedimetric aptasensing platform Type A1 Journal article
  Year 2016 Publication Electrochemistry communications Abbreviated Journal (up) Electrochem Commun  
  Volume 71 Issue Pages 23-27  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract In this work an aptamer-based biosensor is combined with a multisine electrochemical impedance spectroscopy sensing methodology into a novel and promising biosensing strategy. Employing a multisine instead of a traditional single sine measuring method allows the detection and quantification of parameters that provide information about the accuracy and reliability of the results, such as noise and distortions. This does not only lead to a shorter measurement time, but it also enables an easy and fast evaluation of the quality of the data and fitting, leading to more accurate results.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000383445000006 Publication Date 2016-07-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1388-2481; 1873-1902 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.396 Times cited 1 Open Access  
  Notes ; ; Approved Most recent IF: 4.396  
  Call Number UA @ admin @ c:irua:134765 Serial 5746  
Permanent link to this record
 

 
Author Mendonça, C.D.; Rahemi, V.; Hereijgers, J.; Breugelmans, T.; Machado, S.A.S.; De Wael, K. url  doi
openurl 
  Title Integration of a photoelectrochemical cell in a flow system for quantification of 4-aminophenol with titanium dioxide Type A1 Journal article
  Year 2020 Publication Electrochemistry Communications Abbreviated Journal (up) Electrochem Commun  
  Volume 117 Issue Pages 106767-5  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract The photoelectrochemical quantification of phenolic compounds such as hydroquinone (HQ) and 4-aminophenol (4-AP) is accomplished by integrating a photoelectrochemical cell into a flow injection analysis (FIA) setup. It is a well-known fact that during the electroanalysis of phenolic compounds, the electrode surface is susceptible to poisoning. However, electrode fouling can be reduced significantly by using the FIA system with periodic washing of the electrode. Reactive oxygen species (ROS), which are generated on the surface of TiO2 under UV light, can oxidize phenolic compounds such as 4-AP. The oxidized form of 4-AP is reduced back at the electrode surface, generating a measurable signal proportional to its concentration. The factors influencing the perfor-mance of the sensor, such as flow rate, applied potential for back reduction and pH, are investigated in detail. In the concentration range 0.0125-1.0 mu M, a linear correlation between the photocurrent and the concentration of 4-AP was observed with a sensitivity of 0.6 A M-1 cm(-2) and a limit of detection of 18 nM. A straightforward analytical methodology for the on-site, highly sensitive and low-cost quantification of phenolic compounds is presented, based on the use of TiO2 in a photoelectrochemical flow cell.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000552618700004 Publication Date 2020-06-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1388-2481; 1873-1902 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.4 Times cited 1 Open Access  
  Notes ; The authors thank FAPESP funding for the fellowship to Camila D. Mendonca (Grant #2018/13724-0) and FWO funding (grant 12T4219N and 28761) for the postdoctoral fellowship to Dr. Vanoushe Rahemi and Dr. Jonas Hereijgers. ; Approved Most recent IF: 5.4; 2020 IF: 4.396  
  Call Number UA @ admin @ c:irua:169924 Serial 6547  
Permanent link to this record
 

 
Author Drozhzhin, O.A.; Vorotyntsev, M.A.; Maduar, S.R.; Khasanova, N.R.; Abakumov, A.M.; Antipov, E.V. pdf  doi
openurl 
  Title Li-ion diffusion in LixNb9PO25 Type A1 Journal article
  Year 2013 Publication Electrochimica acta Abbreviated Journal (up) Electrochim Acta  
  Volume 89 Issue Pages 262-269  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Wadsley-Roth phase LixNb6PO25 has been studied as a potential candidate for anode material of Li-ion batteries. Its crystal structure, which consists of ReO3-type blocks of NbO6 octahedra connected with PO4 tetrahedra, provides a good stability and performance during Li+ insertion/removal. Li-ion chemical diffusion coefficient (D-chem) in LixNb6PO25 was determined by means of potentiostatic intermittent titration technique and electrochemical impedance spectroscopy. Different data treatments (classical Warburg equation or the model of an electrode system with ohmic potential drop and/or slow kinetics of the interfacial Li+ ion transfer across the electrode/electrolyte interface) were used for calculation of D-chem of the Li ion inside this material; their applicability is discussed in the article. D-chem changes with the Li-ion doping degree, x, in LixNb3PO25 and has a sharp minimum near the two-phase region at appr. 1.7V vs. Li+/Li. These values of D-chem in LixNb9PO25 (similar to 10(-9)-10(-11) cm(2) s(-1)) were found to be in average noticeably higher than in the widely studied anode material, Li4Ti5O12. (C) 2012 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000315558200034 Publication Date 2012-11-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4686; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.798 Times cited 11 Open Access  
  Notes Approved Most recent IF: 4.798; 2013 IF: 4.086  
  Call Number UA @ lucian @ c:irua:108312 Serial 1816  
Permanent link to this record
 

 
Author Radvanyi, E.; Van Havenbergh, K.; Porcher, W.; Jouanneau, S.; Bridel, J.-S.; Put, S.; Franger, S. pdf  doi
openurl 
  Title Study and modeling of the Solid Electrolyte Interphase behavior on nano-silicon anodes by Electrochemical Impedance Spectroscopy Type A1 Journal article
  Year 2014 Publication Electrochimica acta Abbreviated Journal (up) Electrochim Acta  
  Volume 137 Issue Pages 751-757  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The instability of the Solid Electrolyte Interphase (SEI) at the surface of nano-silicon electrodes has been recognized as one of the key issues to explain the rapid capacity fading of theses electrodes. In this paper, two distinct Si-based systems are studied by using Electrochemical Impedance Spectroscopy (EIS). First, several EIS spectra are recorded along the second electrochemical cycle. Although the active material, the electrode formulation, and the experimental conditions are different for the two systems, the same phenomena are observed in both cases: (i) the SEI deposit around 50 kHz, (ii) the charge transfer (CT) with a characteristic frequency varying from 300 to 1 500 Hz, and (iii) an inductive loop at ∼1 Hz which appears only when the potential of the electrode is below 0.35 V vs Li. As the latter has never been reported for Si-based electrodes, the second step of the work consists in understanding this phenomenon. Thanks to the results obtained in a set of several complementary experiments, we finally attribute the inductive loop to the constant formation/deposition of SEI products, in competition with the CT process. In addition, we propose a mechanism for this specific phenomenon and the equivalent circuit to fit the recorded EIS spectra.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000341462500095 Publication Date 2014-06-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4686; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.798 Times cited 36 Open Access  
  Notes IWT (K. Van Havenbergh) Approved Most recent IF: 4.798; 2014 IF: 4.504  
  Call Number UA @ lucian @ c:irua:117945 Serial 3323  
Permanent link to this record
 

 
Author Drozhzhin, O.A.; Sumanov, V.D.; Karakulina, O.M.; Abakumov, A.M.; Hadermann, J.; Baranov, A.N.; Stevenson, K.J.; Antipov, E.V. pdf  url
doi  openurl
  Title Switching between solid solution and two-phase regimes in the Li1-xFe1-yMnyPO4 cathode materials during lithium (de)insertion: combined PITT, in situ XRPD and electron diffraction tomography study Type A1 Journal article
  Year 2016 Publication Electrochimica acta Abbreviated Journal (up) Electrochim Acta  
  Volume 191 Issue 191 Pages 149-157  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The electrochemical properties and phase transformations during (de)insertion of Li+ in LiFePO4, LiFe0.9Mn0.1PO4 and LiFe0.5Mn0.5PO4 are studied by means of galvanostatic cycling, potential intermittent titration technique (PITT) and in situ X-ray powder diffraction. Different modes of switching between the solid solution and two-phase regimes are revealed which are influenced by the Mn content in Li1-xFe1-yMnyPO4. Additionally, an increase in electrochemical capacity with the Mn content is observed at high rates of galvanostatic cycling (10C, 20C), which is in good agreement with the numerically estimated contribution of the solid solution mechanism determined from PITT data. The observed asymmetric behavior of the phase transformations in Li1-xFe0.5Mn0.5PO4 during charge and discharge is discussed. For the first time, the crystal structures of electrochemically deintercalated Li1-xFe0.5Mn0.5PO4 with different Li content – LiFe0.5Mn0.5PO4, Li0.5Fe0.5Mn0.5PO4 and Li0.1Fe0.5Mn0.5PO4 – are refined, including the occupancy factors of the Li position. This refinement is done using electron diffraction tomography data. The crystallographic analyses of Li1-xFe0.5Mn0.5PO4 reveal that at x = 0.5 and 0.9 the structure retains the Pnma symmetry and the main motif of the pristine x = 0 structure without noticeable short range order effects.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000371143200018 Publication Date 2016-01-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.798 Times cited 27 Open Access  
  Notes This work was supported by the Russian Foundation of Basic Research (grants No. 14-29-04064 and 14-03-31473), Skolkovo Institute of Science and Technology, and the Lomonosov Moscow State University Program of Development. J. Hadermann, O. M. Karakulina and A. M. Abakumov acknowl- edge support from FWO under grant G040116N. Approved Most recent IF: 4.798  
  Call Number c:irua:131911 Serial 4032  
Permanent link to this record
 

 
Author Vanrenterghem, B.; Papaderakis, A.; Sotiropoulos, S.; Tsiplakides, D.; Balomenou, S.; Bals, S.; Breugelmans, T. pdf  url
doi  openurl
  Title The reduction of benzylbromide at Ag-Ni deposits prepared by galvanic replacement Type A1 Journal article
  Year 2016 Publication Electrochimica acta Abbreviated Journal (up) Electrochim Acta  
  Volume 196 Issue 196 Pages 756-768  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract A two-step procedure was applied to prepare bimetallic Ag-Ni glassy carbon supported catalysts (Ag-Ni/GC). First Ni layers were prepared by means of electrodeposition in an aqueous deaerated nickel chloride + nickel sulfamate + boric acid solution. Second, the partial replacement of Ni layers by Ag was achieved upon immersion of the latter in solutions containing silver nitrate. Three different pretreatment protocols were used after preparation of the Ag/Ni deposits; as prepared, cathodised in alkali and scanned in acid. After the pretreatment the surface was characterised by means of spectroscopy techniques (scanning electron microscopy and energy dispersive x-ray) and electrochemically in an alkali NaOH solution through cyclic voltammetry (CV). Afterwards the modified electrodes were tested for the reduction of benzylbromide in acetonitrile solutions by using CV and were found to show improved activity compared to bulk Ag electrode. The highest activity towards benzylbromide reduction was observed for pre-cathodised Ag-Ni electrodes. A final stage of the research focuses on the development of a practical Ag/Ni foam catalyst for the reduction of benzylbromide. Due to the high electrochemical active surface area of Ag/Ni foam, a higher conversion of benzyl bromide was obtained in comparison with bulk Ag.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000372877400083 Publication Date 2016-03-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.798 Times cited 21 Open Access OpenAccess  
  Notes The quanta 250 FEG microscope of the Electron Microscopy for Material Science group at the University of Antwerp was funded by the Hercules foundation of the Flemish government. Sara Bals acknowledges financial support from European Research Council (ERC Starting Grant #335078-COLOURATOMS).; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 4.798  
  Call Number c:irua:132081 Serial 4065  
Permanent link to this record
 

 
Author Ryabova, A.S.; Napolskiy, F.S.; Poux, T.; Istomin, S.Y.; Bonnefont, A.; Antipin, D.M.; Baranchikov, A.Y.; Levin, E.E.; Abakumov, A.M.; Kéranguéven, G.; Antipov, E.V.; Tsirlina, G.A.; Savinova, E.R.; pdf  url
doi  openurl
  Title Rationalizing the influence of the Mn(IV)/Mn(III) red-Ox transition on the electrocatalytic activity of manganese oxides in the oxygen reduction reaction Type A1 Journal article
  Year 2016 Publication Electrochimica acta Abbreviated Journal (up) Electrochim Acta  
  Volume 187 Issue 187 Pages 161-172  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Knowledge on the mechanisms of oxygen reduction reaction (ORR) and descriptors linking the catalytic activity to the structural and electronic properties of transition metal oxides enable rational design of more efficient catalysts. In this work ORR electrocatalysis was studied on a set of single and complex Mn (III) oxides with a rotating disc electrode method and cyclic voltammetry. We discovered an exponential increase of the specific electrocatalytic activity with the potential of the surface Mn(IV)/Mn(III) red-ox couple, suggesting the latter as a new descriptor for the ORR electrocatalysis. The observed dependence is rationalized using a simple mean-field kinetic model considering availability of the Mn( III) centers and adsorbate-adsorbate interactions. We demonstrate an unprecedented activity of Mn2O3, ca. 40 times exceeding that of MnOOH and correlate the catalytic activity of Mn oxides to their crystal structure. (C) 2015 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000367235600019 Publication Date 2015-11-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.798 Times cited 51 Open Access  
  Notes Approved Most recent IF: 4.798  
  Call Number UA @ lucian @ c:irua:131096 Serial 4237  
Permanent link to this record
 

 
Author Deshmukh, S.; Sankaran, K.J.; Korneychuk, S.; Verbeeck, J.; Mclaughlin, J.; Haenen, K.; Roy, S.S. doi  openurl
  Title Nanostructured nitrogen doped diamond for the detection of toxic metal ions Type A1 Journal article
  Year 2018 Publication Electrochimica acta Abbreviated Journal (up) Electrochim Acta  
  Volume 283 Issue 283 Pages 1871-1878  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract This work demonstrates the applicability of one-dimensional nitrogen-doped diamond nanorods (N-DNRs) for the simultaneous electrochemical (EC) detection of Pb2+ and Cd2+ ions in an electrolyte solution. Well separated voltammetric peaks are observed for Pb2+ and Cd2+ ions using N-DNRs as a working electrode in square wave anodic stripping voltammetry measurements. Moreover, the cyclic voltammetry response of N-DNR electrodes towards the Fe(CN)(6)(/4-)/Fe(CN)(6)(/3-) redox reaction is better as compared to undoped DNR electrodes. This enhancement of EC performance in N-DNR electrodes is accounted by the increased amount of sp(2) bonded nanographitic phases, enhancing the electrical conductivity at the grain boundary (GB) regions. These findings are supported by transmission electron microscopy and electron energy loss spectroscopy studies. Consequently, the GB defect induced N-DNRs exhibit better adsorption of metal ions, which makes such samples promising candidates for next generation EC sensing devices. (C) 2018 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000441077900203 Publication Date 2018-07-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.798 Times cited 22 Open Access  
  Notes Sujit Deshmukh indebted to Shiv Nadar University for providing Ph. D. scholarship. The FEI Quanta SEM and Qu-Ant-EM microscope used for the TEM experiments was partly funded by the Hercules fund from the Flemish Government. S. K. and J. V. acknowledge funding from GOA project “Solarpaint” of the University of Antwerp. Kamatchi Jothiramalingam Sankaran is a Postdoctoral Fellow of the Research Foundation-Flanders (FWO). Prof. Ken Haenen acknowledges the Methusalem “NANO” network for financial support. Approved Most recent IF: 4.798  
  Call Number UA @ admin @ c:irua:153072 Serial 5366  
Permanent link to this record
 

 
Author Lybaert, J.; Maes, B.U.W.; Tehrani, K.A.; De Wael, K. url  doi
openurl 
  Title The electrochemistry of tetrapropylammonium perruthenate, its role in the oxidation of primary alcohols and its potential for electrochemical recycling Type A1 Journal article
  Year 2015 Publication Electrochimica acta Abbreviated Journal (up) Electrochim Acta  
  Volume 182 Issue Pages 693-698  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Organic synthesis (ORSY)  
  Abstract The search for strategies aiming at more sustainable (oxidation) reactions has led to the application of electrochemistry for recycling the spent catalyst. In this work, an electrochemical study of the tetrapropylammonium perruthenate catalyst (TPAP) and its activity towards a primary alcohol, n-butanol, has been carried out as well as a control study with tert-butanol. The redox chemistry of TPAP and the transition between the perruthenate anion and ruthenium tetroxide in a non-aqueous solvent have been, for the first time, investigated in depth. The oxidation reaction of n-butanol in the presence of TPAP has been electrochemically elucidated by performing potentiostatic experiments and registration of the corresponding oxidation current. Furthermore, it was shown that, by applying a specific potential, the reoxidized TPAP is able to oxidize/convert the primary alcohol, paving the way for practical applications using TPAP in electrochemical synthesis. The conversion of n-butanol into n-butanal was proven by the use of GC-MS.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000365075800084 Publication Date 2015-09-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.798 Times cited 2 Open Access  
  Notes ; ; Approved Most recent IF: 4.798; 2015 IF: 4.504  
  Call Number UA @ admin @ c:irua:127676 Serial 5599  
Permanent link to this record
 

 
Author Pauwels, D.; Ching, H.Y.V.; Samanipour, M.; Neukermans, S.; Hereijgers, J.; Van Doorslaer, S.; De Wael, K.; Breugelmans, T. pdf  url
doi  openurl
  Title Identifying intermediates in the reductive intramolecular cyclisation of allyl 2-bromobenzyl ether by an improved electron paramagnetic resonance spectroelectrochemical electrode design combined with density functional theory calculations Type A1 Journal article
  Year 2018 Publication Electrochimica acta Abbreviated Journal (up) Electrochim Acta  
  Volume 271 Issue 271 Pages 10-18  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract The electrochemical activation of C-X bonds requires very negative electrode potentials. Lowering the overpotentials and increasing the catalytic activity requires intensive electrocatalytic research. A profound understanding of the reaction mechanism and the influence of the electrocatalyst allows optimal tuning of the electrocatalyst. This can be achieved by combining electrochemical techniques with electron paramagnetic resonance (EPR) spectroscopy. Although this was introduced in the mid-twentieth century, the application of this combined approach in electrocatalytic research is underexploited. Several reasons can be listed, such as the limited availability of EPR instrumentation and electrochemical devices for such in situ experiments. In this work, a simple and inexpensive construction adapted for in situ EPR electrocatalytic research is proposed. The proof of concept is provided by studying a model reaction, namely the reductive cyclisation of allyl 2-bromobenzyl ether which has interesting industrial applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000430369800002 Publication Date 2018-03-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.798 Times cited 2 Open Access  
  Notes ; The authors would like to thank Melissa Van Landeghem for her assistance with the experimental work and analysis of the data. Jonas Hereijgers greatly acknowledges the Research Foundation Flanders (FWO) for support through a Post-Doctoral grant (12Q8817N). H.Y. Vincent Ching gratefully acknowledges the University of Antwerp for a Post-Doctoral grant. Sabine Van Doorslaer and Tom Breugelmans acknowledge the FWO for research funding (research grant G093317N). ; Approved Most recent IF: 4.798  
  Call Number UA @ admin @ c:irua:150463 Serial 5652  
Permanent link to this record
 

 
Author Lybaert, J.; Tehrani, K.A.; De Wael, K. pdf  url
doi  openurl
  Title Mediated electrolysis of vicinal diols by neocuproine palladium catalysts Type A1 Journal article
  Year 2017 Publication Electrochimica acta Abbreviated Journal (up) Electrochim Acta  
  Volume 247 Issue Pages 685-691  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Organic synthesis (ORSY)  
  Abstract Synthetic electrochemistry agrees well with the principles of sustainable chemistry, therefore it is considered as a more environmentally friendly approach than some current synthetic methods Here, we present a new strategy for the chemoselective oxidation of vicinal diols, viz. the integration of neocuproine palladium catalysts and electrosynthesis. Benzoquinones are used as an effective mediator as the reduced species (hydroquinones) can be easily reoxidized at relative low potentials at an electrode surface. NeocuproinePd(OAc)2 efficiently works as a catalyst in an electrolysis reaction for vicinal diols at room temperature. This is a remarkable observation given the fact that aerobic oxidation reactions of alcohols typically need a more complex catalyst, i.e. [neocuproinePdOAc]2[OTf]2. In this article we describe the optimization of the electrolysis conditions for the neocuproinePd(OAc)2 catalyst to selectively oxidize diols. The suggested approach leads to conversion of alcohols with high yields and provides an interesting alternative to perform oxidation reactions under mild conditions by the aid of electrochemistry.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000408582300072 Publication Date 2017-07-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.798 Times cited Open Access  
  Notes ; ; Approved Most recent IF: 4.798  
  Call Number UA @ admin @ c:irua:144118 Serial 5706  
Permanent link to this record
 

 
Author Gaetani, C.; Gheno, G.; Borroni, M.; De Wael, K.; Moretto, L.M.; Ugo, P. pdf  url
doi  openurl
  Title Nanoelectrode ensemble immunosensing for the electrochemical identification of ovalbumin in works of art Type A1 Journal article
  Year 2019 Publication Electrochimica acta Abbreviated Journal (up) Electrochim Acta  
  Volume 312 Issue 312 Pages 72-79  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract This research is aimed to the study and application of an electrochemical immunosensor for the detection of ovalbumin (OVA) from egg white (or albumen) used as a binder in some works of art, such as some historical photographic prints and tempera paintings. The immunosensor takes advantage of the interesting biodetection capabilities offered by nanoelectrode ensembles (NEEs). The NEEs used to this aim are prepared by template deposition of gold nanoelectrodes within the pores of track-etched polycarbonate (PC) membranes. The affinity of polycarbonate for proteins is exploited to capture OVA from the aqueous extract obtained by incubation in phosphate buffer of a small sample fragment (<1 mg). The captured protein is reacted selectively with anti-OVA antibody, labelled with glucose oxidase (GOx). In the case of positive response, the addition of the GOx substrate (i.e. glucose) and a suitable redox mediator (a ferrocenyl derivative) reflects in the up rise of an electrocatalytic oxidation current, which depends on the OVA amount captured on the NEE, this amount correlating with OVA concentration in the extract. After optimization, the sensor is successfully applied to identify OVA in photographic prints dating back to the late 19th century, as well as in ancient tempera paintings from the 15th and 18th centuries.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000468595500008 Publication Date 2019-04-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.798 Times cited 2 Open Access  
  Notes ; ; Approved Most recent IF: 4.798  
  Call Number UA @ admin @ c:irua:159573 Serial 5743  
Permanent link to this record
 

 
Author Delvaux, A.; Lumbeeck, G.; Idrissi, H.; Proost, J. pdf  doi
openurl 
  Title Effect of microstructure and internal stress on hydrogen absorption into Ni thin film electrodes during alkaline water electrolysis Type A1 Journal article
  Year 2020 Publication Electrochimica Acta Abbreviated Journal (up) Electrochim Acta  
  Volume 340 Issue Pages 135970-10  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Efforts to improve the cell efficiency of hydrogen production by water electrolysis continue to address the electrochemical kinetics of the oxygen and hydrogen evolution reactions in detail. The objective of this work is to study a parasitic reaction occurring during the hydrogen evolution reaction (HER), namely the absorption of hydrogen atoms into the bulk electrode. Effects of the electrode microstructure and internal stress on this reaction have been addressed as well in this paper. Ni thin film samples were deposited on a Si substrate by sputter deposition with different deposition pressures, resulting in different microstructures and varying levels of internal stress. These microstructures were first analyzed in detail by Transmission Electron Microscopy (TEM). Cathodic chrono-amperometric measurements and cyclic voltammetries have then been performed in a homemade electrochemical cell. These tests were coupled to a multi-beam optical sensor (MOS) in order to obtain in-situ curvature measurements during hydrogen absorption. Indeed, since hydrogen absorption in the thin film geometry results in a constrained volume expansion, internal stress generation during HER can be monitored by means of curvature measurements. Our results show that different levels of internal stress, grain size and twin boundary density can be obtained by varying the deposition parameters. From an electrochemical point of view, this paper highlights the fact that the electrochemical surface mechanisms during HER are the same for all the electrodes, regardless of their microstructure. However it is shown that the absolute amount of hydrogen being absorbed into the Ni thin films increases when the grain size is reduced, due to a higher grain boundaries density which are favourite absorption sites for hydrogen. At the same time, it was concluded that H-2 evolution is favoured at electrodes having a more compressive (i.e. a less tensile) internal stress. Finally, the subtle effect of microstructure on the hydrogen absorption rate will be discussed as well. (C) 2020 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000521531800011 Publication Date 2020-02-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.6 Times cited 2 Open Access Not_Open_Access  
  Notes ; The authors gratefully acknowledge financial support of the Public Service of Wallonia e Department of Energy and Sustainable Building, through the project WallonHY. The ACOM-TEM work was supported by the Hercules Foundation [Grant No. AUHA13009], the Flemish Research Fund (FWO) [Grant No. G.0365.15 N], and the Flemish Strategic Initiative for Materials (SIM) under the project InterPoCo. We also like to cordially thank Ronny Santoro for carrying out the ICP-OES measurements. ; Approved Most recent IF: 6.6; 2020 IF: 4.798  
  Call Number UA @ admin @ c:irua:168536 Serial 6497  
Permanent link to this record
 

 
Author Ryabova, A.S.; Istomin, S.Y.; Dosaev, K.A.; Bonnefont, A.; Hadermann, J.; Arkharova, N.A.; Orekhov, A.S.; Sena, R.P.; Saveleva, V.A.; Kerangueven, G.; Antipov, E., V.; Savinova, E.R.; Tsirlina, G.A. pdf  url
doi  openurl
  Title Mn₂O₃ oxide with bixbyite structure for the electrochemical oxygen reduction reaction in alkaline media : highly active if properly manipulated Type A1 Journal article
  Year 2021 Publication Electrochimica Acta Abbreviated Journal (up) Electrochim Acta  
  Volume 367 Issue Pages 137378  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We consider compositional and structural factors which can affect the activity of bixbyite alpha-Mn2O3 towards the oxygen reduction reaction (ORR) and the stability of this oxide in alkaline solution. We compare electrochemistry of undoped, Fe and Al-doped alpha-Mn2O3 with bixbyite structure and braunite Mn7SiO12 having bixbyite-related crystal structure, using the rotating disk electrode (RDE), the rotating ring-disk electrode (RRDE), and cyclic voltammetry (CV) techniques. All manganese oxides under study are stable in the potential range between the ORR onset and ca. 0.7 V vs. Reversible Hydrogen Electrode (RHE). It is found that any changes introduced in the bixbyite structure and/or composition of alpha-Mn2O3 lead to an activity drop in both the oxygen reduction and hydrogen peroxide reactions in this potential interval. For the hydrogen peroxide reduction reaction these modifications also result in a change in the nature of the rate-determining step. The obtained results confirm that due to its unique crystalline structure undoped alpha-Mn2O3 is the most ORR active (among currently available) Mn oxide catalyst and favor the assumption of the key role of the (111) surface of alpha-Mn2O3 in the very high activity of this material towards the ORR. (C) 2020 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000607621500013 Publication Date 2020-10-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.798 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.798  
  Call Number UA @ admin @ c:irua:176080 Serial 6731  
Permanent link to this record
 

 
Author Stefan, G.; Hosu, O.; De Wael, K.; Jesus Lobo-Castanon, M.; Cristea, C. pdf  doi
openurl 
  Title Aptamers in biomedicine : selection strategies and recent advances Type A1 Journal article
  Year 2021 Publication Electrochimica Acta Abbreviated Journal (up) Electrochim Acta  
  Volume 376 Issue Pages 137994  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Aptamers have come in the spotlight as bio-mimetic molecular recognition elements in the field of biomedicine due to various applications in diagnostics, drug delivery, therapeutics, and pharmaceutical analysis. Aptamers are composed of nucleic acid strands (DNA or RNA) that can specifically interact in a three-dimensional tailored design with the target molecule. The basic method to generate aptamers is Systematic Evolution of Ligands by Exponential Enrichment (SELEX). Recent technological advances in aptamer selection allow for faster and cheaper production of a new generation of high-affinity aptamers compared to the traditional SELEX, which can last up to several months. Rigorous characterization performed by multiple research groups endorsed several well-defined aptamer sequences. Binding affinity, nature of the biomolecular interactions and structural characterization are of paramount importance for aptamer screening and development of applications. However, remarkable challenges still need to be dealt with before the aptamers can make great contributions to the biomedical field. Poor specificity and sensitivity, questionable clinical use, low drug loading, in vivo stability and toxicity are only some of the identified challenges. This review accounts for the 30th celebration of the SELEX technology underlining the most important aptamers' achievements in the biomedical field within mostly the past five years. Aptamers' advantages over antibodies are discussed. Because of potential clinical translational utility, insights of remarkable developments in aptamer-based methods for diagnosis and monitoring of disease biomarkers and pharmaceuticals are discussed focusing on the recent studies (2015-2020). The current challenges and promising opportunities for aptamers for therapeutic and theragnostic purposes are also presented. (C) 2021 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000634761900003 Publication Date 2021-02-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.798 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 4.798  
  Call Number UA @ admin @ c:irua:177677 Serial 7491  
Permanent link to this record
 

 
Author Schram, J.; Thiruvottriyur Shanmugam, S.; Sleegers, N.; Florea, A.; Samyn, N.; van Nuijs, A.L.N.; De Wael, K. pdf  doi
openurl 
  Title Local conversion of redox inactive molecules into redox active ones : a formaldehyde based strategy for the electrochemical detection of illicit drugs containing primary and secondary amines Type A1 Journal article
  Year 2021 Publication Electrochimica Acta Abbreviated Journal (up) Electrochim Acta  
  Volume 367 Issue Pages 137515  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Toxicological Centre  
  Abstract Electrochemical techniques have evidenced to be highly suitable for the development of portable, rapid and accurate screening methods for the detection of illicit drugs in seized samples. However, the redox inactivity of primary amines, one of the most common functional groups of illicit drugs, masks voltammetric detection in aqueous environment at carbon electrodes and, therefore, leads to false negative results if only these primary amines are present in the structures. This work explores the feasibility of a derivatisation approach that introduces formaldehyde in the measuring conditions in order to achieve methylation, via an Eschweiler-Clarke mechanism, of illicit drugs containing primary and secondary amines, using amphetamine (AMP) and methamphetamine (MET) as model molecules. As a result the electrochemical fingerprint is enriched and thereby the detectability enhanced. A combination of liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOFMS) and square-wave voltammetric (SWV) measurements is employed to identify reaction products and link them to the observed redox peaks. Although an alkaline environment (pH 12.0) proved to increase the reaction yield, a richer electrochemical fingerprint (EF) is obtained in neutral conditions (pH 7.0). Similarly, the addition of formate improved the reaction conversion but reduced the EF by eliminating a redox peak that is attributed to side products formed in the absence of formate. To illustrate the applicability, the derivatisation strategy is applied to several prominent illicit drugs containing primary and secondary amines to demonstrate its EF enriching capabilities. Finally, real street samples from forensic seizures are analysed. Overall, this strategy unlocks the detectability of the hitherto undetectable AMP and other drugs only containing primary amines, while strongly facilitating the identification of MET and analogues. These findings are not limited to illicit drugs, the insights can ultimately be applied to other target molecules containing similar functional groups. (C) 2020 Published by Elsevier Ltd.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000607620700010 Publication Date 2020-11-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.798 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 4.798  
  Call Number UA @ admin @ c:irua:176083 Serial 8177  
Permanent link to this record
 

 
Author Mendonça, C.D.; Khan, S.U.; Rahemi, V.; Verbruggen, S.W.; Machado, S.A.S.; De Wael, K. pdf  url
doi  openurl
  Title Surface plasmon resonance-induced visible light photocatalytic TiO₂ modified with AuNPs for the quantification of hydroquinone Type A1 Journal article
  Year 2021 Publication Electrochimica Acta Abbreviated Journal (up) Electrochim Acta  
  Volume 389 Issue Pages 138734  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The impregnation of size-controlled gold nanoparticles (AuNPs) on an anatase TiO2 structure (AuNPs@TiO2) was studied for the photoelectrochemical detection of hydroquinone (HQ) under visible light illumination integrated into a flow injection analysis (FIA) setup. The crystalline form of TiO2 was preserved during synthesis and the homogeneous distribution of AuNPs over the TiO2 structure was confirmed. Its photoelectrocatalytic activity was improved due to the presence of AuNPs, preventing charge recombination in TiO2 and improving its light absorption ability by the surface plasmon resonance effect (SPR). The FIA system was used in order to significantly reduce the electrode fouling during electroanalysis through periodic washing steps of the electrode surface. During the amperometric detection process, reactive oxygen species (ROS), generated by visible light illumination of AuNPs@TiO2, participate in the oxidation process of HQ. The reduction of the oxidized form of HQ, i.e. benzoquinone (BQ) occurs by applying a negative potential and the measurable amperometric response will be proportional to the initial HQ concentration. The influencing parameters on the response of the amperometric photocurrent such as applied potential, flow rate and pH were investigated. The linear correlation between the amperometric response and the concentration of HQ was recorded (range 0.0125 – 1.0 µM) with a limit of detection (LOD) of 33.8 nM and sensitivity of 0.22 A M−1 cm−2. In this study, we illustrated for the first time that the impregnation of AuNPs in TiO2 allows the sensitive detection of phenolic substances under green laser illumination by using a photoelectrochemical flow system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000687283100018 Publication Date 2021-06-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.798 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.798  
  Call Number UA @ admin @ c:irua:178908 Serial 8626  
Permanent link to this record
 

 
Author Janssens, K.; Legrand, S.; van der Snickt, G.; Vanmeert, F. pdf  doi
openurl 
  Title Virtual archaeology of altered paintings : multiscale chemical imaging tools Type A1 Journal article
  Year 2016 Publication Elements Abbreviated Journal (up) Elements  
  Volume 12 Issue 1 Pages 39-44  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Understanding how painted works of art were constructed, layer-by-layer, requires a range of macroscopic and microscopic X-ray and infrared-based analytical methods. Deconstructing complex assemblies of paints horizontally across a picture and vertically through it provides insight into the detailed production process of the art work and on the painting techniques and styles of its maker. The unwanted chemical transformations that some paint pigments undergo are also detectable; these changes can alter the paint's optical properties. Understanding the chemistry behind such paint degradation gives conservators vital clues to counter these effects and is an invaluable asset in protecting these cultural artefacts for future generations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000370987700007 Publication Date 2016-02-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1811-5209 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.038 Times cited 12 Open Access  
  Notes ; ; Approved Most recent IF: 4.038  
  Call Number UA @ admin @ c:irua:132301 Serial 5904  
Permanent link to this record
 

 
Author Osorio-Tejada, J.; van't Veer, K.; Long, N.V.D.; Tran, N.N.; Fulcheri, L.; Patil, B.S.; Bogaerts, A.; Hessel, V. url  doi
openurl 
  Title Sustainability analysis of methane-to-hydrogen-to-ammonia conversion by integration of high-temperature plasma and non-thermal plasma processes Type A1 Journal article
  Year 2022 Publication Energy Conversion And Management Abbreviated Journal (up) Energ Convers Manage  
  Volume 269 Issue Pages 116095  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The Covid era has made us aware of the need for resilient, self-sufficient, and local production. We are likely willing to pay an extra price for that quality. Ammonia (NH3) synthesis accounts for 2 % of global energy production and is an important point of attention for the development of green energy technologies. Therefore, we propose a thermally integrated process for H2 production and NH3 synthesis using plasma technology, and we evaluate its techno-economic performance and CO2 footprint by life cycle assessment (LCA). The key is to integrate energy-wise a high-temperature plasma (HTP) process, with a (low-temperature) non-thermal plasma (NTP) process and to envision their joint economic potential. This particularly means raising the temperature of the NTP process, which is typically below 100 ◦ C, taking advantage of the heat released from the HTP process. For that purpose, we proposed the integrated process and conducted chemical kinetics simulations in the NTP section to determine the thermodynamically feasible operating window of this novel combined plasma process. The results suggest that an NH3 yield of 2.2 mol% can be attained at 302 ◦ C at an energy yield of 1.1 g NH3/kWh. Cost calculations show that the economic performance is far from commercial, mainly because of the too low energy yield of the NTP process. However, when we base our costs on the best literature value and plausible future scenarios for the NTP energy yield, we reach a cost prediction below 452 $/tonne NH3, which is competitive with conventional small-scale Haber-Bosch NH3 synthesis for distributed production. In addition, we demonstrate that biogas can be used as feed, thus allowing the proposed integrated reactor concept to be part of a biogas-to-ammonia circular concept. Moreover, by LCA we demonstrate the environmental benefits of the pro­posed plant, which could cut by half the carbon emissions when supplied by photovoltaic electricity, and even invert the carbon balance when supplied by wind power due to the avoided emissions of the carbon black credits.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000880662100007 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0196-8904 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 10.4 Times cited Open Access OpenAccess  
  Notes European Research Council; European Commission, 810182 ; The authors acknowledge support from the ERC Synergy Grant “Surface-COnfined fast modulated Plasma for process and Energy intensification” (SCOPE), from the European Commission, with Grant No. 810182. Approved Most recent IF: 10.4  
  Call Number PLASMANT @ plasmant @c:irua:191785 Serial 7103  
Permanent link to this record
 

 
Author Snoeckx, R.; Heijkers, S.; Van Wesenbeeck, K.; Lenaerts, S.; Bogaerts, A. pdf  url
doi  openurl
  Title CO2conversion in a dielectric barrier discharge plasma: N2in the mix as a helping hand or problematic impurity? Type A1 Journal article
  Year 2016 Publication Energy & environmental science Abbreviated Journal (up) Energ Environ Sci  
  Volume 9 Issue 9 Pages 999-1011  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Carbon dioxide conversion and utilization has gained significant interest over the years. A novel gas conversion technique with great potential in this area is plasma technology. A lot of research has already been performed, but mostly on pure gases. In reality, N2 will always be an important impurity in effluent

gases. Therefore, we performed an extensive combined experimental and computational study on the effect of N2 in the range of 1–98% on CO2 splitting in dielectric barrier discharge (DBD) plasma. The presence of up to 50% N2 in the mixture barely influences the effective (or overall) CO2 conversion and energy efficiency, because the N2 metastable molecules enhance the absolute CO2 conversion, and this compensates for the lower CO2 fraction in the mixture. Higher N2 fractions, however, cause a drop in the CO2 conversion and energy efficiency. Moreover, in the entire CO2/N2 mixing ratio, several harmful compounds, i.e., N2O and NOx compounds, are produced in the range of several 100 ppm. The reaction pathways for the formation of these compounds are explained based on a kinetic analysis, which allows proposing solutions on how to prevent the formation of these harmful compounds.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000372243600030 Publication Date 2015-12-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1754-5692 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 29.518 Times cited 68 Open Access  
  Notes The authors acknowledge financial support from the IAP/7 (Inter-university Attraction Pole) program ‘PSI-Physical Chemistry of Plasma-Surface Interactions’, financially supported by the Belgian Federal Office for Science Policy (BELSPO), as well as the Fund for Scientific Research Flanders (FWO). This work was carried out in part using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the University of Antwerp. Approved Most recent IF: 29.518  
  Call Number c:irua:133169 Serial 4020  
Permanent link to this record
 

 
Author Kertik, A.; Wee, L.H.; Pfannmöller, M.; Bals, S.; Martens, J.A.; Vankelecom, I.F.J. pdf  url
doi  openurl
  Title Highly selective gas separation membrane using in situ amorphised metal-organic frameworks Type A1 Journal article
  Year 2017 Publication Energy & environmental science Abbreviated Journal (up) Energ Environ Sci  
  Volume 10 Issue 10 Pages 2342-2351  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Conventional carbon dioxide (CO2) separation in the petrochemical industry via cryogenic distillation is energy intensive and environmentally unfriendly. Alternatively, polymer membrane-based separations are of significant interest owing to low production cost, low-energy consumption and ease of upscaling. However, the implementation of commercial polymeric membranes is limited by their permeability and selectivity trade-off and the insufficient thermal and chemical stability. Herein, a novel type of amorphous mixed matrix membrane (MMM) able to separate CO2/CH4 mixtures with the highest selectivities ever reported for MOF based MMMs is presented. The MMM consists of an amorphised metal-organic framework (MOF) dispersed in an oxidatively cross-linked matrix achieved by fine tuning of the thermal treatment temperature in air up to 350 degrees C which drastically boosts the separation properties of the MMM. Thanks to the protection of the surrounding polymer, full oxidation of this MOF (i.e. ZIF-8) is prevented, and amorphisation of the MOF is realized instead, thus in situ creating a molecular sieve network. In addition, the treatment also improves the filler-polymer adhesion and induces an oxidative cross-linking of the polyimide matrix, resulting in MMMs with increased stability or plasticization resistance at high pressure up to 40 bar, marking a new milestone as new molecular sieve MOF MMMs for challenging natural gas purification applications. A new field for the use of amorphised MOFs and a variety of separation opportunities for such MMMs are thus opened.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000414774500007 Publication Date 2017-08-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1754-5692; 1754-5706 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 29.518 Times cited 122 Open Access OpenAccess  
  Notes ; A.K. acknowledges financial support from the Erasmus-Mundus Doctorate in Membrane Engineering (EUDIME) Programme. L.H.W. thanks the FWO-Vlaanderen for a postdoctoral research fellowship (12M1415N). M. P. acknowledges financial support by the FP7 European project SUNFLOWER (FP7 #287594). S. B. acknowledges financial support from European Research Council (ERC Starting Grant # 335078-COLOURATOMS). J. A. M. gratefully acknowledges financial supports from the Flemish Government for long-term Methusalem funding. J. A. M. and I. F. J. V. acknowledge the Belgian Government for IAP-PAI networking. A. K. would also like to thank Frank Mathijs for the mechanical tests, Roy Bernstein for the XPS analysis and Lien Telen and Bart Goderis for the DSC measurements. We thank Verder Scientific Benelux for providing the service of ZIF-8 ball milling. ; ecas_sara Approved Most recent IF: 29.518  
  Call Number UA @ lucian @ c:irua:147399UA @ admin @ c:irua:147399 Serial 4879  
Permanent link to this record
 

 
Author Lizin, S.; Van Passel, S.; De Schepper, E.; Maes, W.; Lutsen, L.; Manca, J.; Vanderzande, D. doi  openurl
  Title Life cycle analyses of organic photovoltaics : a review Type A1 Journal article
  Year 2013 Publication Energy & Environmental Science Abbreviated Journal (up) Energ Environ Sci  
  Volume 6 Issue 11 Pages 3136-3149  
  Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract This paper reviews the available life cycle analysis (LCA) literature on organic photovoltaics (OPVs). This branch of OPV research has focused on the environmental impact of single-junction bulk heterojunction polymer solar cells using a P3HT/PC60BM active layer blend processed on semi-industrial pilot lines in ambient surroundings. The environmental impact was found to be strongly decreasing through continuous innovation of the manufacturing procedures. The current top performing cell regarding environmental performance has a cumulative energy demand of 37.58 MJp m(-2) and an energy payback time in the order of months for cells having 2% efficiency, thereby rendering OPV cells one of the best performing PV technologies from an environmental point of view. Nevertheless, we find that LCA literature is lagging behind on the main body of OPV literature due to the lack of readily available input data. Still, LCA research has led us to believe that in the quest for higher efficiencies, environmental sustainability is being disregarded on the materials' side. Hence, we advise the scientific community to take the progress made on environmental sustainability aspects of OPV preparations into account not only because standard procedures put a bigger strain on the environment, but also because these methods may not be transferrable to an industrial process. Consequently, we recommend policy makers to subsidize research that bridges the gaps between fundamental materials research, stability, and scalability given that these constraints have to be fulfilled simultaneously if OPVs are ever to be successful on the market. Additionally, environmental sustainability will have to keep on being monitored to steer future developments in the right direction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000325946400002 Publication Date 2013-10-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1754-5692; 1754-5706 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 29.518 Times cited 124 Open Access  
  Notes ; The authors are much obliged to both the INTERREG ORGAN-EXT project and FP7 MOLESOL project for their financial support, without which it would have been impossible to conduct this research. ; Approved Most recent IF: 29.518; 2013 IF: 15.490  
  Call Number UA @ admin @ c:irua:127548 Serial 6223  
Permanent link to this record
 

 
Author Rouwenhorst, K.H.R.; Jardali, F.; Bogaerts, A.; Lefferts, L. url  doi
openurl 
  Title From the Birkeland–Eyde process towards energy-efficient plasma-based NOXsynthesis: a techno-economic analysis Type A1 Journal article
  Year 2021 Publication Energy & Environmental Science Abbreviated Journal (up) Energ Environ Sci  
  Volume 14 Issue 5 Pages 2520-2534  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma-based NO<sub>X</sub>synthesis<italic>via</italic>the Birkeland–Eyde process was one of the first industrial nitrogen fixation methods. However, this technology never played a dominant role for nitrogen fixation, due to the invention of the Haber–Bosch process. Recently, nitrogen fixation by plasma technology has gained significant interest again, due to the emergence of low cost, renewable electricity. We first present a short historical background of plasma-based NO<sub>X</sub>synthesis. Thereafter, we discuss the reported performance for plasma-based NO<sub>X</sub>synthesis in various types of plasma reactors, along with the current understanding regarding the reaction mechanisms in the plasma phase, as well as on a catalytic surface. Finally, we benchmark the plasma-based NO<sub>X</sub>synthesis process with the electrolysis-based Haber–Bosch process combined with the Ostwald process, in terms of the investment cost and energy consumption. This analysis shows that the energy consumption for NO<sub>X</sub>synthesis with plasma technology is almost competitive with the commercial process with its current best value of 2.4 MJ mol N<sup>−1</sup>, which is required to decrease further to about 0.7 MJ mol N<sup>−1</sup>in order to become fully competitive. This may be accomplished through further plasma reactor optimization and effective plasma–catalyst coupling.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000639255800001 Publication Date 2021-03-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1754-5692 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 29.518 Times cited Open Access OpenAccess  
  Notes H2020 European Research Council; Horizon 2020, 810182 ; Ministerie van Economische Zaken en Klimaat; This research was supported by the TKI-Energie from Toeslag voor Topconsortia voor Kennis en Innovatie (TKI) from the Ministry of Economic Affairs and Climate Policy, the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023), and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 810182 – SCOPE ERC Synergy project). Approved Most recent IF: 29.518  
  Call Number PLASMANT @ plasmant @c:irua:178173 Serial 6763  
Permanent link to this record
 

 
Author Jorli, M.; Van Passel, S.; Saghdel, H.S. pdf  doi
openurl 
  Title External costs from fossil electricity generation : a review of the applied impact pathway approach Type A1 Journal article
  Year 2018 Publication Energy & Environment Abbreviated Journal (up) Energ Environ-Uk  
  Volume 29 Issue 5 Pages 635-648  
  Keywords A1 Journal article; Engineering Management (ENM)  
  Abstract This paper reviews and compares 11 studies that have estimated external costs of fossil electricity generation by benefits transfer. These studies include 13 countries and most of these countries are developing countries. The impact pathway approach is applied to estimate the environmental impact arising from fossil fuel-fired power plant's air emission and the related damages on human health. The estimated damages are used to value the monetary external costs from fossil fuel electricity generation. The estimated external costs in the 13 countries vary from 0.51 to 213.5 USD (2005) per MWh due to differences in fossil fuel quality, location, technology, and efficiency of power plants and additionally differences in assumptions, monetization values, and impact estimations. Accounting for these externalities can indicate the actual costs of fossil energy. The results can be applied by policy makers to take measures to avoid additional costs and to apply newer and cleaner energy sources. The described methods in the selected studies for estimating the external costs with respect to incomplete local data can be applied as a useful example for other developing countries.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000440685300001 Publication Date 2018-03-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0958-305x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.302 Times cited 3 Open Access  
  Notes ; ; Approved Most recent IF: 0.302  
  Call Number UA @ admin @ c:irua:153136 Serial 6201  
Permanent link to this record
 

 
Author Vanschoenwinkel, J.; Lizin, S.; Swinnen, G.; Azadi, H.; Van Passel, S. doi  openurl
  Title Solar cooking in Senegalese villages : an application of best-worst scaling Type A1 Journal article
  Year 2014 Publication Energy Policy Abbreviated Journal (up) Energ Policy  
  Volume 67 Issue Pages 447-458  
  Keywords A1 Journal article; Sociology; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract Dissemination programs of nontraditional cookstoves often fail. Nontraditional cookstoves aim to solve problems associated with biomass fuel usage in developing countries. Recent studies do not explain what drives user's cookstove choice. This study therefore builds a holistic framework that centralizes product-specific preferences or needs. The case study identifies product-specific factors that influence rural Senegalese inhabitants to switch to solar cooking, using best worst scaling. Looking at the preferences, the case study classified 126 respondents, in three distinct market segments with different solar cooking expectations. The paper identifies socio-demographic characteristics that explain these differences in the respondents' preferences. Finally, the respondent sample is divided in two groups: solar cooker owners and non-owners. When studied with regard to the same issue, solar cooker owners appear to value benefits of the solar cooker lower than non-owners. This is due to program factors (such as formations, after-sales network) and miscommunication (such as a wrong image of the solar cooker) that highly influenced the respondents' cookstove choice. As a conclusion, solar cookers and solar cooking programs are not always adapted to the needs and requirements of the end-users. Needs-oriented and end-user adopted strategies are necessary in order to successfully implement nontraditional cookstoves programs. (C) 2013 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000332815300043 Publication Date 2014-01-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0301-4215; 1873-6777 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.14 Times cited 10 Open Access  
  Notes ; The authors thank the VLIR-UOS for their financial support and the Sol Suffit Program for their co-operation during the research. ; Approved Most recent IF: 4.14; 2014 IF: 2.575  
  Call Number UA @ admin @ c:irua:127544 Serial 6251  
Permanent link to this record
 

 
Author Maes, D.; Van Passel, S. doi  openurl
  Title Interference of regional support policies on the economic and environmental performance of a hybrid cogeneration-solar panel energy system Type A1 Journal article
  Year 2012 Publication Energy Policy Abbreviated Journal (up) Energ Policy  
  Volume 42 Issue Pages 670-680  
  Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract This paper assesses unintentional interference between different public policies promoting energy efficiency and renewable energy. The paper develops a methodology to study the interference by analysing the economic and technical behaviour of a hybrid energy system. The hybrid energy system in this case consists of an existing cogeneration unit extended with a new installation of thermal solar panels. This puts two complementary heating technologies in juxtaposition. The two technologies are supported with distinct regional support instruments in each region. The design and operation of the energy system is optimised from the point of view of the investor according to the different support instruments. The optimal configuration is analysed as well as its effect on reduced CO2-emissions during the lifetime of the project. The methodology is applied to a case-study for two neighbouring regions, the Netherlands and Flanders. The policies in the Netherlands show a beneficial synergy. In Flanders, the hybrid energy system is not interesting, indicating unbalanced high support for cogeneration in this case. From the point of view of the authorities, a more balanced regional policy as in the Netherlands provides a larger CO2-emission reduction for a smaller cost. (C) 2012 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000301616000066 Publication Date 2012-01-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0301-4215; 1873-6777 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.14 Times cited 4 Open Access  
  Notes ; The authors would especially like to thank Davy Duelen for the excellent case-study and data collection that enabled the present paper. The help and information provided by Pierre Gijsen also made the detailed assessment possible. We are also indebted to two anonymous reviewers, whose remarks strongly improved the paper. This project has been financed by the Impulse-project of the tUL (transnational University Limburg). ; Approved Most recent IF: 4.14; 2012 IF: 2.743  
  Call Number UA @ admin @ c:irua:127558 Serial 6220  
Permanent link to this record
 

 
Author Srivastava, A.; Van Passel, S.; Kessels, R.; Valkering, P.; Laes, E. url  doi
openurl 
  Title Reducing winter peaks in electricity consumption: A choice experiment to structure demand response programs Type A1 Journal Article
  Year 2020 Publication Energy Policy Abbreviated Journal (up) Energ Policy  
  Volume 137 Issue Pages 111183  
  Keywords A1 Journal Article; Engineering Management (ENM) ;  
  Abstract Winter peaks in Belgian electricity demand are significantly higher than the summer peaks, creating a greater potential for imbalances between demand and supply. This potential is exacerbated because of the risk of outages in its ageing nuclear power plants, which are being phased out in the medium term. This paper conducts a choice experiment to investigate the acceptability of a load control-based demand response program in the winter months. It surveys 186 respondents on their willingness to accept limits on the use of home appliances in return for a compensation. Results indicate that respondents are most affected by the days of the week that their appliance usage would be curtailed, and by the compensation they would receive. The willingness to enroll in a program increases with age, environmental consciousness, home ownership, and lower privacy concerns. The analysis predicts that 95% of the sample surveyed could enroll in a daily load control program for a compen- sation of €41 per household per year. Thus while an initial rollout among older and more pro-environment homeowners could be successful, a wider implementation would require an explanation of its environmental and financial benefits to the population, and a greater consideration of their data privacy concerns.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000515439900040 Publication Date 2019-12-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0301-4215 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9 Times cited Open Access  
  Notes The authors gratefully acknowledge the guidance offered by the Flemish Electricity Regulatory Agency (VREG), the Flemish Department for Environment, Nature, and Energy (LNE), and Guido Pepermans in designing the experiment. We are also grateful for the translations provided by Loic De Weerdt, and the support extended by Macarena MacLean Larrain in pre-testing the experiment. Finally, Roselinde Kes- sels thanks the Flemish Research Foundation (FWO) for her postdoctoral fellowship and the JMP Division of SAS Institute for further financial support. Approved Most recent IF: 9; 2020 IF: 4.14  
  Call Number ENM @ enm @c:irua:167253 Serial 6348  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: