toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Girma, H.; Huge, J.; Gebrehiwot, M.; Van Passel, S. pdf  doi
openurl 
  Title Farmers' willingness to contribute to the restoration of an Ethiopian Rift Valley lake : a contingent valuation study Type A1 Journal article
  Year 2021 Publication Environment, development and sustainability Abbreviated Journal (up)  
  Volume 23 Issue 7 Pages 10646-10665  
  Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract Lakes provide considerable social, economic, and ecological benefits. However, lakes are shrinking and the water quality is declining, due to human pressures such as water withdrawal and land use change, particularly in the developing world. Despite this, information regarding the economic impact of lake level reduction and local willingness to support restoration programs is lacking. This study employed a contingent valuation method to estimate willingness to pay and to contribute labor to Lake Ziway restoration program, Ethiopia. Face-to-face interviews were administered to 259 randomly selected respondents. Our findings revealed that about one-third of the respondents are willing to pay and about two-third are willing to contribute labor to restore the lake. From the interval regression models, the annual mean willingness to pay was estimated about 21.0 USD for the status quo scenario (the program works to keep water levels constant at current levels) and 31.1 USD for the improvement scenario (the program works to increase the water levels permanently). The annual mean willingness to contribute labor was estimated about 27.7 man-days for the status quo and 39.3 man-days for the improvement scenarios. 'Farm income' positively influenced the willingness to pay together with 'farm plot area.' Similarly, labor contribution was positively influenced by 'farm plot area' and 'education' and negatively by 'farm plot distance.' The economic values derived from this study reflect societal preferences and can form a significant input for policymakers, in support of informed and evidence-based decision-making regarding lake management and restoration in developing countries like Ethiopia.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000590038300001 Publication Date 2020-11-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1387-585x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:174271 Serial 6926  
Permanent link to this record
 

 
Author Chekol Zewdie, M. isbn  openurl
  Title How irrigation water impacts Ethiopian agriculture : an applied economics study Type Doctoral thesis
  Year 2021 Publication Abbreviated Journal (up)  
  Volume Issue Pages xiv, 152 p.  
  Keywords Doctoral thesis; Economics; Engineering Management (ENM)  
  Abstract In recent decades, as crop production has increased in many areas where irrigation projects have been implemented, the global agricultural development community has promoted irrigation investments. However, due to the disappointing performance of irrigation farming in developing countries, irrigation intervention in Africa South of the Sahara including Ethiopia is an issue of debate. Moreover, several gaps exist in the Ethiopian irrigation farming literature. For instance, evidence about the direct and indirect effects of irrigation water on agriculture is not well documented. The irrigation farming literature has not disentangled the indirect effects of having access to irrigation water from the direct effect and the indirect effects have been underrepresented. Furthermore, most previous studies have applied either a quantitative or qualitative approach and have relied only on revealed data as main type of methodology, making studies that combine qualitative and quantitative research and that use both stated and revealed data underrepresented. In this study, different approaches have been applied to investigate how irrigation water impacts Ethiopia agriculture with special attention being given to disentangling the direct and indirect effects of irrigation water on Ethiopian agriculture. Using a structural equation model, a stochastic production frontier approach, and a discrete choice experiment, I drew evidence regarding the direct and indirect effects of irrigation water on crop revenue of smallholder farmers, the technical efficiency of irrigation user farmers, and the farmers’ willingness to pay to improve poor irrigation schemes from field observations, semi-structured interviews and focus group discussions with farmers, and key informant interviews with the local agricultural agents from the Koga and Fogera Districts of Amhara Region Ethiopia. The results indicate that irrigation water in general has both direct and indirect positive effects on agriculture, and the indirect effect is mediated by both improved farm inputs and the type of crops produced. The results also show that – due to poor extension services and backward agronomic practices, the mean technical efficiency of farmers in Ethiopia is very low, and that large-scale irrigation users are less technically efficient than small-scale irrigation users. Moreover, the results show that improving irrigation schemes shifts the frontier up, and smallholder farmers are strongly willing to contribute financially to the maintenance costs of irrigation schemes. The results offer relevant lessons for policymakers that providing irrigation water supply must be embedded in a comprehensive support package including access to extension services, improved input supply, and access to stable markets.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-90-5728-700-8 Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:180816 Serial 6928  
Permanent link to this record
 

 
Author Peeters, M.; Compernolle, T.; Van Passel, S. pdf  doi
openurl 
  Title Leasing out unused meeting room capacity to reduce future office space needs : a case study of The Hague, Netherlands Type A1 Journal article
  Year 2021 Publication Journal of building engineering Abbreviated Journal (up)  
  Volume 44 Issue Pages 102953  
  Keywords A1 Journal article; Economics; Engineering sciences. Technology; Economics; Engineering Management (ENM)  
  Abstract Meeting rooms are reserved 30% of working hours but only used for 20% of that time. By implementing a strategy where the available capacity is leased to the wider market rather than just the building users, there is a positive impact on the economic, environmental, and social factors of the building and its surroundings. This study uses the building 'The Globe' in The Hague as a case study, and then projects the results to the entire city. In case of The Globe, implementing a lease out strategy achieves a reduction of 36% of the annual rent of the meeting rooms to the building's tenant. The owner benefits from a revenue increase of 12.5%, with the same operational expenses (except the reservation system), leading to a proportional higher valuation of the building. Annual energy consumption may be lowered by 6.2%. This study contributes to the literature by considering the total benefits that could be obtained by more efficient use of office space that is currently underused. The application of technology generates added value for economic, environmental, and social factors. These factors are important in real estate as they (among others) have a direct link to the Environmental, Social and Governance (ESG) analysis that investors make before proceeding with an investment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000701698300003 Publication Date 2021-07-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2352-7102 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:182469 Serial 6936  
Permanent link to this record
 

 
Author Tiwari, S.; Vanherck, J.; Van de Put, M.L.; Vandenberghe, W.G.; Sorée, B. url  doi
openurl 
  Title Computing Curie temperature of two-dimensional ferromagnets in the presence of exchange anisotropy Type A1 Journal article
  Year 2021 Publication Physical review research Abbreviated Journal (up)  
  Volume 3 Issue 4 Pages 043024  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We compare three first-principles methods of calculating the Curie temperature in two-dimensional (2D) ferromagnetic materials (FM), modeled using the Heisenberg model, and propose a simple formula for estimating the Curie temperature with high accuracy that works for all common 2D lattice types. First, we study the effect of exchange anisotropy on the Curie temperature calculated using the Monte Carlo (MC), the Green's function, and the renormalized spin-wave (RNSW) methods. We find that the Green's function method overestimates the Curie temperature in high-anisotropy regimes compared to the MC method, whereas the RNSW method underestimates the Curie temperature compared to the MC and the Green's function methods. Next, we propose a closed-form formula for calculating the Curie temperature of 2D FMs, which provides an estimate of the Curie temperature that is greatly improved over the mean-field expression for magnetic material screening. We apply the closed-form formula to predict the Curie temperature 2D magnets screened from the C2DB database and discover several high Curie temperature FMs, with Fe2F2 and MoI2 emerging as the most promising 2D ferromagnets. Finally, by comparing to experimental results for CrI3, CrCl3, and CrBr3, we conclude that for small effective anisotropies, the Green's-function-based equations are preferable, while for larger anisotropies, MC-based results are more predictive.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000707506500001 Publication Date 2021-10-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:182522 Serial 6975  
Permanent link to this record
 

 
Author Hoat, D.M.; Duy Khanh Nguyen; Bafekry, A.; Vo Van On; Ul Haq, B.; Hoang, D.-Q.; Cocoletzi, G.H.; Rivas-Silva, J.F. pdf  doi
openurl 
  Title Developing feature-rich electronic and magnetic properties in the beta-As monolayer for spintronic and optoelectronic applications by C and Si doping : a first-principles study Type A1 Journal article
  Year 2021 Publication Surfaces and interfaces Abbreviated Journal (up)  
  Volume 27 Issue Pages 101534  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In this work, the carbon (C) and silicon (Si) doping and codoping effects on beta-arsenene (As) monolayer structural, electronic, and magnetic properties have been comprehensively investigated using first-principles calculations. The studied two-dimensional (2D) materials exhibit good stability. Pristine beta-As single layer is an indirect gap semiconductor with a band gap of 1.867(2.441) eV as determined by PBE(HSE06) functional. Due to the difference in atomic size and electronic interactions, C and Si substitution induces a significant local structural distortion. Depending upon dopant concentration and doping sites, feature-rich electronic properties including non-magnetic semiconductor, magnetic semiconductor and half-metallicity may be obtained, which result from p-p interactions. High spin-polarization at the Fermi level vicinity and significant magnetism suggest As:1C, As:2C, As:1Si, As:2Si, and As:CSi systems as prospective spintronic 2D materials. While, the C-C, Si-Si, and C-Si dimer doping decreases electronic band gap, making the layer more suitable for applications in optoelectronic devices. Results presented herein may suggest an efficient approach to create novel multi-functional 2D materials from beta-As monolayer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000711791100002 Publication Date 2021-10-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2468-0230 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:184138 Serial 6979  
Permanent link to this record
 

 
Author Conti, S.; Perali, A.; Peeters, F.M.; Neilson, D. url  doi
openurl 
  Title Effect of mismatched electron-hole effective masses on superfluidity in double layer solid-state systems Type A1 Journal article
  Year 2021 Publication Condensed Matter Abbreviated Journal (up)  
  Volume 6 Issue 2 Pages 14  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Superfluidity has been predicted and now observed in a number of different electron-hole double-layer semiconductor heterostructures. In some of the heterostructures, such as GaAs and Ge-Si electron-hole double quantum wells, there is a strong mismatch between the electron and hole effective masses. We systematically investigate the sensitivity to unequal masses of the superfluid properties and the self-consistent screening of the electron-hole pairing interaction. We find that the superfluid properties are insensitive to mass imbalance in the low density BEC regime of strongly-coupled boson-like electron-hole pairs. At higher densities, in the BEC-BCS crossover regime of fermionic pairs, we find that mass imbalance between electrons and holes weakens the superfluidity and expands the density range for the BEC-BCS crossover regime. This permits screening to kill the superfluid at a lower density than for equal masses.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000665155800001 Publication Date 2021-04-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2410-3896 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 1 Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:179635 Serial 6982  
Permanent link to this record
 

 
Author Conti, S.; Saberi-Pouya, S.; Perali, A.; Virgilio, M.; Peeters, F.M.; Hamilton, A.R.; Scappucci, G.; Neilson, D. url  doi
openurl 
  Title Electron-hole superfluidity in strained Si/Ge type II heterojunctions Type A1 Journal article
  Year 2021 Publication npj Quantum Materials Abbreviated Journal (up)  
  Volume 6 Issue 1 Pages 41  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Excitons are promising candidates for generating superfluidity and Bose-Einstein condensation (BEC) in solid-state devices, but an enabling material platform with in-built band structure advantages and scaling compatibility with industrial semiconductor technology is lacking. Here we predict that spatially indirect excitons in a lattice-matched strained Si/Ge bilayer embedded into a germanium-rich SiGe crystal would lead to observable mass-imbalanced electron-hole superfluidity and BEC. Holes would be confined in a compressively strained Ge quantum well and electrons in a lattice-matched tensile strained Si quantum well. We envision a device architecture that does not require an insulating barrier at the Si/Ge interface, since this interface offers a type II band alignment. Thus the electrons and holes can be kept very close but strictly separate, strengthening the electron-hole pairing attraction while preventing fast electron-hole recombination. The band alignment also allows a one-step procedure for making independent contacts to the electron and hole layers, overcoming a significant obstacle to device fabrication. We predict superfluidity at experimentally accessible temperatures of a few Kelvin and carrier densities up to similar to 6 x 10(10) cm(-2), while the large imbalance of the electron and hole effective masses can lead to exotic superfluid phases.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000642904200001 Publication Date 2021-04-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2397-4648 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 5 Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:178226 Serial 6984  
Permanent link to this record
 

 
Author Tiwari, S.; Van de Put, M.L.; Sorée, B.; Vandenberghe, W.G. url  doi
openurl 
  Title Magnetic order and critical temperature of substitutionally doped transition metal dichalcogenide monolayers Type A1 Journal article
  Year 2021 Publication npj 2D Materials and Applications Abbreviated Journal (up)  
  Volume 5 Issue 1 Pages 54  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Using first-principles calculations, we investigate the magnetic order in two-dimensional (2D) transition-metal-dichalcogenide (TMD) monolayers: MoS2, MoSe2, MoTe2, WSe2, and WS2 substitutionally doped with period four transition-metals (Ti, V, Cr, Mn, Fe, Co, Ni). We uncover five distinct magnetically ordered states among the 35 distinct TMD-dopant pairs: the non-magnetic (NM), the ferromagnetic with out-of-plane spin polarization (Z FM), the out-of-plane polarized clustered FMs (clustered Z FM), the in-plane polarized FMs (X-Y FM), and the anti-ferromagnetic (AFM) state. Ni and Ti dopants result in an NM state for all considered TMDs, while Cr dopants result in an anti-ferromagnetically ordered state for all the TMDs. Most remarkably, we find that Fe, Mn, Co, and V result in an FM ordered state for all the TMDs, except for MoTe2. Finally, we show that V-doped MoSe2 and WSe2, and Mn-doped MoS2, are the most suitable candidates for realizing a room-temperature FM at a 16-18% atomic substitution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000650635200004 Publication Date 2021-05-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2397-7132 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:179063 Serial 7001  
Permanent link to this record
 

 
Author Raymenants, E.; Bultynck, O.; Wan, D.; Devolder, T.; Garello, K.; Souriau, L.; Thiam, A.; Tsvetanova, D.; Canvel, Y.; Nikonov, D.E.; Young, I.A.; Heyns, M.; Sorée, B.; Asselberghs, I.; Radu, I.; Couet, S.; Nguyen, V.D. url  doi
openurl 
  Title Nanoscale domain wall devices with magnetic tunnel junction read and write Type A1 Journal article
  Year 2021 Publication Nature Electronics Abbreviated Journal (up)  
  Volume 4 Issue 6 Pages 392-398  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The manipulation of fast domain wall motion in magnetic nanostructures could form the basis of novel magnetic memory and logic devices. However, current approaches for reading and writing domain walls require external magnetic fields, or are based on conventional magnetic tunnel junctions (MTJs) that are not compatible with high-speed domain wall motion. Here we report domain wall devices based on perpendicular MTJs that offer electrical read and write, and fast domain wall motion via spin-orbit torque. The devices have a hybrid free layer design that consists of platinum/cobalt (Pt/Co) or a synthetic antiferromagnet (Pt/Co/Ru/Co) into the free layer of conventional MTJs. We show that our devices can achieve good tunnelling magnetoresistance readout and efficient spin-transfer torque writing that is comparable to current magnetic random-access memory technology, as well as domain wall depinning efficiency that is similar to stand-alone materials. We also show that a domain wall conduit based on a synthetic antiferromagnet offers the potential for reliable domain wall motion and faster write speed compared with a device based on Pt/Co. Domain wall devices based on perpendicular magnetic tunnel junctions with a hybrid free layer design can offer electrical read and write, and fast domain wall motion driven via spin-orbit torque.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000665011500005 Publication Date 2021-06-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2520-1131 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:179673 Serial 7003  
Permanent link to this record
 

 
Author Juneja, R.; Thebaud, S.; Pandey, T.; Polanco, C.A.; Moseley, D.H.; Manley, M.E.; Cheng, Y.Q.; Winn, B.; Abernathy, D.L.; Hermann, R.P.; Lindsay, L. url  doi
openurl 
  Title Quasiparticle twist dynamics in non-symmorphic materials Type A1 Journal article
  Year 2021 Publication Materials Today Physics Abbreviated Journal (up)  
  Volume 21 Issue Pages 100548  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Quasiparticle physics underlies our understanding of the microscopic dynamical behaviors of materials that govern a vast array of properties, including structural stability, excited states and interactions, dynamical structure factors, and electron and phonon conductivities. Thus, understanding band structures and quasiparticle interactions is foundational to the study of condensed matter. Here we advance a 'twist' dynamical description of quasiparticles (including phonons and Bloch electrons) in nonsymmorphic chiral and achiral materials. Such materials often have structural complexity, strong thermal resistance, and efficient thermoelectric performance for waste heat capture and clean refrigeration technologies. The twist dynamics presented here provides a novel perspective of quasiparticle behaviors in such complex materials, in particular highlighting how non-symmorphic symmetries determine band crossings and anti-crossings, topological behaviors, quasiparticle interactions that govern transport, and observables in scattering experiments. We provide specific context via neutron scattering measurements and first-principles calculations of phonons and electrons in chiral tellurium dioxide. Building twist symmetries into the quasiparticle dynamics of non-symmorphic materials offers intuition into quasi particle behaviors, materials properties, and guides improved experimental designs to probe them. More specifically, insights into the phonon and electron quasiparticle physics presented here will enable materials design strategies to control interactions and transport for enhanced thermoelectric and thermal management applications. (C) 2021 Published by Elsevier Ltd.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000708226400009 Publication Date 2021-09-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2542-5293 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:184040 Serial 7016  
Permanent link to this record
 

 
Author Bafekry, A.; Shahrokhi, M.; Shafique, A.; Jappor, H.R.; Fadlallah, M.M.; Stampfl, C.; Ghergherehchi, M.; Mushtaq, M.; Feghhi, S.A.H.; Gogova, D. url  doi
openurl 
  Title Semiconducting chalcogenide alloys based on the (Ge, Sn, Pb) (S, Se, Te) formula with outstanding properties : a first-principles calculation study Type A1 Journal article
  Year 2021 Publication ACS Omega Abbreviated Journal (up)  
  Volume 6 Issue 14 Pages 9433-9441  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Very recently, a new class of the multicationic and -anionic entropy-stabilized chalcogenide alloys based on the (Ge, Sn, Pb) (S, Se, Te) formula has been successfully fabricated and characterized experimentally [Zihao Deng et al., Chem. Mater. 32, 6070 (2020)]. Motivated by the recent experiment, herein, we perform density functional theory-based first-principles calculations in order to investigate the structural, mechanical, electronic, optical, and thermoelectric properties. The calculations of the cohesive energy and elasticity parameters indicate that the alloy is stable. Also, the mechanical study shows that the alloy has a brittle nature. The GeSnPbSSeTe alloy is a semiconductor with a direct band gap of 0.4 eV (0.3 eV using spin-orbit coupling effect). The optical analysis illustrates that the first peak of Im(epsilon) for the GeSnPbSSeTe alloy along all polarization directions is located in the visible range of the spectrum which renders it a promising material for applications in optical and electronic devices. Interestingly, we find an optically anisotropic character of this system which is highly desirable for the design of polarization-sensitive photodetectors. We have accurately predicted the thermoelectric coefficients and have calculated a large power factor value of 3.7 x 10(11) W m(-1) K-2 s(-1) for p-type. The high p-type power factor is originated from the multiple valleys near the valence band maxima. The anisotropic results of the optical and transport properties are related to the specific tetragonal alloy unit cell.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000640649500012 Publication Date 2021-03-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-1343 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:178395 Serial 7017  
Permanent link to this record
 

 
Author Shi, W.; Pandey, T.; Lindsay, L.; Woods, L.M. doi  openurl
  Title Vibrational properties and thermal transport in quaternary chalcogenides : the case of Te-based compositions Type A1 Journal article
  Year 2021 Publication Physical review materials Abbreviated Journal (up)  
  Volume 5 Issue 4 Pages 045401  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Vibrational thermal properties of CuZn2InTe4, AgZn2InTe4, and Cu2CdSnTe4, derived from binary II-VI zinc-blendes, are reported based on first-principles calculations. While the chalcogenide atoms in these materials have the same lattice positions, the cation atom arrangements vary, resulting in different crystal symmetries and subsequent properties. The compositional differences have important effects on the vibrational thermal characteristics of the studied materials, which demonstrate that low-frequency optical phonons hybridize with acoustic phonons and lead to enhanced phonon-phonon scattering and low lattice thermal conductivities. The phonon density of states, mode Gruneisen parameters, and phonon scattering rates are also calculated, enabling deeper insight into the microscopic thermal conduction processes in these materials. Compositional variations drive differences among the three materials considered here; nonetheless, their structural similarities and generally low thermal conductivities (0.5-4 W/mK at room temperature) suggest that other similar II-VI zinc-blende derived materials will also exhibit similarly low values, as also corroborated by experimental data. This, combined with the versatility in designing a variety of motifs on the overall structure, makes quaternary chalcogenides interesting for thermal management and energy conversion applications that require low thermal conductivity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000655931400005 Publication Date 2021-04-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:179140 Serial 7045  
Permanent link to this record
 

 
Author Sun, C.; Street, M.; Zhang, C.; Van Tendeloo, G.; Zhao, W.; Zhang, Q. pdf  url
doi  openurl
  Title Boron structure evolution in magnetic Cr₂O₃ thin films Type A1 Journal article
  Year 2022 Publication Materials Today Physics Abbreviated Journal (up)  
  Volume 27 Issue Pages 100753-100757  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract B substituting O in antiferromagnetic Cr2O3 is known to increase the Ne ' el temperature, whereas the actual B dopant site and the corresponding functionality remains unclear due to the complicated local structure. Herein, A combination of electron energy loss spectroscopy and first-principles calculations were used to unveil B local structures in B doped Cr2O3 thin films. B was found to form either magnetic active BCr4 tetrahedra or various inactive BO3 triangles in the Cr2O3 lattice, with a* and z* bonds exhibiting unique spectral features. Identification of BO3 triangles was achieved by changing the electron momentum transfer to manipulate the differential cross section for the 1s-z* and 1s-a* transitions. Modeling the experimental spectra as a linear combination of simulated B K edges reproduces the experimental z* / a* ratios for 15-42% of the B occupying the active BCr4 structure. This result is further supported by first-principles based thermodynamic calculations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000827323200003 Publication Date 2022-06-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2542-5293 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 11.5 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 11.5  
  Call Number UA @ admin @ c:irua:189660 Serial 7078  
Permanent link to this record
 

 
Author Vishwakarma, M.; Batra, Y.; Hadermann, J.; Singh, A.; Ghosh, A.; Mehta, B.R. pdf  doi
openurl 
  Title Exploring the role of graphene oxide as a co-catalyst in the CZTS photocathodes for improved photoelectrochemical properties Type A1 Journal article
  Year 2022 Publication ACS applied energy materials Abbreviated Journal (up)  
  Volume 5 Issue 6 Pages 7538-7549  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The hydrogen evolution properties of CZTS heterostructure photocathodes are reported with graphene oxide (GO) as a co-catalyst layer coated by a drop-cast method and an Al2O3 protection layer fabricated using atomic layer deposition. In the CZTS absorber, a minor deviation from stoichiometry across the cross section of the thin film results in nanoscale growth of spurious phases, but the kesterite phase remains the dominant phase. We have investigated the band alignment parameters such as the band gap, work function, and Fermi level position that are crucial for making kesterite-based heterostructure devices. The photocurrent density in the photocathode CZTS/CdS/ZnO is found to be improved to -4.71 mAmiddotcm(-2) at -0.40 V-RHE, which is 3 times that of the pure CZTS. This enhanced photoresponse can be attributed to faster carrier separation at p-n junction regions driven by upward band bending at CZTS grain boundaries and the ZnO layer. GO as a co-catalyst over the heterostructure photocathode significantly improves the photocurrent density to -6.14 mAmiddotcm(-2) at -0.40 V-RHE by effective charge migration in the CZTS/CdS/ZnO/GO configuration, but the onset potential shifts only after application of the Al2O3 protection layer. Significant photocurrents of -29 mAmiddotcm(-2) at -0.40 V-RHE and -8 mAmiddotcm(-2) at 0 V-RHE are observed, with an onset potential of 0.7 V-RHE in CZTS/CdS/ZnO/GO/Al2O3. The heterostructure configuration and the GO co-catalyst reduce the charge-transfer resistance, while the Al2O3 top layer provides a stable photocurrent for a prolonged time (similar to 16 h). The GO co-catalyst increases the flat band potential from 0.26 to 0.46 V-RHE in CZTS/CdS/ZnO/GO, which supports the bias-induced band bending at the electrolyte-electrode interface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000820418400001 Publication Date 2022-05-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2574-0962 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.4 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 6.4  
  Call Number UA @ admin @ c:irua:189666 Serial 7082  
Permanent link to this record
 

 
Author Watanabe, Y.; Hyeon-Deuk, K.; Yamamoto, T.; Yabuuchi, M.; Karakulina, O.M.; Noda, Y.; Kurihara, T.; Chang, I.-Y.; Higashi, M.; Tomita, O.; Tassel, C.; Kato, D.; Xia, J.; Goto, T.; Brown, C.M.; Shimoyama, Y.; Ogiwara, N.; Hadermann, J.; Abakumov, A.M.; Uchida, S.; Abe, R.; Kageyama, H. url  doi
openurl 
  Title Polyoxocationic antimony oxide cluster with acidic protons Type A1 Journal article
  Year 2022 Publication Science Advances Abbreviated Journal (up)  
  Volume 8 Issue 24 Pages eabm5379-8  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The success and continued expansion of research on metal-oxo clusters owe largely to their structural richness and wide range of functions. However, while most of them known to date are negatively charged polyoxometalates, there is only a handful of cationic ones, much less functional ones. Here, we show an all-inorganic hydroxyiodide [H(10.)7Sb(32.1)O(44)][H2.1Sb2.1I8O6][Sb0.76I6](2)center dot 25H(2)O (HSbOI), forming a face-centered cubic structure with cationic Sb32O44 clusters and two types of anionic clusters in its interstitial spaces. Although it is submicrometer in size, electron diffraction tomography of HSbOI allowed the construction of the initial structural model, followed by powder Rietveld refinement to reach the final structure. The cationic cluster is characterized by the presence of acidic protons on its surface due to substantial Sb3+ deficiencies, which enables HSbOI to serve as an excellent solid acid catalyst. These results open up a frontier for the exploration and functionalization of cationic metal-oxo clusters containing heavy main group elements.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000812533800008 Publication Date 2022-06-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2375-2548 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.6 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 13.6  
  Call Number UA @ admin @ c:irua:189689 Serial 7091  
Permanent link to this record
 

 
Author Borah, R.; Smets, J.; Ninakanti, R.; Tietze, M.L.; Ameloot, R.; Chigrin, D.N.; Bals, S.; Lenaerts, S.; Verbruggen, S.W. pdf  url
doi  openurl
  Title Self-assembled ligand-capped plasmonic Au nanoparticle films in the Kretschmann configuration for sensing of volatile organic compounds Type A1 Journal article
  Year 2022 Publication ACS applied nano materials Abbreviated Journal (up)  
  Volume 5 Issue 8 Pages acsanm.2c02524-12  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Films of close-packed Au nanoparticles are coupled electrodynamically through their collective plasmon resonances. This collective optical response results in enhanced light–matter interactions, which can be exploited in various applications. Here, we demonstrate their application in sensing volatile organic compounds, using methanol as a test case. Ordered films over several cm2 were obtained by interfacial self-assembly of colloidal Au nanoparticles (∼10 nm diameter) through controlled evaporation of the solvent. Even though isolated nanoparticles of this size are inherently nonscattering, when arranged in a close-packed film the plasmonic coupling results in a strong reflectance and absorbance. The in situ tracking of vapor phase methanol concentration through UV–vis transmission measurements of the nanoparticle film is first demonstrated. Next, in situ ellipsometry of the self-assembled films in the Kretschmann (also known as ATR) configuration is shown to yield enhanced sensitivity, especially with phase difference measurements, Δ. Our study shows the excellent agreement between theoretical models of the spectral response of self-assembled films with experimental in situ sensing experiments. At the same time, the theoretical framework provides the basis for the interpretation of the various observed experimental trends. Combining periodic nanoparticle films with ellipsometry in the Kretschmann configuration is a promising strategy toward highly sensitive and selective plasmonic thin-film devices based on colloidal fabrication methods for volatile organic compound (VOC) sensing applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000834348300001 Publication Date 2022-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2574-0970 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.9 Times cited 11 Open Access OpenAccess  
  Notes R.B. acknowledges financial support from the University of Antwerp Special Research Fund (BOF) for a DOCPRO4 doctoral scholarship. J.S. acknowledges financial support from the Research Foundation Flanders (FWO) by a Ph.D. fellowship (11H8121N) . M.L.T. acknowledges financial support from the Research Foundation Flanders (FWO) by a senior postdoctoral fellowship (12ZK720N) . Approved Most recent IF: 5.9  
  Call Number UA @ admin @ c:irua:189295 Serial 7095  
Permanent link to this record
 

 
Author Faust, V.; van Alen, T.A.; Op den Camp, H.J.M.; Vlaeminck, S.E.; Ganigué, R.; Boon, N.; Udert, K.M. url  doi
openurl 
  Title Ammonia oxidation by novel “Candidatus Nitrosacidococcus urinae” is sensitive to process disturbances at low pH and to iron limitation at neutral pH Type A1 Journal article
  Year 2022 Publication Water Research X Abbreviated Journal (up)  
  Volume 17 Issue Pages 100157-11  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Acid-tolerant ammonia-oxidizing bacteria (AOB) can open the door to new applications, such as partial nitritation at low pH. However, they can also be problematic because chemical nitrite oxidation occurs at low pH, leading to the release of harmful nitrogen oxide gases. In this publication, the role of acid-tolerant AOB in urine treatment was explored. On the one hand, the technical feasibility of ammonia oxidation under acidic conditions for source-separated urine with total nitrogen concentrations up to 3.5 g-N L−1 was investigated. On the other hand, the abundance and growth of acid-tolerant AOB at more neutral pH was explored. Under acidic conditions (pH of 5), ammonia oxidation rates of 500 mg-N L−1 d−1 and 10 g-N g-VSS-1 d-1 were observed, despite high concentrations of 15 mg-N L−1 of the AOB-inhibiting compound nitrous acid and low concentration of 0.04 mg-N L−1 of the substrate ammonia. However, ammonia oxidation under acidic conditions was very sensitive to process disturbances. Even short periods of less than 12 h without oxygen or without influent resulted in a complete cessation of ammonia oxidation with a recovery time of up to two months, which is a problem for low maintenance applications such as decentralized treatment. Furthermore, undesirable nitrogen losses of about 10% were observed. Under acidic conditions, a novel AOB strain was enriched with a relative abundance of up to 80%, for which the name “Candidatus (Ca.) Nitrosacidococcus urinae” is proposed. While Nitrosacidococcus members were present only to a small extent (0.004%) in urine nitrification reactors operated at pH values between 5.8 and 7, acid-tolerant AOB were always enriched during long periods without influent, resulting in an uncontrolled drop in pH to as low as 2.5. Long-term experiments at different pH values showed that the activity of “Ca. Nitrosacidococcus urinae” decreased strongly at a pH of 7, where they were also outcompeted by the acid-sensitive AOB Nitrosomonas halophila. The experiment results showed that the decreased activity of “Ca. Nitrosacidococcus urinae” correlated with the limited availability of dissolved iron at neutral pH.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000877925500001 Publication Date 2022-10-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2589-9147 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:190944 Serial 7124  
Permanent link to this record
 

 
Author Shafiei, M.; Fazileh, F.; Peeters, F.M.; Milošević, M.V. url  doi
openurl 
  Title Axion insulator states in a topological insulator proximitized to magnetic insulators : a tight-binding characterization Type A1 Journal article
  Year 2022 Publication Physical review materials Abbreviated Journal (up)  
  Volume 6 Issue 7 Pages 074205-74208  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The recent discovery of axion states in materials such as antiferromagnetic topological insulators has boosted investigations of the magnetoelectric response in topological insulators and their promise towards realizing dissipationless topological electronics. In this paper, we develop a tight-binding methodology to explore the emergence of axion states in Bi2Se3 in proximity to magnetic insulators on the top and bottom surfaces. The topological protection of the surface states is lifted by a time-reversal-breaking perturbation due to the proximity of a magnetic insulator, and a gap is opened on the surfaces, giving rise to half-quantized Hall conductance and a zero Hall plateau-evidencing an axion insulator state. We developed a real-space tight-binding Hamiltonian for Bi2Se3 using first-principles data. Transport properties of the system were obtained within the Landauer-Buttiker formalism, and we discuss the creation of axion states through Hall conductance and a zero Hall plateau at the surfaces, as a function of proximitized magnetization and corresponding potentials at the surfaces, as well as the thickness of the topological insulator.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000832387000006 Publication Date 2022-07-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.4  
  Call Number UA @ admin @ c:irua:189498 Serial 7130  
Permanent link to this record
 

 
Author Oliveira, M.C. openurl 
  Title Influence of phase-separated domains on the permeability of oxidized lipid membranes Type Doctoral thesis
  Year 2022 Publication Abbreviated Journal (up)  
  Volume Issue Pages 151 p.  
  Keywords Doctoral thesis; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Biological membranes are under constant attack of reactive oxygen and nitrogen species (RONS), which may lead to a complex mixture of nitro-oxidized lipids that are responsible for structural and dynamic changes on the membrane. Because of that, nitro-oxidized lipids are also associated with several tumors and inflammatory and neurodegenerative diseases. Moreover, lipid oxidation may induce membrane phase-separated domains, which also drastically affect the membrane function. Evidence suggests that domain interfaces are “hot spots” for pore formation, but the underlying mechanisms remain elusive. There is an urgent need for an improved understanding of oxidation-induced phase separation on membrane properties. Likewise, the molecular structure at domain interfaces still needs to be elucidated. To evaluate the effect of lipid nitro-oxidation on the permeability of single-phase (homogeneous) and phase-separated (heterogeneous) phospholipid bilayers (PLBs), we performed atomistic molecular dynamics (MD) simulations using: (1) single-phase PLBs composed of several isomers of nitrated and/or oxidized lipids; (2) phase-separated PLBs composed of coexisting liquid ordered (Lo) and liquid disordered (Ld) domains, where the Ld domain is composed of non-oxidized and/or oxidized lipids. Our results show that nitrated lipids increase the membrane permeability of single-phase PLBs by three-fold compared to oxidized lipids. In addition, we show that oxidized lipids in the presence of nitrated lipids decrease the membrane permeability, suggesting an interaction between nitrated and oxidized lipids. Overall, the permeability of single-phase and phase-separated PLBs was comparable, and the presence of oxidized lipids increases the membrane permeability only in single-phase PLBs. Despite the latter, the presence of only 1.5% of lipid aldehydes at the Lo/Ld domain interfaces of phase-separated PLBs was able to increase the membrane permeability. In consequence of this, we also performed coarse-grained MD simulations to evaluate whether lipid aldehydes have a preference to accumulate at the interface between Lo/Ld domains. Our results show that lipid aldehydes derived from mono-unsaturated lipids accumulate at the interface, but those derived from poly-unsaturated lipids remain in the Ld domain. This study is of interest for photodynamic therapy and plasma medicine for cancer treatment, to understand the effects caused by RONS in cell membranes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:191039 Serial 7173  
Permanent link to this record
 

 
Author Faust, V.; Gruber, W.; Ganigue, R.; Vlaeminck, S.E.; Udert, K.M. pdf  url
doi  openurl
  Title Nitrous oxide emissions and carbon footprint of decentralized urine fertilizer production by nitrification and distillation Type A1 Journal article
  Year 2022 Publication ACS ES&T engineering Abbreviated Journal (up)  
  Volume 2 Issue 9 Pages 1745-1755  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Combining partial nitrification, granular activated carbon (GAC) filtration, and distillation is a well-studied approach to convert urine into a fertilizer. To evaluate the environmental sustainability of a technology, the operational carbon footprint and therefore nitrous oxide (N2O) emissions should be known, but N2O emissions from urine nitrification have not been assessed yet. Therefore, N2O emissions of a decentralized urine nitrification reactor were monitored for 1 month. During nitrification, 0.4-1.2% of the total nitrogen load was emitted as N2O-N with an average N2O emission factor (EFN2O) of 0.7%. Additional N2O was produced during anoxic storage between nitrification and GAC filtration with an estimated EFN2O of 0.8%, resulting in an EFN2O of 1.5% for the treatment chain. N2O emissions during nitrification can be mitigated by 60% by avoiding low dissolved oxygen or anoxic conditions and nitrite concentrations above 5 mg-N L-1. Minimizing the hydraulic retention time between nitrification and GAC filtration can reduce N2O formation during intermediate storage by 100%. Overall, the N2O emissions accounted for 45% of the operational carbon footprint of 14 kg-CO2,equiv kg-N-1 for urine fertilizer production. Using electricity from renewable sources and applying the proposed N2O mitigation strategies could potentially lower the carbon footprint by 85%.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000835412700001 Publication Date 2022-07-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:189599 Serial 7182  
Permanent link to this record
 

 
Author Vanmeert, F.; De Meyer, S.; Gestels, A.; Clerici, E.A.; Deleu, N.; Legrand, S.; Van Espen, P.; Van der Snickt, G.; Alfeld, M.; Dik, J.; Monico, L.; De Nolf, W.; Cotte, M.; Gonzalez, V.; Saverwyns, S.; Depuydt-Elbaum, L.; Janssens, K. pdf  doi
isbn  openurl
  Title Non-invasive and non-destructive examination of artists’ pigments, paints and paintings by means of X-ray imaging methods Type H1 Book chapter
  Year 2022 Publication Abbreviated Journal (up)  
  Volume Issue Pages 317-357  
  Keywords H1 Book chapter; Art; Antwerp Cultural Heritage Sciences (ARCHES); Antwerp X-ray Imaging and Spectroscopy (AXIS)  
  Abstract Recent studies in which X-ray beams of (sub)micrometre to millimetre dimensions have been used for non-destructive analysis and characterization of pigments, minute paint samples and/or entire paintings from fifteenth to twentieth century artists are discussed. The overview presented encompasses the use of laboratory and synchrotron radiation-based instrumentation and deals with the use of several variants of X-ray fluorescence (XRF) as a method of elemental analysis and imaging as well as with the combined use with X-ray diffraction (XRD). Microscopic XRF (μ-XRF) is a variant of the XRF method able to visualize the elemental distribution of key elements, mostly metals, on the scale from 1 μm to 100 μm present inside multi-layered micro samples taken from paintings. In the context of the characterization of artists’ pigments subjected to natural degradation, in many cases the use of methods limited to elemental analysis or imaging does not suffice to elucidate the chemical transformations that have taken place. However, at synchrotron facilities, combinations of μ-XRF with related methods such as μ-XAS (microscopic X-ray absorption spectroscopy) and μ-XRD have proven themselves to be very suitable for such studies. Since microscopic investigation of a relatively limited number of minute paint samples may not yield representative information about the complete artefact they were taken from, several methods for macroscopic, non-invasive imaging have recently been developed. Combined macroscopic XRF/XRD scanning is able to provide a fairly complete overview of the inorganic pigments employed to create a work of art, to answer questions about ongoing degradation phenomena and about its authenticity. As such these newly developed non-invasive and highly specific imaging methods are of interest for many cultural heritage stakeholders.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2022-09-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-030-86864-2 Additional Links UA library record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:190777 Serial 7183  
Permanent link to this record
 

 
Author Marchetti, A.; Beltran, V.; Nuyts, G.; Borondics, F.; De Meyer, S.; Van Bos, M.; Jaroszewicz, J.; Otten, E.; Debulpaep, M.; De Wael, K. url  doi
openurl 
  Title Novel optical photothermal infrared (O-PTIR) spectroscopy for the noninvasive characterization of heritage glass-metal objects Type A1 Journal article
  Year 2022 Publication Science Advances Abbreviated Journal (up)  
  Volume 8 Issue 9 Pages eabl6769-9  
  Keywords A1 Journal article; Engineering sciences. Technology; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab); Antwerp X-ray Imaging and Spectroscopy (AXIS)  
  Abstract Optical photothermal infrared (O-PTIR) is a recently developed molecular spectroscopy technique that allows to noninvasively obtain chemical information on organic and inorganic samples at a submicrometric scale. The high spatial resolution (approximate to 450 nm), lack of sample preparation, and comparability of the spectral results to traditional Fourier transform infrared spectroscopy make it a promising candidate for the analysis of cultural heritage. In this work, the potential of O-PTIR for the noninvasive characterization of small heritage objects (few cubic centimeters) is demonstrated on a series of degraded 16th century brass and glass decorative elements. These small and challenging samples, typically encountering limitations with existing noninvasive methods such as macroscopic x-ray powder diffraction and mu Raman, were successfully characterized by O-PTIR, ultimately identifying the markers of glass-induced metal corrosion processes. The results clearly demonstrate how O-PTIR can be easily implemented in a noninvasive multianalytical strategy for the study of heritage materials, making it a fundamental tool for cultural heritage analyses.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000790020300013 Publication Date 2022-03-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2375-2548 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.6 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 13.6  
  Call Number UA @ admin @ c:irua:188642 Serial 7184  
Permanent link to this record
 

 
Author Van Tendeloo, M. openurl 
  Title Resource-efficient nitrogen removal from sewage : kinetic, physical and chemical tools for mainstream partial nitritation/anammox Type Doctoral thesis
  Year 2022 Publication Abbreviated Journal (up)  
  Volume Issue Pages iv, 204 p.  
  Keywords Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Adequate removal of pollutants from sewage is important to protect the environment and public health. Today, sewage treatment plants are operational in many parts of the world, and although the used technologies are effective in removing pollutants from wastewater, they are energy- and resource-intensive. Reshaping sewage treatment into a two-stage system, with separated organic carbon and nitrogen removal, facilitates the transformation towards energy-positive sewage treatment. This thesis will focus on resource-efficient nitrogen removal from sewage via partial nitritation/anammox (PN/A), with reduced organic carbon and oxygen consumption compared to conventional techniques. PN/A relies on the teamwork between two microbial groups to convert ammonium into nitrogen gas. Several other groups of microbes however can proliferate in the sludge, competing for substrate with the key players, lowering the nitrogen removal efficiency and increasing the energy demand. To obtain the desired microbial community, control tools should be applied to selectively promote the desired microbes while suppressing the unwanted competitors. In this thesis, multiple control tools were studied to establish a workable framework for successful implementation of PN/A in the main stream of a sewage treatment plant. These tools can be divided into three categories: i) kinetic tools, regulating substrate availability (e.g., oxygen availability control and residual ammonium concentration), ii) physical tools, revolving around sludge retention and selection (e.g., sludge age control and sludge aggregation form), and iii) chemical tools, exposing the sludge to stress conditions for which the unwanted microbes are vulnerable (e.g., sludge treatments with a single stressor such as free ammonia). The first research chapter focussed on oxygen availability control and single-stressor sludge treatments. The following two chapters covered the development of a novel multi-stressor concept combining substrate starvation and exposure to sulphide and free ammonia. In the final research chapter, the previously obtained knowledge was combined into a demonstration study on pilot-scale. The combination of these control tools was found effective in achieving nitrogen removal via PN/A, both on lab- and pilot-scale. Consequently, the obtained results in this thesis can catalyse the implementation of mainstream PN/A by providing a toolbox with multiple control tools and clever reactor design, thus advancing the concept of energy neutrality and resource efficiency in sewage treatment plants.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:187665 Serial 7204  
Permanent link to this record
 

 
Author Lu, X.P.; Bruggeman, P.J.; Reuter, S.; Naidis, G.; Bogaerts, A.; Laroussi, M.; Keidar, M.; Robert, E.; Pouvesle, J.-M.; Liu, D.W.; Ostrikov, K.(K.) url  doi
openurl 
  Title Grand challenges in low temperature plasmas Type A1 Journal article
  Year 2022 Publication Frontiers in physics Abbreviated Journal (up)  
  Volume 10 Issue Pages 1040658-12  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Low temperature plasmas (LTPs) enable to create a highly reactive environment at near ambient temperatures due to the energetic electrons with typical kinetic energies in the range of 1 to 10 eV (1 eV = 11600K), which are being used in applications ranging from plasma etching of electronic chips and additive manufacturing to plasma-assisted combustion. LTPs are at the core of many advanced technologies. Without LTPs, many of the conveniences of modern society would simply not exist. New applications of LTPs are continuously being proposed. Researchers are facing many grand challenges before these new applications can be translated to practice. In this paper, we will discuss the challenges being faced in the field of LTPs, in particular for atmospheric pressure plasmas, with a focus on health, energy and sustainability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000878212000001 Publication Date 2022-10-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-424x ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.1 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.1  
  Call Number UA @ admin @ c:irua:192173 Serial 7267  
Permanent link to this record
 

 
Author Pandey, T.; Du, M.-H.; Parker, D.S.; Lindsay, L. pdf  doi
openurl 
  Title Origin of ultralow phonon transport and strong anharmonicity in lead-free halide perovskites Type A1 Journal article
  Year 2022 Publication Materials Today Physics Abbreviated Journal (up)  
  Volume 28 Issue Pages 100881-10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract All-inorganic lead-free halide double perovskites offer a promising avenue toward non-toxic, stable optoelec-tronic materials, properties that are missing in their prominent lead-containing counterparts. Their large ther-mopowers and high carrier mobilities also make them promising for thermoelectric applications. Here, we present a first-principles study of the lattice vibrations and thermal transport behaviors of Cs2SnI6 and gamma-CsSnI3, two prototypical compounds in this materials class. We show that conventional static zero temperature density functional theory (DFT) calculations severely underestimate the lattice thermal conductivities (kappa l) of these compounds, indicating the importance of dynamical effects. By calculating anharmonic renormalized phonon dispersions, we show that some optic phonons significantly harden with increasing temperature (T), which reduces the scattering of heat carrying phonons and enhances calculated kappa l values when compared with standard zero temperature DFT. Furthermore, we demonstrate that coherence contributions to kappa l, arising from wave like phonon tunneling, are important in both compounds. Overall, calculated kappa l with temperature-dependent inter-atomic force constants, built from particle and coherence contributions, are in good agreement with available measured data, for both magnitude and temperature dependence. Large anharmonicity combined with low phonon group velocities yield ultralow kappa l values, with room temperature values of 0.26 W/m-K and 0.72 W/m-K predicted for Cs2SnI6 and gamma-CsSnI3, respectively. We further show that the lattice dynamics of these compounds are highly anharmonic, largely mediated by rotation of the SnI6 octahedra and localized modes originating from Cs rattling motion. These thermal characteristics combined with their previously computed excellent electronic properties make these perovskites promising candidates for optoelectronic and room temperature thermoelectric applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000876484300002 Publication Date 2022-10-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2542-5293 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.5 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 11.5  
  Call Number UA @ admin @ c:irua:192139 Serial 7329  
Permanent link to this record
 

 
Author Seyedmohammadzadeh, M.; Sevik, C.; Guelseren, O. url  doi
openurl 
  Title Two-dimensional heterostructures formed by graphenelike ZnO and MgO monolayers for optoelectronic applications Type A1 Journal article
  Year 2022 Publication Physical review materials Abbreviated Journal (up)  
  Volume 6 Issue 10 Pages 104004-104013  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Two-dimensional heterostructures are an emerging class of materials for novel applications because of extensive engineering potential by tailoring intriguing properties of different layers as well as the ones arising from their interface. A systematic investigation of mechanical, electronic, and optical properties of possible heterostructures formed by bilayer structures graphenelike ZnO and MgO monolayers is presented. Different functionality of each layer makes these heterostructures very appealing for device applications. ZnO layer is convenient for electron transport in these structures, while MgO layer improves electron collection. At the outset, all of the four possible stacking configurations across the heterostructure are mechanically stable. In addition, stability analysis using phonon dispersion reveals that the AB stacking formed by placing the Mg atom on top of the O atom of the ZnO layer is also dynamically stable at zero temperature. Henceforth, we have investigated the optical properties of these stable heterostructures by applying many-body perturbation theory within the framework of GW approximation and solving the Bethe-Salpeter equation. It is demonstrated that strong excitonic effects reduce the optical band gap to the visible light spectrum range. These results show that this new two-dimensional form of ZnO/MgO heterostructures open an avenue for novel optoelectronic device applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000877514900005 Publication Date 2022-10-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.4  
  Call Number UA @ admin @ c:irua:192167 Serial 7346  
Permanent link to this record
 

 
Author Naderi Mahdei, K.; Esfahani, S.M.J.; Lebailly, P.; Dogot, T.; Van Passel, S.; Azadi, H. pdf  url
doi  openurl
  Title Environmental impact assessment and efficiency of cotton : the case of Northeast Iran Type A1 Journal article
  Year 2022 Publication Environment, development and sustainability Abbreviated Journal (up)  
  Volume Issue Pages 1-21  
  Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract Cotton is one of the important crops that play an important role in creating a livelihood for rural people in many parts of Iran. Cotton production necessitates a large amount of resources (e.g., fossil energy and agrochemicals, all of which have the potential to damage the environment in various ways). The purpose of the current study was to evaluate the environmental effects of cotton production in the South Khorasan Province of Iran. For this purpose, life cycle assessment (LCA) and data envelopment analysis (DEA) techniques have been applied to investigate the environmental impacts of cotton production. LCA is a practical method to evaluate the environment on the product flow, in which all aspects of the product life cycle are examined by a comprehensive approach. Furthermore, combining the LCA method with other managerial strategies such as DEA could allow researchers to provide decision-makers with more practical and interpretable data. The findings of the efficiency test showed that the average technical efficiency, pure technical efficiency, and scale efficiency were 0.81, 0.92, and 0.87, respectively. Respiratory inorganics (i.e., respiratory effects resulting from winter smog caused by emissions of dust, sulfur, and nitrogen oxides to air) posed the greatest environmental burden in cotton production, followed by non-renewable energy, carcinogens, and global warming. In addition, the highest effects were on human health, and then, on resources and climate change. Energy, on-system pollution, and waste played a crucial role in the environmental impacts of cotton processing. This study suggests improving farmers' knowledge toward the optimum application of chemical fertilizers, or their substitution with green fertilizers, which reduces the environmental effect of growing cotton in the area.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000826851400001 Publication Date 2022-07-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1387-585x; 1573-2975 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.9 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.9  
  Call Number UA @ admin @ c:irua:189630 Serial 7356  
Permanent link to this record
 

 
Author Vanschoenwinkel, J.; Vancauteren, M.; Van Passel, S. doi  openurl
  Title How do western European farms behave and respond to climate change? A simultaneous irrigation-crop decision model Type A1 Journal article
  Year 2022 Publication Climate change economics Abbreviated Journal (up)  
  Volume 13 Issue 4 Pages 2250009-2250038  
  Keywords A1 Journal article; Economics; Engineering Management (ENM)  
  Abstract Most farm adaptations are reactive actions that run the risk of locking farm systems into suboptimal long-term trajectories. This is especially the case with regard to water management as water scarcity will be aggravated by climate change. This paper looks into farm irrigation choices in combination with crop choices because a proper crop choice has the potential to reduce water requirements. It proposes an extended Ricardian model to capture multiple adaptation decisions explicitly. The new simultaneous irrigation-crop farm decision model uses spatially detailed farm-level data of over 18,000 European farms on irrigation and seven different crop choices. The analysis shows that larger farmers and farmers in less water-scarce regions that use irrigation are more sensitive to temperature increases than rain-fed agriculture. This might be explained by the fact that these farmers do not experience the real cost of water scarcity because of which they take less efficient decisions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000791485900001 Publication Date 2022-03-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2010-0086 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:188680 Serial 7359  
Permanent link to this record
 

 
Author Larraín, M. openurl 
  Title Recycling of plastics : linking technical, economic and policy aspects of post-consumer plastic packaging Type Doctoral thesis
  Year 2022 Publication Abbreviated Journal (up)  
  Volume Issue Pages x, 165 p.  
  Keywords Doctoral thesis; Engineering sciences. Technology; Engineering Management (ENM); Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)  
  Abstract The rise in plastic packaging production and disposal has encouraged the progress of recycling technologies and aroused policy discussion on how to increase recycling rates. However, the effect that these policy instruments will have on the development of the different recycling technologies has not been studied holistically yet. This dissertation explores how new and existing technologies will behave under the market and policy conditions observed at present and after the implementation of the policy instruments that are under discussion. The technologies that are analyzed in this thesis are mechanical recycling and thermochemical recycling of post-consumer polyolefin waste. Using a techno-economic assessment that takes into account the physical properties of the different plastic fractions and their contamination level, the study shows that both mechanical and thermochemical recycling can be profitable if oil prices remain steady or increase. Specifically, mechanical recycling will show better results than thermochemical recycling for plastic fractions with low contamination levels. On the contrary, thermochemical recycling is more profitable for fractions with a higher contamination level from which high-quality products cannot be obtained with mechanical recycling, such as PE films. Moreover, it demonstrates that besides the oil prices and sorted waste prices, waste purity and the plant capacity are the variables that influence more the net present value of thermochemical recycling and the labor cost and waste purity the ones of mechanical recycling. The thesis explores the dynamics between the stakeholders of the circular value chain and predicts the recycling rates under the implementation of several policy instruments. This is done with a supply chain equilibrium model, based on the extended producer responsibility scheme implemented in Flanders, that uses as an input the cost structures of mechanical and thermochemical recycling obtained from the techno-economic assessments. Direct interventions like recycled content standards, can decouple the recycling industry from the oil market, but in the long term, they may not present incentives to achieve recycling levels beyond the targeted amounts and thus limit technological innovation. On the contrary, economic interventions such as taxes, create economic incentives for recycling and allow fund collection from the government but leave the recycled levels dependent on external markets. Results also show that higher recycling rates does not necessarily mean better environmental performance. Therefore, when designing circular economy policies, policymakers should carefully analyze whether the intention is to increase circularity or improve the sustainability of the value chains.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:191730 Serial 7366  
Permanent link to this record
 

 
Author Tschulkow, M. openurl 
  Title A techno-environmental economic assessment of a lignin-first biorefinery : a dynamic and prospective framework for emerging technologies Type Doctoral thesis
  Year 2022 Publication Abbreviated Journal (up)  
  Volume Issue Pages 175 p.  
  Keywords Doctoral thesis; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract Novel emerging biorefinery technologies have gained interest and have the potential to tackle several sustainability challenges in our society. A lignin-first biorefinery process – reductive catalytic fractionation (RCF) – is currently under development with the aim to process wood into high-value end-products that replace highly polluting fossil oil-based products. However, such emerging technologies are not matured yet, holding a certain degree of technological, economic, and environmental uncertainty. Hence, an appropriate assessment method is required to assess techno-economic feasibility and environmental impacts of emerging uncertain technologies (e.g lignin-first RCF process). This dissertation aims to develop an integrated techno-environmental economic assessment framework to assess emerging technologies dynamically and prospectively from economic and environmental points of view. First, a techno-economic assessment (TEA) is performed to assess the economic feasibility and the most influential economic and technological parameters of the lignin-first RCF biorefinery taking the whole wood value chain into account. By making the relations across the wood value chain, the scale of the biorefinery, wood species, and output prices highly determine the economic feasibility. The economic feasibility can be reached by a sufficient capacity level which depends on wood species-specific conditions. Also, waste wood proves to be the most profitable feedstock in comparison to virgin wood. Second, an analytical real options analysis (ROA) is performed taking two correlated market uncertainties and the value of flexibility into account to identify the optimal investment decision in an RCF biorefinery. Two different investment options, separated and united investments in harvesting equipment and RCF biorefinery, are analyzed. In both scenarios, market uncertainty postpones the investment. When both investment decisions are united, the probability of investment increases in comparison to separated investments. The study reveals that RCF has the potential to stimulate investments within the wood value chain. Third, a consequential life cycle assessment (LCA) is performed to assess the carbon emissions and the environmental consequences of the lignin-first RCF process and its products. The study reveals that at the current stage RCF products have higher carbon emissions than their alternative counterparts. Several options to improve the environmental performance are discussed such as different RCF technology configurations, targeting different RCF products with the ability to replace higher polluting alternative counterparts on the markets. Other discussion points such as transportation type and the distance, (in-)direct land-use change, the use stage and disposal stages implications, and a more comprehensive environmental view of the RCF products, show the potential to improve the environmental performance of the RCF technology. Overall, the study shows that the RCF process can be environmentally desirable if the appropriate RCF configuration and products are chosen. Finally, the above-mentioned methods – techno-economic assessment, analytical real options analysis, and consequential life cycle assessment – are uniquely integrated within the newly developed integrated assessment framework. The framework has the aim to complement the shortcomings and combine the advantages of all three methods. The framework assesses emerging technologies to give predictive insights about the time-specific economic and environmental performance under the newly developed three threshold conditions: technological readiness, economic feasibility, and environmental desirability. The developed integrated assessment framework assesses dynamically and prospectively the RCF biorefinery implementation under Belgian conditions. It reveals that the economic feasibility increases and carbon emissions decrease over time. The RCF biorefinery fulfills all three threshold conditions – technological readiness, economic feasibility, and environmental desirability – consecutively. The newly developed integrated assessment framework offers decision support to several stakeholders of emerging technologies starting from low technology readiness level (TRL). Practitioners such as the technology developers, researchers, and policymakers can use the framework to evaluate emerging technologies that deal with high levels of technological, economic, and environmental uncertainties. The framework assesses emerging technologies on a detailed level to give decision-makers in-depth insights into the intertwined nature of the technological, economic, and environmental dimensions. It offers insights into the expected time-specific economic and environmental performances, potential, and challenges of the emerging technology to further improve the technology and direct R&Ds along the right path.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:188968 Serial 7369  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: