|   | 
Details
   web
Records
Author Deshmukh, S.; Sankaran, K.J.; Korneychuk, S.; Verbeeck, J.; Mclaughlin, J.; Haenen, K.; Roy, S.S.
Title Nanostructured nitrogen doped diamond for the detection of toxic metal ions Type A1 Journal article
Year 2018 Publication Electrochimica acta Abbreviated Journal (down) Electrochim Acta
Volume 283 Issue 283 Pages 1871-1878
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract This work demonstrates the applicability of one-dimensional nitrogen-doped diamond nanorods (N-DNRs) for the simultaneous electrochemical (EC) detection of Pb2+ and Cd2+ ions in an electrolyte solution. Well separated voltammetric peaks are observed for Pb2+ and Cd2+ ions using N-DNRs as a working electrode in square wave anodic stripping voltammetry measurements. Moreover, the cyclic voltammetry response of N-DNR electrodes towards the Fe(CN)(6)(/4-)/Fe(CN)(6)(/3-) redox reaction is better as compared to undoped DNR electrodes. This enhancement of EC performance in N-DNR electrodes is accounted by the increased amount of sp(2) bonded nanographitic phases, enhancing the electrical conductivity at the grain boundary (GB) regions. These findings are supported by transmission electron microscopy and electron energy loss spectroscopy studies. Consequently, the GB defect induced N-DNRs exhibit better adsorption of metal ions, which makes such samples promising candidates for next generation EC sensing devices. (C) 2018 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000441077900203 Publication Date 2018-07-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.798 Times cited 22 Open Access
Notes Sujit Deshmukh indebted to Shiv Nadar University for providing Ph. D. scholarship. The FEI Quanta SEM and Qu-Ant-EM microscope used for the TEM experiments was partly funded by the Hercules fund from the Flemish Government. S. K. and J. V. acknowledge funding from GOA project “Solarpaint” of the University of Antwerp. Kamatchi Jothiramalingam Sankaran is a Postdoctoral Fellow of the Research Foundation-Flanders (FWO). Prof. Ken Haenen acknowledges the Methusalem “NANO” network for financial support. Approved Most recent IF: 4.798
Call Number UA @ admin @ c:irua:153072 Serial 5366
Permanent link to this record
 

 
Author Lu, Y.-G.; Verbeeck, J.; Turner, S.; Hardy, A.; Janssens, S.D.; De Dobbelaere, C.; Wagner, P.; Van Bael, M.K.; Van Tendeloo, G.
Title Analytical TEM study of CVD diamond growth on TiO2 sol-gel layers Type A1 Journal article
Year 2012 Publication Diamond and related materials Abbreviated Journal (down) Diam Relat Mater
Volume 23 Issue Pages 93-99
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The early growth stages of chemical vapor deposition (CVD) diamond on a solgel TiO2 film with buried ultra dispersed diamond seeds (UDD) have been studied. In order to investigate the diamond growth mechanism and understand the role of the TiO2 layer in the growth process, high resolution transmission electron microscopy (HRTEM), energy-filtered TEM and electron energy loss spectroscopy (EELS) techniques were applied to cross sectional diamond film samples. We find evidence for the formation of TiC crystallites inside the TiO2 layer at different diamond growth stages. However, there is no evidence that diamond nucleation starts from these crystallites. Carbon diffusion into the TiO2 layer and the chemical bonding state of carbon (sp2/sp3) were both extensively investigated. We provide evidence that carbon diffuses through the TiO2 layer and that the diamond seeds partially convert to amorphous carbon during growth. This carbon diffusion and diamond to amorphous carbon conversion make the seed areas below the TiO2 layer grow and bend the TiO2 layer upwards to form the nucleation center of the diamond film. In some of the protuberances a core of diamond seed remains, covered by amorphous carbon. It is however unlikely that the remaining seeds are still active during the growth process.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000302887600017 Publication Date 2012-01-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-9635; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.561 Times cited 16 Open Access
Notes Iap; Esteem 026019; Fwo Approved Most recent IF: 2.561; 2012 IF: 1.709
Call Number UA @ lucian @ c:irua:95037UA @ admin @ c:irua:95037 Serial 111
Permanent link to this record
 

 
Author Yang, Z.Q.; Verbeeck, J.; Schryvers, D.; Tarcea, N.; Popp, J.; Rösler, W.
Title TEM and Raman characterisation of diamond micro- and nanostructures in carbon spherules from upper soils Type A1 Journal article
Year 2008 Publication Diamond and related materials Abbreviated Journal (down) Diam Relat Mater
Volume 17 Issue 6 Pages 937-943
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Carbonaceous spherules of millimeter size diameter and found in the upper soils throughout Europe are investigated by TEM, including SAED, HRTEM and EELS, and Raman spectroscopy. The spherules consist primarily of carbon and have an open cell-like internal structure. Most of the carbon appears in an amorphous state, but different morphologies of nano- and microdiamond particles have also been discovered including flake shapes. The latter observation, together with the original findings of some of these spherules in crater-like structures in the landscape and including severely deformed rocks with some spherules being embedded in the fused crust of excavated rocks, points towards unique conditions of origin for these spherules and particles, possibly of exogenic origin. (C) 2008 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000256940800005 Publication Date 2008-02-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-9635; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.561 Times cited 26 Open Access
Notes GAO project Approved Most recent IF: 2.561; 2008 IF: 2.092
Call Number UA @ lucian @ c:irua:68518 Serial 3474
Permanent link to this record
 

 
Author Degutis, G.; Pobedinskas, P.; Turner, S.; Lu, Y.-G.; Al Riyami, S.; Ruttens, B.; Yoshitake, T.; D'Haen, J.; Haenen, K.; Verbeeck, J.; Hardy, A.; Van Bael, M.K.
Title CVD diamond growth from nanodiamond seeds buried under a thin chromium layer Type A1 Journal article
Year 2016 Publication Diamond and related materials Abbreviated Journal (down) Diam Relat Mater
Volume 64 Issue 64 Pages 163-168
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract This work presents a morphological and structural analysis of CVD diamond growth on silicon from nanodiamond seeds covered by a 50 nm thick chromium layer. The role of carbon diffusion as well as chromium and carbon silicide formation is analyzed. The local diamond environment is investigated by scanning transmission electron microscopy in combination with electron energy-loss spectroscopy. The evolution of the diamond phase composition (sp3/sp2) is evaluated by micro-Raman spectroscopy. Raman and X-ray diffraction analysis are used to identify the interfacial phases formed during CVD growth. Based upon the observed morphological and structural evolution, a diamond growth model from nanodiamond seeds buried beneath a thin Cr layer is proposed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000374608100020 Publication Date 2016-02-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-9635 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.561 Times cited 11 Open Access
Notes The authors acknowledge financial support provided by Research Program FWO G.056.810 and G0044.13N. A.H. and M.K.V.B are grateful to Hercules Foundation Flanders for financial support. P.P. and S.T. are Postdoctoral Fellows of the Research Foundation – Flanders (FWO). The Titan microscope used for this work was partially funded by the Hercules Foundation. Approved Most recent IF: 2.561
Call Number c:irua:133624UA @ admin @ c:irua:133624 Serial 4091
Permanent link to this record
 

 
Author Deshmukh, S.; Sankaran, K.J.; Srinivasu, K.; Korneychuk, S.; Banerjee, D.; Barman, A.; Bhattacharya, G.; Phase, D.M.; Gupta, M.; Verbeeck, J.; Leou, K.C.; Lin, I.N.; Haenen, K.; Roy, S.S.
Title Local probing of the enhanced field electron emission of vertically aligned nitrogen-doped diamond nanorods and their plasma illumination properties Type A1 Journal article
Year 2018 Publication Diamond and related materials Abbreviated Journal (down) Diam Relat Mater
Volume 83 Issue 83 Pages 118-125
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A detailed conductive atomic force microscopic investigation is carried out to directly image the electron emission behavior for nitrogen-doped diamond nanorods (N-DNRs). Localized emission measurements illustrate uniform distribution of high-density electron emission sites from N-DNRs. Emission sites coupled to nano graphitic phases at the grain boundaries facilitate electron transport and thereby enhance field electron emission from N-DNRs, resulting in a device operation at low turn-on fields of 6.23 V/mu m, a high current density of 1.94 mA/cm(2) (at an applied field of 11.8 V/mu m) and a large field enhancement factor of 3320 with a long lifetime stability of 980 min. Moreover, using N-DNRs as cathodes, a microplasma device that can ignite a plasma at a low threshold field of 390 V/mm achieving a high plasma illumination current density of 3.95 mA/cm2 at an applied voltage of 550 V and a plasma life-time stability for a duration of 433 min was demonstrated.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000430767200017 Publication Date 2018-02-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-9635 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.561 Times cited 9 Open Access Not_Open_Access
Notes ; S. Deshmulch, D. Banerjee and G. Bhattacharya are indebted to Shiv Nadar University for providing Ph.D. scholarships. K.J. Sankaran and K. Haenen like to thank the financial support of the Research Foundation Flanders (FWO) via Research Grant 12I8416N and Research Project 1519817N, and the Methusalem “NANO” network. K.J. Sankaran is a Postdoctoral Fellow of the Research Foundation-Flanders (FWO). The Qu-Ant-EM microscope used for the TEM experiments was partly funded by the Hercules fund from the Flemish Government. S. Korneychuk and J. Verbeeck acknowledge funding from GOA project “Solarpaint” of the University of Antwerp. ; Approved Most recent IF: 2.561
Call Number UA @ lucian @ c:irua:151609UA @ admin @ c:irua:151609 Serial 5030
Permanent link to this record
 

 
Author Hasanli, N.; Gauquelin, N.; Verbeeck, J.; Hadermann, J.; Hayward, M.A.
Title Small-moment paramagnetism and extensive twinning in the topochemically reduced phase Sr2ReLiO5.5 Type A1 Journal article
Year 2018 Publication Journal of the Chemical Society : Dalton transactions Abbreviated Journal (down) Dalton T
Volume 47 Issue 44 Pages 15783-15790
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Reaction of the cation-ordered double perovskite Sr2ReLiO6 with dilute hydrogen at 475 degrees C leads to the topochemical deintercalation of oxide ions from the host lattice and the formation of a phase of composition Sr2ReLiO5.5, as confirmed by thermogravimetric and EELS data. A combination of neutron and electron diffraction data reveals the reduction process converts the -Sr2O2-ReLiO4-Sr2O2-ReLiO4- stacking sequence of the parent phase into a -Sr2O2-ReLiO3-Sr2O2-ReLiO4-, partially anion-vacant ordered sequence. Furthermore a combination of electron diffraction and imaging reveals Sr2ReLiO5.5 exhibits extensive twinning – a feature which can be attributed to the large, anisotropic volume expansion of the material on reduction. Magnetisation data reveal a strongly reduced moment of (eff) = 0.505(B) for the d(1) Re6+ centres in the phase, suggesting there remains a large orbital component to the magnetism of the rhenium centres, despite their location in low symmetry coordination environments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000450208000019 Publication Date 2018-10-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1477-9226 ISBN Additional Links UA library record; WoS full record
Impact Factor 4.029 Times cited Open Access Not_Open_Access
Notes Experiments at the Diamond Light Source were performed as part of the Block Allocation Group award “Oxford Solid State Chemistry BAG to probe composition-structure-property relationships in solids” (EE13284). Experiments at the ISIS pulsed neutron facility were supported by a beam time allocation from the STFC. NH acknowledges funding from the “State Programme on Education of Azerbaijani Youth Abroad in 2007-2015” by the Ministry of Education of Azerbaijan. J. V. and N. G. acknowledge funding through the GOA project “Solarpaint” of the University of Antwerp. The microscope used in this work was partly funded by the Hercules Fund from the Flemish Government. Approved Most recent IF: 4.029
Call Number EMAT @ emat @c:irua:155771 Serial 5137
Permanent link to this record
 

 
Author Li, Y.; Tan, H.; Lebedev, O.; Verbeeck, J.; Biermans, E.; Van Tendeloo, G.; Su, B.-L.
Title Insight into the growth of multiple branched MnOOH nanorods Type A1 Journal article
Year 2010 Publication Crystal growth & design Abbreviated Journal (down) Cryst Growth Des
Volume 10 Issue 7 Pages 2969-2976
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Multiple branched manganese oxide hydroxide (MnOOH) nanorods prepared by a hydrothermal process were extensively studied by transmission electron microscopy (TEM). A model of the branch formation is proposed together with a study of the interface structure. The sword-like tip plays a crucial role for the nanorods to form different shapes. Importantly, the branching occurs at an angle of around either 57 degrees or 123 degrees. Specifically, a (111) twin plane can only be formed at the interface with a 123 degrees angle. The interfaces formed with a 57 degrees angle usually contain edge dislocations. Electron energy loss spectroscopy (EELS) demonstrates that the whole crystal has a uniform chemical composition. Interestingly, an epitaxial growth of Mn3O4 at the radial surface was also observed under electron beam irradiation; this is because of the rough purification of the products. The proposed mechanism is expected to shed light on the branched/dendrite nanostructure growth and to provide opportunities for further novel nanomaterial structure growth and design.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000279422700027 Publication Date 2010-06-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1528-7483;1528-7505; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.055 Times cited 41 Open Access
Notes Fwo; Esteem 026019 Approved Most recent IF: 4.055; 2010 IF: 4.390
Call Number UA @ lucian @ c:irua:83886UA @ admin @ c:irua:83886 Serial 1672
Permanent link to this record
 

 
Author Drijkoningen, S.; Pobedinskas, P.; Korneychuk, S.; Momot, A.; Balasubramaniam, Y.; Van Bael, M.K.; Turner, S.; Verbeeck, J.; Nesladekt, M.; Haenen, K.
Title On the Origin of Diamond Plates Deposited at Low Temperature Type A1 Journal article
Year 2017 Publication Crystal growth & design Abbreviated Journal (down) Cryst Growth Des
Volume 17 Issue 8 Pages 4306-4314
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The crucial requirement for diamond growth at low temperatures, enabling a wide range of new applications, is a high plasma density at a low gas pressure, which leads to a low thermal load onto sensitive substrate materials. While these conditions are not within reach for resonance cavity plasma systems, linear antenna microwave delivery systems allow the deposition of high quality diamond films at temperatures around 400 degrees C and at pressures below 1 mbar. In this work the codeposition of high quality plates and octahedral diamond grains in nanocrystalline films is reported. In contrast to previous reports claiming the need for high temperatures (T >= 850 degrees C), low temperatures (320 degrees C <= T <= 410 degrees C) were sufficient to deposit diamond plate structures. Cross-sectional high resolution transmission electron microscopy studies show that these plates are faulty cubic diamond terminated by large {111} surface facets with very little sp(2) bonded carbon in the grain boundaries. Raman and electron energy loss spectroscopy studies confirm a high diamond quality, above 93% sp(3) carbon content. Three potential mechanisms, that can account for the initial development of the observed plates rich with stacking faults, and are based on the presence of impurities, are proposed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000407089600031 Publication Date 2017-06-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1528-7483 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.055 Times cited 23 Open Access Not_Open_Access
Notes ; The Research Foundation – Flanders (FWO) is gratefully acknowledged for financial support in the form of the Postdoctoral Fellowships of P.P. and S.T., contract G.0044.13N “Charge ordering” (S.K., J.V.), the Methusalem “Nano” network, and the Hercules-linear antenna and Raman equipment. ; Approved Most recent IF: 4.055
Call Number UA @ lucian @ c:irua:145735UA @ admin @ c:irua:145735 Serial 4746
Permanent link to this record
 

 
Author Verbeeck, J.; Guzzinati, G.; Clark, L.; Juchtmans, R.; Van Boxem, R.; Tian, H.; Béché, A.; Lubk, A.; Van Tendeloo, G.
Title Shaping electron beams for the generation of innovative measurements in the (S)TEM Type A1 Journal article
Year 2014 Publication Comptes rendus : physique Abbreviated Journal (down) Cr Phys
Volume 15 Issue 2-3 Pages 190-199
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In TEM, a typical goal consists of making a small electron probe in the sample plane in order to obtain high spatial resolution in scanning transmission electron microscopy. In order to do so, the phase of the electron wave is corrected to resemble a spherical wave compensating for aberrations in the magnetic lenses. In this contribution, we discuss the advantage of changing the phase of an electron wave in a specific way in order to obtain fundamentally different electron probes opening up new applications in the (S)TEM. We focus on electron vortex states as a specific family of waves with an azimuthal phase signature and discuss their properties, production and applications. The concepts presented here are rather general and also different classes of probes can be obtained in a similar fashion, showing that electron probes can be tuned to optimize a specific measurement or interaction.
Address
Corporate Author Thesis
Publisher Place of Publication Paris Editor
Language Wos 000334013600009 Publication Date 2014-02-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1631-0705; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.048 Times cited 22 Open Access
Notes Vortex ECASJO_; Approved Most recent IF: 2.048; 2014 IF: 2.035
Call Number UA @ lucian @ c:irua:116946UA @ admin @ c:irua:116946 Serial 2992
Permanent link to this record
 

 
Author Bigiani, L.; Gasparotto, A.; Maccato, C.; Sada, C.; Verbeeck, J.; Andreu, T.; Morante, J.R.; Barreca, D.
Title Dual improvement of beta-MnO₂ oxygen evolution electrocatalysts via combined substrate control and surface engineering Type A1 Journal article
Year 2020 Publication Chemcatchem Abbreviated Journal (down) Chemcatchem
Volume Issue Pages 1-10
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The development of catalysts with high intrinsic activity towards the oxygen evolution reaction (OER) plays a critical role in sustainable energy conversion and storage. Herein, we report on the development of efficient (photo)electrocatalysts based on functionalized MnO(2)systems. Specifically,beta-MnO(2)nanostructures grown by plasma enhanced-chemical vapor deposition on fluorine-doped tin oxide (FTO) or Ni foams were decorated with Co(3)O(4)or Fe(2)O(3)nanoparticles by radio frequency sputtering. Upon functionalization, FTO-supported materials yielded a performance increase with respect to bare MnO2, with current densities at 1.65 Vvs. the reversible hydrogen electrode (RHE) up to 3.0 and 3.5 mA/cm(2)in the dark and under simulated sunlight, respectively. On the other hand, the use of highly porous and conductive Ni foam substrates enabled to maximize cooperative interfacial effects between catalyst components. The best performing Fe2O3/MnO(2)system provided a current density of 17.9 mA/cm(2)at 1.65 Vvs. RHE, an overpotential as low as 390 mV, and a Tafel slope of 69 mV/decade under dark conditions, comparing favorably with IrO(2)and RuO(2)benchmarks. Overall, the control of beta-MnO2/substrate interactions and the simultaneous surface property engineering pave the way to an efficient energy generation from abundant natural resources.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000571229000001 Publication Date 2020-09-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1867-3880; 1867-3899 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.5 Times cited 5 Open Access Not_Open_Access
Notes ; This work has been financially supported by Padova University DOR 2017-2019, P-DiSC #03BIRD2016-UNIPD and #03BIRD2018-UNIPD projects. A.G. acknowledges AMGA Foundation and INSTM Consortium. J.V. gratefully acknowledges funding from the GOA project “Solarpaint” of the University of Antwerp and the European Union's Horizon 2020 research and innovation programme under grant agreement No 823717-ESTEEM3. ; esteem3TA; esteem3reported Approved Most recent IF: 4.5; 2020 IF: 4.803
Call Number UA @ admin @ c:irua:171949 Serial 6493
Permanent link to this record
 

 
Author Turner, S.; Verbeeck, J.; Ramezanipour, F.; Greedan, J.E.; Van Tendeloo, G.; Botton, G.A.
Title Atomic resolution coordination mapping in Ca2FeCoO5 brownmillerite by spatially resolved electron energy-loss spectroscopy Type A1 Journal article
Year 2012 Publication Chemistry of materials Abbreviated Journal (down) Chem Mater
Volume 24 Issue 10 Pages 1904-1909
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Using a combination of high-angle annular dark field scanning transmission electron microscopy and atomically resolved electron energy-loss spectroscopy at high energy resolution in an aberration-corrected electron microscope, we demonstrate the capability of coordination mapping in complex oxides. Brownmillerite compound Ca2FeCoO5, consisting of repetitive octahedral and tetrahedral coordination layers with Fe and Co in a fixed 3+ valency, is selected to demonstrate the principle of atomic resolution coordination mapping. Analysis of the Co-L2,3 and the Fe-L2,3 edges shows small variations in the fine structure that can be specifically attributed to Co/Fe in tetrahedral or in octahedral coordination. Using internal reference spectra, we show that the coordination of the Fe and Co atoms in the compound can be mapped at atomic resolution.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000304237500024 Publication Date 2012-04-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 33 Open Access
Notes A.M. Abakumov is thanked for fruitful discussions. S.T. gratefully acknowledges the Fund for Scientific Research Flanders (FWO). J.E.G. and GAB. acknowledge the support of the NSERC of Canada through Discovery Grants. The Canadian Centre for Electron Microscopy is a National Facility supported by NSERC and McMaster University and was funded by the Canada Foundation for Innovation and the Ontario Government. Part of this work was supported by funding from the European Research Council under the FP7, ERC Grant N 246791 COUNTATOMS and ERC Starting Grant N 278510 VORTEX. The EMAT microscope is partially funded by the Hercules fund of the Flemish Government. ECASJO_; Approved Most recent IF: 9.466; 2012 IF: 8.238
Call Number UA @ lucian @ c:irua:98379UA @ admin @ c:irua:98379 Serial 175
Permanent link to this record
 

 
Author Morozov, V.A.; Raskina, M.V.; Lazoryak, B.I.; Meert, K.W.; Korthout, K.; Smet, P.F.; Poelman, D.; Gauquelin, N.; Verbeeck, J.; Abakumov, A.M.; Hadermann, J.;
Title Crystal Structure and Luminescent Properties of R2-xEux(MoO4)(3) (R = Gd, Sm) Red Phosphors Type A1 Journal article
Year 2014 Publication Chemistry of materials Abbreviated Journal (down) Chem Mater
Volume 26 Issue 24 Pages 7124-7136
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The R-2(MoO4)(3) (R = rare earth elements) molybdates doped with Eu3+ cations are interesting red-emitting materials for display and solid-state lighting applications. The structure and luminescent properties of the R2-xEux(MoO4)(3) (R = Gd, Sm) solid solutions have been investigated as a function of chemical composition and preparation conditions. Monoclinic (alpha) and orthorhombic (beta') R2-xEux(MoO4)(3) (R = Gd, Sm; 0 <= x <= 2) modifications were prepared by solid-state reaction, and their structures were investigated using synchrotron powder X-ray diffraction and transmission electron microscopy. The pure orthorhombic beta'-phases could be synthesized only by quenching from high temperature to room temperature for Gd2-xEux(MoO4)(3) in the Eu3+-rich part (x > 1) and for all Sm2-xEux(MoO4)(3) solid solutions. The transformation from the alpha-phase to the beta'-phase results in a notable increase (similar to 24%) of the unit cell volume for all R2-xEux(MoO4)(3) (R = Sm, Gd) solid solutions. The luminescent properties of all R2-xEux(MoO4)(3) (R = Gd, Sm; 0 <= x <= 2) solid solutions were measured, and their optical properties were related to their structural properties. All R2-xEux(MoO4)(3) (R = Gd, Sm; 0 <= x <= 2) phosphors emit intense red light dominated by the D-5(0)-> F-7(2) transition at similar to 616 nm. However, a change in the multiplet splitting is observed when switching from the monoclinic to the orthorhombic structure, as a consequence of the change in coordination polyhedron of the luminescent ion from RO8 to RO7 for the alpha- and beta'-modification, respectively. The Gd2-xEux(MoO4)(3) solid solutions are the most efficient emitters in the range of 0 < x < 1.5, but their emission intensity is comparable to or even significantly lower than that of Sm2-xEux(MoO4)(3) for higher Eu3+ concentrations (1.5 <= x <= 1.75). Electron energy loss spectroscopy (EELS) measurements revealed the influence of the structure and element content on the number and positions of bands in the ultraviolet-visible-infrared regions of the EELS spectrum.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000347139700027 Publication Date 2014-11-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 24 Open Access
Notes Fwo G039211n; G004413n; 278510 Vortex ECASJO_; Approved Most recent IF: 9.466; 2014 IF: 8.354
Call Number UA @ lucian @ c:irua:122829UA @ admin @ c:irua:122829 Serial 558
Permanent link to this record
 

 
Author Burriel, M.; Casa-Cabanas, M.; Zapata, J.; Tan, H.; Verbeeck, J.; Solis, C.; Roqueta, J.; Skinner, S.J.; Kilner, J.A.; Van Tendeloo, G.; Santiso, J.
Title Influence of the microstructure on the high-temperature transport properties of GdBaCo2O5.5+\delta epitaxial films Type A1 Journal article
Year 2010 Publication Chemistry of materials Abbreviated Journal (down) Chem Mater
Volume 22 Issue 19 Pages 5512-5520
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Epitaxial thin films of GdBaCo2O5.5+δ (GBCO) grown by pulsed laser deposition have been studied as a function of deposition conditions. The variation in film structure, domain orientation, and microstructure upon deviations in the cation composition have been correlated with the charge transport properties of the films. The epitaxial GBCO films mainly consist of single- and double-perovskite regions that are oriented in different directions depending on the deposition temperature. Additionally, cobalt depletion induces the formation of a high density of stacking defects in the films, consisting of supplementary GdO planes along the c-axis of the material. The presence of such defects progressively reduces the electrical conductivity. The films closer to the stoichiometric composition have shown p-type electronic conductivity at high pO2 with values as high as 800 S/cm at 330 °C in 1 atm O2, and with a pO2 power dependence with an exponent as low as 1/25, consistent with the behavior reported for bulk GBCO. These values place GBCO thin films as a very promising material to be applied as cathodes in intermediate temperature solid oxide fuel cells.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000282471000013 Publication Date 2010-09-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 17 Open Access
Notes Fwo; Esteem 026019 Approved Most recent IF: 9.466; 2010 IF: 6.400
Call Number UA @ lucian @ c:irua:85412UA @ admin @ c:irua:85412 Serial 1648
Permanent link to this record
 

 
Author Morozov, V.A.; Lazoryak, B.I.; Shmurak, S.Z.; Kiselev, A.P.; Lebedev, O.I.; Gauquelin, N.; Verbeeck, J.; Hadermann, J.; Van Tendeloo, G.
Title Influence of the structure on the properties of NaxEuy(MoO4)z red phosphors Type A1 Journal article
Year 2014 Publication Chemistry of materials Abbreviated Journal (down) Chem Mater
Volume 26 Issue 10 Pages 3238-3248
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Scheelite related compounds (A',A '')(n)[(B',B '')O-4](m) with B', B '' = W and/or Mo are promising new materials for red phosphors in pc-WLEDs (phosphor-converted white-light-emitting-diode) and solid-state lasers. Cation substitution in CaMoO4 of Ca2+ by the combination of Na+ and Eu3+, with the creation of A cation vacancies, has been investigated as a factor for controlling the scheelite-type structure and the luminescent properties. Na5Eu(MoO4)(4) and NaxEu(2-x)/33+square(2-x)/3MoO4 (0.138 <= x <= 0.5) phases with a scheelite-type structure were synthesized by the solid state method; their structural characteristics were investigated using transmission electron microscopy. Contrary to powder synchrotron X-ray diffraction before, the study by electron diffraction and high resolution transmission electron microscopy in this paper revealed that Na0.286Eu0.571MoO4 has a (3 + 2)D incommensurately modulated structure and that (3 + 2)D incommensurately modulated domains are present in Na0.200Eu0.600MoO4. It also confirmed the (3 + 1)D incommensurately modulated character of Na(0.138)Eu(0.621)Mo04. The luminescent properties of all phases under near-ultraviolet (n-UV) light have been investigated. The excitation spectra of these phosphors show the strongest absorption at about 395 nm, which matches well with the commercially available n-UV-emitting GaN-based LED chip. The emission spectra indicate an intense red emission due to the D-5(0) -> F-7(2) transition of Eu3+, with local minima in the intensity at Na0.286Eu0.571MoO4 and Na0.200Eu0.600MoO4 for similar to 613 nm and similar to 616 nm bands. The phosphor Na5Eu(MoO4)(4) shows the brightest red light emission among the phosphors in the Na2MoO4-Eu2/3MoO4 system and the maximum luminescence intensity of Na5Eu(MoO4)(4) (lambda(ex) = 395 nm) in the D-5(0) -> F-7(2) transition region is close to that of the commercially used red phosphor YVO4:Eu3+ (lambda(ex) = 326 nm). Electron energy loss spectroscopy measurements revealed the influence of the structure and Na/Eu cation distribution on the number and positions of bands in the UV-optical-infrared regions of the EELS spectrum.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000336637000028 Publication Date 2014-05-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 53 Open Access
Notes Fwo G039211n; Fwo G004413n; 278510 Vortex ECASJO_; Approved Most recent IF: 9.466; 2014 IF: 8.354
Call Number UA @ lucian @ c:irua:117765UA @ admin @ c:irua:117765 Serial 1652
Permanent link to this record
 

 
Author Morozov, V.A.; Arakcheeva, A.V.; Pattison, P.; Meert, K.W.; Smet, P.F.; Poelman, D.; Gauquelin, N.; Verbeeck, J.; Abakumov, A.M.; Hadermann, J.
Title KEu(MoO4)2 : polymorphism, structures, and luminescent properties Type A1 Journal article
Year 2015 Publication Chemistry of materials Abbreviated Journal (down) Chem Mater
Volume 27 Issue 27 Pages 5519-5530
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In this paper, with the example of two different polymorphs of KEu(MoO4)2, the influence of the ordering of the A-cations on the luminescent properties in scheelite related compounds (A′,A″)n[(B′,B″)O4]m is investigated. The polymorphs were synthesized using a solid state method. The study confirmed the existence of only two polymorphic forms at annealing temperature range 9231203 K and ambient pressure: a low temperature anorthic α-phase and a monoclinic high temperature β-phase with an incommensurately modulated structure. The structures of both polymorphs were solved using transmission electron microscopy and refined from synchrotron powder X-ray diffraction data. The monoclinic β-KEu(MoO4)2 has a (3+1)-dimensional incommensurately modulated structure (superspace group I2/b(αβ0)00, a = 5.52645(4) Å, b = 5.28277(4) Å, c = 11.73797(8) Å, γ = 91.2189(4)o, q = 0.56821(2)a*0.12388(3)b*), whereas the anorthic α-phase is (3+1)-dimensional commensurately modulated (superspace group I1̅(αβγ)0, a = 5.58727(22) Å, b = 5.29188(18)Å, c = 11.7120(4) Å, α = 90.485(3)o, β = 88.074(3)o, γ = 91.0270(23)o, q = 1/2a* + 1/2c*). In both cases the modulation arises due to Eu/K cation ordering at the A site: the formation of a 2-dimensional Eu3+ network is characteristic for the α-phase, while a 3-dimensional Eu3+-framework is observed for the β-phase structure. The luminescent properties of KEu(MoO4)2 samples prepared under different annealing conditions were measured, and the relation between their optical properties and their structures is discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000360323700011 Publication Date 2015-07-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 26 Open Access
Notes 278510 Vortex; Fwo G039211n; G004413n ECASJO_; Approved Most recent IF: 9.466; 2015 IF: 8.354
Call Number c:irua:127244 Serial 3537
Permanent link to this record
 

 
Author Eckert, M.; Mortet, V.; Zhang, L.; Neyts, E.; Verbeeck, J.; Haenen, ken; Bogaerts, A.
Title Theoretical investigation of grain size tuning during prolonged bias-enhanced nucleation Type A1 Journal article
Year 2011 Publication Chemistry of materials Abbreviated Journal (down) Chem Mater
Volume 23 Issue 6 Pages 1414-1423
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this paper, the effects of prolonged bias-enhanced nucleation (prolonged BEN) on the growth mechanisms of diamond are investigated by molecular dynamics (MD) and combined MD-Metropolis Monte Carlo (MD-MMC) simulations. First, cumulative impacts of CxHy+ and Hx+ on an a-C:H/nanodiamond composite were simulated; second, nonconsecutive impacts of the dominant ions were simulated in order to understand the observed phenomena in more detail. As stated in the existing literature, the growth of diamond structures during prolonged BEN is a process that takes place below the surface of the growing film. The investigation of the penetration behavior of CxHy+ and Hx+ species shows that the carbon-containing ions remain trapped within this amorphous phase where they dominate mechanisms like precipitation of sp3 carbon clusters. The H+ ions, however, penetrate into the crystalline phase at high bias voltages (>100 V), destroying the perfect diamond structure. The experimentally measured reduction of grain sizes at high bias voltage, reported in the literature, might thus be related to penetrating H+ ions. Furthermore, the CxHy+ ions are found to be the most efficient sputtering agents, preventing the build up of defective material.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000288291400011 Publication Date 2011-02-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 9 Open Access
Notes Iwt; Fwo; Esteem 026019; Iap Approved Most recent IF: 9.466; 2011 IF: 7.286
Call Number UA @ lucian @ c:irua:87642 Serial 3605
Permanent link to this record
 

 
Author Marchetti, A.; Saniz, R.; Krishnan, D.; Rabbachin, L.; Nuyts, G.; De Meyer, S.; Verbeeck, J.; Janssens, K.; Pelosi, C.; Lamoen, D.; Partoens, B.; De Wael, K.
Title Unraveling the Role of Lattice Substitutions on the Stabilization of the Intrinsically Unstable Pb2Sb2O7Pyrochlore: Explaining the Lightfastness of Lead Pyroantimonate Artists’ Pigments Type A1 Journal article
Year 2020 Publication Chemistry Of Materials Abbreviated Journal (down) Chem Mater
Volume 32 Issue 7 Pages 2863-2873
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract The pyroantimonate pigments Naples yellow and lead tin antimonate yellow are recognized as some of the most stable synthetic yellow pigments in the history of art. However, this exceptional lightfastness is in contrast with experimental evidence suggesting that this class of mixed oxides is of semiconducting nature. In this study the electronic structure and light-induced behavior of the lead pyroantimonate pigments were determined by means of a combined multifaceted analytical and computational approach (photoelectrochemical measurements, UV-vis diffuse reflectance spectroscopy, STEM-EDS, STEM-HAADF, and density functional theory calculations). The results demonstrate both the semiconducting nature and the lightfastness of these pigments. Poor optical absorption and minority carrier mobility are the main properties responsible for the observed stability. In addition, novel fundamental insights into the role played by Na atoms in the stabilization of the otherwise intrinsically unstable Pb2Sb2O7 pyrochlore were obtained.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000526394000016 Publication Date 2020-04-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.6 Times cited 8 Open Access OpenAccess
Notes Universiteit Antwerpen; Belgian Federal Science Policy Office; Approved Most recent IF: 8.6; 2020 IF: 9.466
Call Number EMAT @ emat @c:irua:168819 Serial 6363
Permanent link to this record
 

 
Author Lu, Y.-G.; Turner, S.; Ekimov, E.A.; Verbeeck, J.; Van Tendeloo, G.
Title Boron-rich inclusions and boron distribution in HPHT polycrystalline superconducting diamond Type A1 Journal article
Year 2015 Publication Carbon Abbreviated Journal (down) Carbon
Volume 86 Issue 86 Pages 156-162
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Polycrystalline boron-doped superconducting diamond, synthesized at high pressure and high temperature (HPHT) via a reaction of a single piece of crystalline boron with monolithic graphite, has been investigated by analytical transmission electron microscopy. The local boron distribution and boron environment have been studied by a combination of (scanning) transmission electron microscopy ((S)TEM) and spatially resolved electron energy-loss spectroscopy (EELS). High resolution TEM imaging and EELS elemental mapping have established, for the first time, the presence of largely crystalline diamond-diamond grain boundaries within the material and have evidenced the presence of substitutional boron dopants within individual diamond grains. Confirmation of the presence of substitutional B dopants has been obtained through comparison of acquired boron K-edge EELS fine structures with known references. This confirmation is important to understand the origin of superconductivity in polycrystalline B-doped diamond. In addition to the substitutional boron doping, boron-rich inclusions and triple-points, both amorphous and crystalline, with chemical compositions close to boron carbide B4C, are evidenced. (C) 2015 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000352922700019 Publication Date 2015-01-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.337 Times cited 20 Open Access
Notes FWO; 246791 COUNTATOMS; 278510 VORTEX; Hercules ECASJO_; Approved Most recent IF: 6.337; 2015 IF: 6.196
Call Number c:irua:125994UA @ admin @ c:irua:125994 Serial 250
Permanent link to this record
 

 
Author Afanasov, I.M.; Shornikova, O.N.; Kirilenko, D.A.; Vlasov, I.I.; Zhang, L.; Verbeeck, J.; Avdeev, V.V.; Van Tendeloo, G.
Title Graphite structural transformations during intercalation by HNO3 and exfoliation Type L1 Letter to the editor
Year 2010 Publication Carbon Abbreviated Journal (down) Carbon
Volume 48 Issue 6 Pages 1862-1865
Keywords L1 Letter to the editor; Electron microscopy for materials research (EMAT)
Abstract Expandable graphite of two types was synthesized by (1) hydrolysis of graphite nitrate of II stage and (2) anodic polarization of graphite in 60% HNO3. Exfoliated graphite samples were produced by thermal shock of expandable graphite samples in air at 900 °C. A comparative study of microstructural distinctions of both expandable and exfoliated graphite samples was carried out using X-ray diffraction, Raman spectroscopy, electron energy loss spectroscopy and high resolution transmission electron microscopy.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000276132800021 Publication Date 2010-02-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.337 Times cited 43 Open Access
Notes Approved Most recent IF: 6.337; 2010 IF: 4.896
Call Number UA @ lucian @ c:irua:82315UA @ admin @ c:irua:82315 Serial 1379
Permanent link to this record
 

 
Author Van Dijck, J.G.; Mampuys, P.; Ching, H.Y.V.; Krishnan, D.; Baert, K.; Hauffman, T.; Verbeeck, J.; Van Doorslaer, S.; Maes, B.U.W.; Dorbec, M.; Buekenhoudt, A.; Meynen, V.
Title Synthesis – properties correlation and the unexpected role of the titania support on the Grignard surface modification Type A1 Journal article
Year 2020 Publication Applied Surface Science Abbreviated Journal (down) Appl Surf Sci
Volume 527 Issue Pages 146851-17
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); Organic synthesis (ORSY); Applied Electrochemistry & Catalysis (ELCAT)
Abstract While the impact of reaction conditions on surface modification with Grignard reactants has been studied for silica supports, such information is absent for metal oxides like titania. Differences between modified titania and silica are observed, making it paramount to explore the reaction mechanism. A detailed study on the impact of the reaction conditions is reported, with a focus on the chain length of the alkyl Grignard reactant, its concentration, the reaction time and temperature, and the type of titania support. While the increase in the chain length reduces the amount of organic groups on the surface, the concentration, time and temperature show little/no influence on the modification degree. However, the type of titania support used and the percentage of amorphous phase present has a significant impact on the amount of grafted groups. Even though the temperature and concentration show no clear impact on the modification degree, they can cause changes in the surface hydroxyl population, which are thus not linked to the modification degree. Furthermore, the titania support is reduced during functionalization. This reduction dependents on the reaction temperature, the titania support and the chain length of the Grignard reactant. Similarly, this reduction is not linked to the modification degree.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000564205300003 Publication Date 2020-06-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.7 Times cited 5 Open Access OpenAccess
Notes ; The FWO (Fonds Wetenschappelijk Onderzoek) is gratefully acknowledged for the VITO-FWO grant of fellow Jeroen G. Van Dijck (11W9416N) and the financial support granted in project GO12712N. The E.U. is acknowledged for H.Y. Vincent Ching's H2020-MSCA-IF (grant number 792946, iSPY). Dileep Krishnan and Johan Verbeeck acknowledge funding from GOA project “solarpaint” of the University of Antwerp. ; Approved Most recent IF: 6.7; 2020 IF: 3.387
Call Number UA @ admin @ c:irua:169722 Serial 6712
Permanent link to this record
 

 
Author Jannis, D.; Müller-Caspary, K.; Béché, A.; Verbeeck, J.
Title Coincidence Detection of EELS and EDX Spectral Events in the Electron Microscope Type A1 Journal article
Year 2021 Publication Applied Sciences-Basel Abbreviated Journal (down) Appl Sci-Basel
Volume 11 Issue 19 Pages 9058
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Recent advances in the development of electron and X-ray detectors have opened up the possibility to detect single events from which its time of arrival can be determined with nanosecond resolution. This allows observing time correlations between electrons and X-rays in the transmission electron microscope. In this work, a novel setup is described which measures individual events using a silicon drift detector and digital pulse processor for the X-rays and a Timepix3 detector for the electrons. This setup enables recording time correlation between both event streams while at the same time preserving the complete conventional electron energy loss (EELS) and energy dispersive X-ray (EDX) signal. We show that the added coincidence information improves the sensitivity for detecting trace elements in a matrix as compared to conventional EELS and EDX. Furthermore, the method allows the determination of the collection efficiencies without the use of a reference sample and can subtract the background signal for EELS and EDX without any prior knowledge of the background shape and without pre-edge fitting region. We discuss limitations in time resolution arising due to specificities of the silicon drift detector and discuss ways to further improve this aspect.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000710160300001 Publication Date 2021-09-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2076-3417 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.679 Times cited 9 Open Access OpenAccess
Notes Fonds Wetenschappelijk Onderzoek, G042920 ; Horizon 2020 Framework Programme, 101017720 ; Helmholtz-Fonds, VH-NG-1317 ; Approved Most recent IF: 1.679
Call Number EMAT @ emat @c:irua:183336 Serial 6821
Permanent link to this record
 

 
Author Jungbauer, M.; Huehn, S.; Egoavil, R.; Tan, H.; Verbeeck, J.; Van Tendeloo, G.; Moshnyaga, V.
Title Atomic layer epitaxy of Ruddlesden-Popper SrO(SrTiO3)n films by means of metalorganic aerosol deposition Type A1 Journal article
Year 2014 Publication Applied physics letters Abbreviated Journal (down) Appl Phys Lett
Volume 105 Issue 25 Pages 251603
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We report an atomic layer epitaxial growth of Ruddlesden-Popper (RP) thin films of SrO(SrTiO3)(n) (n = infinity, 2, 3, 4) by means of metalorganic aerosol deposition (MAD). The films are grown on SrTiO3(001) substrates by means of a sequential deposition of Sr-O/Ti-O-2 atomic monolayers, monitored in-situ by optical ellipsometry. X-ray diffraction and transmission electron microscopy (TEM) reveal the RP structure with n = 2-4 in accordance with the growth recipe. RP defects, observed by TEM in a good correlation with the in-situ ellipsometry, mainly result from the excess of SrO. Being maximal at the film/substrate interface, the SrO excess rapidly decreases and saturates after 5-6 repetitions of the SrO(SrTiO3)(4) block at the level of 2.4%. This identifies the SrTiO3 substrate surface as a source of RP defects under oxidizing conditions within MAD. Advantages and limitations of MAD as a solution-based and vacuum-free chemical deposition route were discussed in comparison with molecular beam epitaxy. (C) 2014 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000346914000007 Publication Date 2014-12-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951;1077-3118; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 32 Open Access
Notes 246102 IFOX; 278510 VORTEX; 246791 COUNTATOMS; Hercules; 312483 ESTEEM2; esteem2jra3 ECASJO; Approved Most recent IF: 3.411; 2014 IF: 3.302
Call Number UA @ lucian @ c:irua:122830UA @ admin @ c:irua:122830 Serial 172
Permanent link to this record
 

 
Author Verbeeck, J.; Schattschneider, P.; Lazar, S.; Stöger-Pollach, M.; Löffler, S.; Steiger-Thirsfeld, A.; Van Tendeloo, G.
Title Atomic scale electron vortices for nanoresearch Type A1 Journal article
Year 2011 Publication Applied physics letters Abbreviated Journal (down) Appl Phys Lett
Volume 99 Issue 20 Pages 203109-203109,3
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Electron vortex beams were only recently discovered and their potential as a probe for magnetism in materials was shown. Here we demonstrate a method to produce electron vortex beams with a diameter of less than 1.2 Å. This unique way to prepare free electrons to a state resembling atomic orbitals is fascinating from a fundamental physics point of view and opens the road for magnetic mapping with atomic resolution in an electron microscope.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000297786500058 Publication Date 2011-11-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 90 Open Access
Notes Hercules Approved Most recent IF: 3.411; 2011 IF: 3.844
Call Number UA @ lucian @ c:irua:93625UA @ admin @ c:irua:93625 Serial 184
Permanent link to this record
 

 
Author Egoavil, R.; Tan, H.; Verbeeck, J.; Bals, S.; Smith, B.; Kuiper, B.; Rijnders, G.; Koster, G.; Van Tendeloo, G.
Title Atomic scale investigation of a PbTiO3/SrRuO3/DyScO3 heterostructure Type A1 Journal article
Year 2013 Publication Applied physics letters Abbreviated Journal (down) Appl Phys Lett
Volume 102 Issue 22 Pages 223106-5
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract An epitaxial PbTiO3 thin film grown on self-organized crystalline SrRuO3 nanowires deposited on a DyScO3 substrate with ordered DyO and ScO2 chemical terminations is investigated by transmission electron microscopy. In this PbTiO3/SrRuO3/DyScO3 heterostructure, the SrRuO3 nanowires are assumed to grow on only one type of substrate termination. Here, we report on the structure, morphology, and chemical composition analysis of this heterostructure. Electron energy loss spectroscopy reveals the exact termination sequence in this complex structure. The energy loss near-edge structure of the Ti-L-2,L-3, Sc-L-2,L-3, and O K edges shows intrinsic interfacial electronic reconstruction. Furthermore, PbTiO3 domain walls are observed to start at the end of the nanowires resulting in atomic steps on the film surface. (C) 2013 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000320621600070 Publication Date 2013-06-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 12 Open Access
Notes Ifox; Esteem2; Countatoms; Vortex; esteem2jra3 ECASJO; Approved Most recent IF: 3.411; 2013 IF: 3.515
Call Number UA @ lucian @ c:irua:109606UA @ admin @ c:irua:109606 Serial 185
Permanent link to this record
 

 
Author Lu, Y.-G.; Turner, S.; Verbeeck, J.; Janssens, S.D.; Wagner, P.; Haenen, K.; Van Tendeloo, G.
Title Direct visualization of boron dopant distribution and coordination in individual chemical vapor deposition nanocrystalline B-doped diamond grains Type A1 Journal article
Year 2012 Publication Applied physics letters Abbreviated Journal (down) Appl Phys Lett
Volume 101 Issue 4 Pages 041907
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The boron dopant distribution in individual heavily boron-doped nanocrystalline diamond film grains, with sizes ranging from 100 to 350nm in diameter, has been studied using a combination of high resolution annular dark field scanning transmission electron microscopy and spatially resolved electron energy-loss spectroscopy. Using these tools, the boron distribution and local boron coordination have been determined. Quantification results reveal embedding of B dopants in the diamond lattice, and a preferential enrichment of boron at defective areas and twin boundaries. Coordination mapping reveals a distinct difference in coordination of the B dopants in “pristine” diamond areas and in defective regions. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4738885]
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000306944700030 Publication Date 2012-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 59 Open Access
Notes This work was performed within the framework of an IAP P6/42 project of the Belgian government. The authors acknowledge financial support from the Fund for Scientific Research Flanders (FWO) under Contract No. G.0568.10N. The authors acknowledge support from the European Union under a Contract from an Integrated Infrastructure Initiative (Reference 262348 ESMI), the Marie Curie ITN “MATCON” (PITN-GA-2009-238201), and the Collaborative Project “DINAMO” (No. 245122). G.V.T. and J.V. acknowledge the ERC Grant N246791-COUNTATOMS and ERC Starting Grant 278510 VORTEX. S.T. gratefully acknowledges financial support from the FWO. The microscope used in this study was partially financed by the Hercules Foundation of the Flemish Government. ECASJO_; Approved Most recent IF: 3.411; 2012 IF: 3.794
Call Number UA @ lucian @ c:irua:100468UA @ admin @ c:irua:100468 Serial 726
Permanent link to this record
 

 
Author Halley, D.; Majjad, H.; Bowen, M.; Najjari, N.; Henry, Y.; Ulhaq-Bouillet, C.; Weber, W.; Bertoni, G.; Verbeeck, J.; Van Tendeloo, G.
Title Electrical switching in Fe/Cr/MgO/Fe magnetic tunnel junctions Type A1 Journal article
Year 2008 Publication Applied physics letters Abbreviated Journal (down) Appl Phys Lett
Volume 92 Issue 21 Pages 212115,1-3
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Hysteretic resistance switching is observed in epitaxial Fe/Cr/MgO/Fe magnetic tunnel junctions under bias voltage cycling between negative and positive values of about 1 V. The junctions switch back and forth between high- and low-resistance states, both of which depend on the device bias history. A linear dependence is found between the magnitude of the tunnel magnetoresistance and the crafted resistance of the junctions. To explain these results, a model is proposed that considers electron transport both by elastic tunneling and by defect-assisted transmission. (c) 2008 American Institute of Physics.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000256303500042 Publication Date 2008-06-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 33 Open Access
Notes Approved Most recent IF: 3.411; 2008 IF: 3.726
Call Number UA @ lucian @ c:irua:69284UA @ admin @ c:irua:69284 Serial 894
Permanent link to this record
 

 
Author Verbeeck, J.; Lebedev, O.I.; Van Tendeloo, G.; Silcox, J.; Mercey, B.; Hervieu, M.; Haghiri-Gosnet, A.M.
Title Electron energy-loss spectroscopy study of a (LaMnO3)8(SrMnO3)4 heterostructure Type A1 Journal article
Year 2001 Publication Applied physics letters Abbreviated Journal (down) Appl Phys Lett
Volume 79 Issue 13 Pages 2037-2039
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract An epitaxially grown heterostructure consisting of alternating layers of LaMnO3 (8 unit cells) and SrMnO3 (4 unit cells) on a SrTiO3 substrate has been studied by a combination of electron energy-loss spectroscopy (EELS) and high-resolution transmission electron microscopy (HRTEM) on an atomic scale. Excitation edges of all elements are captured with subnanometer spatial accuracy, and parametrized to obtain chemical profiles. The fine-edge structure of O K and Mn L-2,L-3 edges are interpreted as signatures of the local electronic structure and show a spatial modulation of the concentration of holes with O 2p character. The chemical concentration is found to be different for the bottom and top interface of a SrMnO3 layer. HRTEM complements the EELS results and confirms the asymmetry of the interfaces. (C) 2001 American Institute of Physics.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000171015200036 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 19 Open Access
Notes Approved Most recent IF: 3.411; 2001 IF: 3.849
Call Number UA @ lucian @ c:irua:54799UA @ admin @ c:irua:54799 Serial 933
Permanent link to this record
 

 
Author Lu, Y.-G.; Turner, S.; Verbeeck, J.; Janssens, S.D.; Haenen, K.; Van Tendeloo, G.
Title Local bond length variations in boron-doped nanocrystalline diamond measured by spatially resolved electron energy-loss spectroscopy Type A1 Journal article
Year 2013 Publication Applied physics letters Abbreviated Journal (down) Appl Phys Lett
Volume 103 Issue 3 Pages 032105-5
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Variations in local bond length and coordination in boron-doped nanocrystalline diamond (NCD) films have been studied through changes in the fine structure of boron and carbon K-edges in electron energy-loss spectra, acquired in a scanning transmission electron microscope. The presence of high concentrations of B in pristine diamond regions and enrichment of B at defects in single NCD grains is demonstrated. Local bond length variations are evidenced through an energy shift of the carbon 1s → σ* edge at B-rich defective regions within single diamond grains, indicating an expansion of the diamond bond length at sites with local high B content.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000322146300049 Publication Date 2013-07-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 15 Open Access
Notes Iap P6/42; Fwo G056810n; 262348 Esmi; 246791 Countatoms; 278510 Vortex; Fwo ECASJO_; Approved Most recent IF: 3.411; 2013 IF: 3.515
Call Number UA @ lucian @ c:irua:109210UA @ admin @ c:irua:109210 Serial 1824
Permanent link to this record
 

 
Author Brück, S.; Paul, M.; Tian, H.; Müller, A.; Kufer, D.; Praetorius, C.; Fauth, K.; Audehm, P.; Goering, E.; Verbeeck, J.; Van Tendeloo, G.; Sing, M.; Claessen, R.;
Title Magnetic and electronic properties of the interface between half metallic Fe3O4 and semiconducting ZnO Type A1 Journal article
Year 2012 Publication Applied physics letters Abbreviated Journal (down) Appl Phys Lett
Volume 100 Issue 8 Pages 081603-081603,4
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We have investigated the magnetic depth profile of an epitaxial Fe3O4 thin film grown directly on a semiconducting ZnO substrate by soft x-ray resonant magnetic reflectometry (XRMR) and electron energy loss spectroscopy (EELS). Consistent chemical profiles at the interface between ZnO and Fe3O4 are found from both methods. Valence selective EELS and XRMR reveal independently that the first monolayer of Fe at the interface between ZnO and Fe3O4 contains only Fe3+ ions. Besides this narrow 2.5 Å interface layer, Fe3O4 shows magnetic bulk properties throughout the whole film making highly efficient spin injection in this system feasible.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000300711200014 Publication Date 2012-02-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 12 Open Access
Notes The authors thank E. Pellegrin for helpful comments and S. Macke for help with the software REMAGX. S.B. acknowledges financial support by the HZB, Berlin, and the Australian Government via Grant No. RM08550. H.T. acknowledges funding from GOA project “XANES meets ELNES,” J.V. and G.V.T. acknowledge funding from the European Research Council under Grant No. 46791-COUN-TATOMS. The authors acknowledge financial support by the DFG through Forschergruppe FOR 1162. Approved Most recent IF: 3.411; 2012 IF: 3.794
Call Number UA @ lucian @ c:irua:95041UA @ admin @ c:irua:95041 Serial 1860
Permanent link to this record
 

 
Author Fix, T.; Ulhaq-Bouillet, C.; Colis, S.; Dinia, A.; Bertoni, G.; Verbeeck, J.; Van Tendeloo, G.
Title Nanoscale analysis of interfaces in a metal/oxide/oxide trilayer obtained by pulsed laser deposition Type A1 Journal article
Year 2007 Publication Applied physics letters Abbreviated Journal (down) Appl Phys Lett
Volume 91 Issue 2 Pages 023106-023106,3
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Sr2FeMoO6/SrTiO3/CoFe2 trilayers grown by pulsed laser deposition on SrTiO3 (001) are investigated by transmission electron microscopy and electron energy loss spectroscopy. The stack is epitaxial, independent of whether the CoFe2 electrode is grown at 500 or at 50 degrees C. Thus it is possible to obtain epitaxy near room temperature. The SrTiO3/CoFe2 interface is quite sharp, while the Sr2FeMoO6/SrTiO3 interface presents regions of Fe depletion. The chemical composition of the films is close to the nominal stoichiometries. These results could be useful for the growth of heteroepitaxial devices and magnetic tunnel junctions. (C) 2007 American Institute of Physics.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000248017300079 Publication Date 2007-07-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 16 Open Access
Notes Approved Most recent IF: 3.411; 2007 IF: 3.596
Call Number UA @ lucian @ c:irua:94653UA @ admin @ c:irua:94653 Serial 2263
Permanent link to this record