toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Li, L.; Kong, X.; Chen, X.; Li, J.; Sanyal, B.; Peeters, F.M. pdf  doi
openurl 
  Title Monolayer 1T-LaN₂ : Dirac spin-gapless semiconductor of p-state and Chern insulator with a high Chern number Type A1 Journal article
  Year 2020 Publication Applied Physics Letters Abbreviated Journal (down) Appl Phys Lett  
  Volume 117 Issue 14 Pages 143101  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Two-dimensional transition-metal dinitrides have attracted considerable attention in recent years due to their rich magnetic properties. Here, we focus on rare-earth-metal elements and propose a monolayer of lanthanum dinitride with a 1T structural phase, 1T-LaN2. Using first-principles calculations, we systematically investigated the structure, stability, magnetism, and band structure of this material. It is a flexible and stable monolayer exhibiting a low lattice thermal conductivity, which is promising for future thermoelectric devices. The monolayer shows the ferromagnetic ground state with a spin-polarized band structure. Two linear spin-polarized bands cross at the Fermi level forming a Dirac point, which is formed by the p atomic orbitals of the N atoms, indicating that monolayer 1T-LaN2 is a Dirac spin-gapless semiconductor of p-state. When the spin-orbit coupling is taken into account, a large nontrivial indirect bandgap (86/354meV) can be opened at the Dirac point, and three chiral edge states are obtained, corresponding to a high Chern number of C=3, implying that monolayer 1T-LaN2 is a Chern insulator. Importantly, this kind of band structure is expected to occur in more monolayers of rare-earth-metal dinitride with a 1T structural phase.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000578551800001 Publication Date 2020-10-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4 Times cited 13 Open Access  
  Notes ; This work was supported by the Natural Science Foundation of Hebei Province (Grant No. A2020202031), the FLAG-ERA project TRANS2DTMD, the Swedish Research Council project grant (No. 2016-05366), and the Swedish Research Links program grant (No. 2017-05447). The resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation-Flanders (FWO) and the Flemish Government, and Swedish National Infrastructure for Computing (SNIC). A portion of this research (Xiangru Kong) was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. Xin Chen thanks the China scholarship council for financial support from the China Scholarship Council (CSC, No. 201606220031). ; Approved Most recent IF: 4; 2020 IF: 3.411  
  Call Number UA @ admin @ c:irua:172674 Serial 6564  
Permanent link to this record
 

 
Author Dong, H.M.; Tao, Z.H.; Li, L.L.; Huang, F.; Xu, W.; Peeters, F.M. pdf  doi
openurl 
  Title Substrate dependent terahertz response of monolayer WS₂ Type A1 Journal article
  Year 2020 Publication Applied Physics Letters Abbreviated Journal (down) Appl Phys Lett  
  Volume 116 Issue 20 Pages 1-4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate experimentally the terahertz (THz) optoelectronic properties of monolayer (ML) tungsten disulfide (WS2) placed on different substrates using THz time-domain spectroscopy (TDS). We find that the THz optical response of n-type ML WS2 depends sensitively on the choice of the substrate. This dependence is found to be a consequence of substrate induced charge transfer, extra scattering centers, and electronic localization. Through fitting the experimental results with the Drude-Smith formula, we can determine the key sample parameters (e.g., the electronic relaxation time, electron density, and electronic localization factor) of ML WS2 on different substrates. The temperature dependence of these parameters is examined. Our results show that the THz TDS technique is an efficient non-contact method that can be utilized to characterize and investigate the optoelectronic properties of nano-devices based on ML WS2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000536282300001 Publication Date 2020-05-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4 Times cited 10 Open Access  
  Notes ; This work was supported by the Fundamental Research Funds for the Central Universities (Grant No. 2018GF09) and by the National Natural Science foundation of China (Nos. U1930116 and 11574319). ; Approved Most recent IF: 4; 2020 IF: 3.411  
  Call Number UA @ admin @ c:irua:170255 Serial 6620  
Permanent link to this record
 

 
Author Kong, X.; Li, L.; Liang, L.; Peeters, F.M.; Liu, X.-J. pdf  doi
openurl 
  Title The magnetic, electronic, and light-induced topological properties in two-dimensional hexagonal FeX₂ (X=Cl, Br, I) monolayers Type A1 Journal article
  Year 2020 Publication Applied Physics Letters Abbreviated Journal (down) Appl Phys Lett  
  Volume 116 Issue 19 Pages 192404-192405  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using Floquet-Bloch theory, we propose to realize chiral topological phases in two-dimensional (2D) hexagonal FeX2 (X=Cl, Br, I) monolayers under irradiation of circularly polarized light. Such 2D FeX2 monolayers are predicted to be dynamically stable and exhibit both ferromagnetic and semiconducting properties. To capture the full topological physics of the magnetic semiconductor under periodic driving, we adopt ab initio Wannier-based tight-binding methods for the Floquet-Bloch bands, with the light-induced bandgap closings and openings being obtained as the light field strength increases. The calculations of slabs with open boundaries show the existence of chiral edge states. Interestingly, the topological transitions with branches of chiral edge states changing from zero to one and from one to two by tuning the light amplitude are obtained, showing that the topological Floquet phase of high Chern number can be induced in the present Floquet-Bloch systems. Published under license by AIP Publishing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000533500900001 Publication Date 2020-05-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4 Times cited 13 Open Access  
  Notes ; This work was supported by the Ministry of Science and Technology of China (MOST) (Grant No. 2016YFA0301604), the National Natural Science Foundation of China (NSFC) (Nos. 11574008, 11761161003, 11825401, and 11921005), the Strategic Priority Research Program of Chinese Academy of Science (Grant No. XDB28000000), the Fonds voor Wetenschappelijk Onderzoek (FWO-Vl), and the FLAG-ERA Project TRANS 2D TMD. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation-Flanders (FWO) and the Flemish Government-Department EWI-and the National Supercomputing Center in Tianjin, funded by the Collaborative Innovation Center of Quantum Matter. This research also used resources of the Compute and Data Environment for Science (CADES) at the Oak Ridge National Laboratory, which was supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. X.K. and L.L. also acknowledge the work conducted at the Center for Nanophase Materials Sciences, which is a U.S. Department of Energy Office of Science User Facility. ; Approved Most recent IF: 4; 2020 IF: 3.411  
  Call Number UA @ admin @ c:irua:169496 Serial 6623  
Permanent link to this record
 

 
Author Bafekry, A.; Stampfl, C.; Faraji, M.; Yagmurcukardes, M.; Fadlallah, M.M.; Jappor, H.R.; Ghergherehchi, M.; Feghhi, S.A.H. doi  openurl
  Title A Dirac-semimetal two-dimensional BeN4 : thickness-dependent electronic and optical properties Type A1 Journal article
  Year 2021 Publication Applied Physics Letters Abbreviated Journal (down) Appl Phys Lett  
  Volume 118 Issue 20 Pages 203103  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Motivated by the recent experimental realization of a two-dimensional (2D) BeN4 monolayer, in this study we investigate the structural, dynamical, electronic, and optical properties of a monolayer and few-layer BeN4 using first-principles calculations. The calculated phonon band dispersion reveals the dynamical stability of a free-standing BeN4 layer, while the cohesive energy indicates the energetic feasibility of the material. Electronic band dispersions show that monolayer BeN4 is a semi-metal whose conduction and valence bands touch each other at the Sigma point. Our results reveal that increasing the layer number from single to six-layers tunes the electronic nature of BeN4. While monolayer and bilayer structures display a semi-metallic behavior, structures thicker than that of three-layers exhibit a metallic nature. Moreover, the optical parameters calculated for monolayer and bilayer structures reveal that the bilayer can absorb visible light in the ultraviolet and visible regions better than the monolayer structure. Our study investigates the electronic properties of Dirac-semimetal BeN4 that can be an important candidate for applications in nanoelectronic and optoelectronic. Published under an exclusive license by AIP Publishing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000691329900002 Publication Date 2021-05-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 3.411  
  Call Number UA @ admin @ c:irua:181725 Serial 6980  
Permanent link to this record
 

 
Author Bafekry, A.; Sarsari, I.A.; Faraji, M.; Fadlallah, M.M.; Jappor, H.R.; Karbasizadeh, S.; Nguyen, V.; Ghergherehchi, M. url  doi
openurl 
  Title Electronic and magnetic properties of two-dimensional of FeX (X = S, Se, Te) monolayers crystallize in the orthorhombic structures Type A1 Journal article
  Year 2021 Publication Applied Physics Letters Abbreviated Journal (down) Appl Phys Lett  
  Volume 118 Issue 14 Pages 143102  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In this Letter, we explore the lattice, dynamical stability, and electronic and magnetic properties of FeTe bulk and FeX (X=S, Se, Te) monolayers using the density functional calculations. The phonon dispersion relation, elastic stability criteria, and cohesive energy results show the stability of studied FeX monolayers. The mechanical properties reveal that all FeX monolayers have a brittle nature. Furthermore, these structures are stable as we move down the 6A group in the periodic table, i.e., from S, Se, and Te. The stability and work function decrease as the electronegativity decreases. The spin-polarized electronic structures demonstrate that the FeTe monolayer has a total magnetization of 3.8 mu (B), which is smaller than the magnetization of FeTe bulk (4.7 mu (B)). However, FeSe and FeS are nonmagnetic monolayers. The FeTe monolayer can be a good candidate material for spin filter applications due to its electronic and magnetic properties. This study highlights the bright prospect for the application of FeX monolayers in electronic structures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000637703700001 Publication Date 2021-04-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.411  
  Call Number UA @ admin @ c:irua:177731 Serial 6985  
Permanent link to this record
 

 
Author Yu, Y.; Xie, X.; Liu, X.; Li, J.; Peeters, F.M.; Li, L. url  doi
openurl 
  Title Two-dimensional semimetal states in transition metal trichlorides : a first-principles study Type A1 Journal article
  Year 2022 Publication Applied physics letters Abbreviated Journal (down) Appl Phys Lett  
  Volume 121 Issue 11 Pages 112405-112407  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The two-dimensional (2D) transition metal trihalide (TMX3, X = Cl, Br, I) family has attracted considerable attention in recent years due to the realization of CrCl3, CrBr3, and CrI3 monolayers. Up to now, the main focus of the theoretically predicted TMX3 monolayers has been on the Chern insulator states, which can realize the quantum anomalous Hall effect. Here, using first-principles calculations, we theoretically demonstrate that the stable OsCl3 monolayer has a ferromagnetic ground state and a spin-polarized Dirac point without spin-orbit coupling (SOC), which disappears in the band structure of a Janus OsBr1.5Cl1.5 monolayer. We find that OsCl3 exhibits in-plane magnetization when SOC is included. By manipulating the magnetization direction along the C-2 symmetry axis of the OsCl3 structure, a gapless half-Dirac semimetal state with SOC can be achieved, which is different from the gapped Chern insulator state. Both semimetal states of OsCl3 monolayer without and with SOC exhibit a linear half-Dirac point (twofold degenerate) with high Fermi velocities. The achievement of the 2D semimetal state with SOC is expected to be found in other TMX3 monolayers, and we confirm it in a TiCl3 monolayer. This provides a different perspective to study the band structure with SOC of the 2D TMX3 family.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000863219400003 Publication Date 2022-09-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4  
  Call Number UA @ admin @ c:irua:191541 Serial 7223  
Permanent link to this record
 

 
Author Iyikanat, F.; Sahin, H.; Senger, R.T.; Peeters, F.M. url  doi
openurl 
  Title Ag and Au atoms intercalated in bilayer heterostructures of transition metal dichalcogenides and graphene Type A1 Journal article
  Year 2014 Publication APL materials Abbreviated Journal (down) Apl Mater  
  Volume 2 Issue 9 Pages 092801  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The diffusive motion of metal nanoparticles Au and Ag on monolayer and between bilayer heterostructures of transition metal dichalcogenides and graphene are investigated in the framework of density functional theory. We found that the minimum energy barriers for diffusion and the possibility of cluster formation depend strongly on both the type of nanoparticle and the type of monolayers and bilayers. Moreover, the tendency to form clusters of Ag and Au can be tuned by creating various bilayers. Tunability of the diffusion characteristics of adatoms in van der Waals heterostructures holds promise for controllable growth of nanostructures. (C) 2014 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000342568000020 Publication Date 2014-08-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2166-532X ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.335 Times cited 10 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. H.S. is supported by a FWO Pegasus Marie Curie Fellowship. F.I. and R.T.S. acknowledge the support from TUBITAK Project No. 111T318. ; Approved Most recent IF: 4.335; 2014 IF: NA  
  Call Number UA @ lucian @ c:irua:119950 Serial 82  
Permanent link to this record
 

 
Author Ozaydin, H.D.; Sahin, H.; Senger, R.T.; Peeters, F.M. doi  openurl
  Title Formation and diffusion characteristics of Pt clusters on Graphene, 1H-MoS2 and 1T-TaS2 Type A1 Journal article
  Year 2014 Publication Annalen der Physik Abbreviated Journal (down) Ann Phys-Berlin  
  Volume 526 Issue 9-10 Pages 423-429  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Many experiments have revealed that the surfaces of graphene and graphene-like structures can play an active role as a host surface for clusterization of transition metal atoms. Motivated by these observations, we investigate theoretically the adsorption, diffusion and magnetic properties of Pt clusters on three different two-dimensional atomic crystals using first principles density functional theory. We found that monolayers of graphene, molybdenum disulfide (1H-MoS2) and tantalum disulfide (1T-TaS2) provide different nucleation characteristics for Pt cluster formation. At low temperatures, while the bridge site is the most favorable site where the growth of a Pt cluster starts on graphene, top-Mo and top-Ta sites are preferred on 1H-MoS2 and 1T-TaS2, respectively. Ground state structures and magnetic properties of Pt-n clusters (n= 2,3,4) on three different monolayer crystal structures are obtained. We found that the formation of Pt-2 dimer and a triangle-shaped Pt-3 cluster perpendicular to the surface are favored over the three different surfaces. While bent rhombus shaped Pt-4 is formed on graphene, the formation of tetrahedral shaped clusters are more favorable on 1H-MoS2 and 1T-TaS2. Our study of the formation of Pt-n clusters on three different monolayers provides a gateway for further exploration of nanocluster formations on various surfaces.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Leipzig Editor  
  Language Wos 000343873700015 Publication Date 2014-06-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-3804; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.039 Times cited 10 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. is supported by a FWO Pegasus Long Marie Curie Fellowship. ; Approved Most recent IF: 3.039; 2014 IF: 3.048  
  Call Number UA @ lucian @ c:irua:121180 Serial 1247  
Permanent link to this record
 

 
Author de Backer, J.W.; Vos, W.G.; Burnell, P.; Verhulst, S.L.; Salmon, P.; de Clerck, N.; de Backer, W. doi  openurl
  Title Study of the variability in upper and lower airway morphology in Sprague-Dawley rats using modern micro-CT scan-based segmentation techniques Type A1 Journal article
  Year 2009 Publication The anatomical record: advances in integrative anatomy and evolutionary biology Abbreviated Journal (down) Anat Rec  
  Volume 292 Issue 5 Pages 720-727  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Laboratory Experimental Medicine and Pediatrics (LEMP)  
  Abstract Animal models are being used extensively in pre-clinical and safety assessment studies to assess the effectiveness and safety of new chemical entities and delivery systems. Although never entirely replacing the need for animal testing, the use of computer simulations could eventually reduce the amount of animals needed for research purposes and refine the data acquired from the animal studies. Computational fluid dynamics is a powerful tool that makes it possible to simulate flow and particle behavior in animal or patient-specific respiratory models, for purposes of inhaled delivery. This tool requires an accurate representation of the respiratory system, respiration and dose delivery attributes. The aim of this study is to develop a representative airway model of the Sprague-Dawley rat using static and dynamic micro-CT scans. The entire respiratory tract was modeled, from the snout and nares down to the central airways at the point where no distinction could be made between intraluminal air and the surrounding tissue. For the selection of the representative model, variables such as upper airway movement, segmentation length, airway volume and size are taken into account. Dynamic scans of the nostril region were used to illustrate the characteristic morphology of this region in anaesthetized animals. It could be concluded from this study that it was possible to construct a highly detailed representative model of a Sprague-Dawley rat based on imaging modalities such as micro-CT scans  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000265766000010 Publication Date 2009-03-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-8486;1932-8494; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.431 Times cited 16 Open Access  
  Notes Approved Most recent IF: 1.431; 2009 IF: 1.490  
  Call Number UA @ lucian @ c:irua:76455 Serial 3342  
Permanent link to this record
 

 
Author Rahemi, V.; Sarmadian, N.; Anaf, W.; Janssens, K.; Lamoen, D.; Partoens, B.; De Wael, K. pdf  url
doi  openurl
  Title Unique opto-electronic structure and photo reduction properties of sulfur doped lead chromates explaining their instability in paintings Type A1 Journal article
  Year 2017 Publication Analytical chemistry Abbreviated Journal (down) Anal Chem  
  Volume 89 Issue 89 Pages 3326-3334  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Chrome yellow refers to a group of synthetic inorganic pigments that became popular as an artists material from the second quarter of the 19th century. The color of the pigment, in which the chromate ion acts as a chromophore, is related to its chemical composition (PbCr1-xSxO4, with 0≤x≤0.8) and crystalline structure (monoclinic/orthorhombic). Their shades range from the yellow-orange to the paler yellow tones with increasing sulfate amount. These pigments show remarkable signs of degradation after limited time periods. Pure PbCrO4 (crocoite in its natural form) has a deep yellow color and is relatively stable, while the co-precipitate with lead sulfate (PbCr1-xSxO4) has a paler shade and seems to degrade faster. This degradation is assumed to be related to the reduction of Cr(VI) to Cr(III). We show that on increasing the sulfur(S)-content in chrome yellow, the band gap increases. Typically, when increasing the band gap, one might assume that a decrease in photo activity is the result. However, the photo activity relative to the Cr content, and thus Cr reduction, of sulfur-rich PbCr1-xSxO4 is found to be much higher compared to the sulfur-poor or non-doped lead chromates. This discrepancy can be explained by the evolution of the crystal and electronic structure as function of the sulfur content: first-principles density functional theory calculations show that both the absorption coefficient and reflection coefficients of the lead chromates change as a result of the sulfate doping in such a way that the generation of electron-hole pairs under illumination relative to the total Cr content increases. These changes in the material properties explain why paler shade yellow colors of this pigment are more prone to discoloration. The electronic structure calculations also demonstrate that lead chromate and its co-precipitates are p-type semiconductors, which explains the observed reduction reaction. As understanding this phenomenon is valuable in the field of cultural heritage, this study is the first joint action of photo-electrochemical measurements and first-principles calculations to approve the higher tendency of sulfur-rich lead chromates to darken.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000397478300015 Publication Date 2017-02-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited 7 Open Access OpenAccess  
  Notes ; The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the Hercules Foundation and the Flemish Government, department EWI. The BOF-GOA action SOLARPAINT of the University of Antwerp Research Council is acknowledged for financial support. W.A. acknowledges support from BELSPO project S2-ART. Dr. L. Monico and Dr. C. Miliani (ISTM, Perugia) are gratefully acknowledged for helpful discussions and for providing some of the initial batches of the materials studied. ; Approved Most recent IF: 6.32  
  Call Number UA @ lucian @ c:irua:140886 Serial 4451  
Permanent link to this record
 

 
Author Verhulst, S.L.; de Backer, J.; Van Gaal, L.; de Backer, W.; Desager, K. openurl 
  Title Adenotonsillectomy as first-line treatment for sleep-disordered breathing in obese children Type L1 Letter to the editor
  Year 2008 Publication American journal of respiratory and critical care medicine Abbreviated Journal (down) Am J Resp Crit Care  
  Volume 177 Issue 12 Pages 1399  
  Keywords L1 Letter to the editor; Condensed Matter Theory (CMT); Laboratory Experimental Medicine and Pediatrics (LEMP)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1073-449x; 1535-4970 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.204 Times cited Open Access  
  Notes Approved Most recent IF: 13.204; 2008 IF: 9.792  
  Call Number UA @ lucian @ c:irua:68864 Serial 59  
Permanent link to this record
 

 
Author Matulis, A.; Peeters, F.M. doi  openurl
  Title Analogy between one-dimensional chain models and graphene Type A1 Journal article
  Year 2009 Publication American journal of physics Abbreviated Journal (down) Am J Phys  
  Volume 77 Issue 7 Pages 595-601  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The electron and hole spectrum in single and bilayer graphene is derived from known one-dimensional models, and the relation between the spectrum and symmetry of the lattice is shown.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000266976000003 Publication Date 2009-06-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-9505; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.069 Times cited 11 Open Access  
  Notes Approved Most recent IF: 1.069; 2009 IF: 0.779  
  Call Number UA @ lucian @ c:irua:77381 Serial 97  
Permanent link to this record
 

 
Author Ibrahim, I.S.; Peeters, F.M. doi  openurl
  Title The magnetic Kronig-Penney model Type A1 Journal article
  Year 1995 Publication American journal of physics Abbreviated Journal (down) Am J Phys  
  Volume 63 Issue Pages 171-173  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos A1995QC79100024 Publication Date 2005-03-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-9505; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.956 Times cited 21 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:12200 Serial 1883  
Permanent link to this record
 

 
Author Zografos, O.; Dutta, S.; Manfrini, M.; Vaysset, A.; Sorée, B.; Naeemi, A.; Raghavan, P.; Lauwereins, R.; Radu, I.P. pdf  doi
openurl 
  Title Non-volatile spin wave majority gate at the nanoscale Type A1 Journal article
  Year 2017 Publication AIP advances T2 – 61st Annual Conference on Magnetism and Magnetic Materials (MMM), OCT 31-NOV 04, 2016, New Orleans, LA Abbreviated Journal (down) Aip Adv  
  Volume 7 Issue 5 Pages 056020  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract A spin wave majority fork-like structure with feature size of 40 nm, is presented and investigated, through micromagnetic simulations. The structure consists of three merging out-of-plane magnetization spin wave buses and four magneto-electric cells serving as three inputs and an output. The information of the logic signals is encoded in the phase of the transmitted spin waves and subsequently stored as direction of magnetization of the magneto-electric cells upon detection. The minimum dimensions of the structure that produce an operational majority gate are identified. For all input combinations, the detection scheme employed manages to capture the majority phase result of the spin wave interference and ignore all reflection effects induced by the geometry of the structure. (C) 2017 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).  
  Address  
  Corporate Author Thesis  
  Publisher Amer inst physics Place of Publication Melville Editor  
  Language Wos 000402797100177 Publication Date 2017-02-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2158-3226 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.568 Times cited 13 Open Access  
  Notes ; ; Approved Most recent IF: 1.568  
  Call Number UA @ lucian @ c:irua:144288 Serial 4673  
Permanent link to this record
 

 
Author Leliaert, J.; Mulkers, J.; De Clercq, J.; Coene, A.; Dvornik, M.; Van Waeyenberge, B. pdf  url
doi  openurl
  Title Adaptively time stepping the stochastic Landau-Lifshitz-Gilbert equation at nonzero temperature: Implementation and validation in MuMax3 Type A1 Journal article
  Year 2017 Publication AIP advances Abbreviated Journal (down) Aip Adv  
  Volume 7 Issue 12 Pages 125010  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Thermal fluctuations play an increasingly important role in micromagnetic research relevant for various biomedical and other technological applications. Until now, it was deemed necessary to use a time stepping algorithm with a fixed time step in order to perform micromagnetic simulations at nonzero temperatures. However, Berkov and Gorn have shown in [D. Berkov and N. Gorn, J. Phys.: Condens. Matter,14, L281, 2002] that the drift term which generally appears when solving stochastic differential equations can only influence the length of the magnetization. This quantity is however fixed in the case of the stochastic Landau-Lifshitz-Gilbert equation. In this paper, we exploit this fact to straightforwardly extend existing high order solvers with an adaptive time stepping algorithm. We implemented the presented methods in the freely available GPU-accelerated micromagnetic software package MuMax3 and used it to extensively validate the presented methods. Next to the advantage of having control over the error tolerance, we report a twenty fold speedup without a loss of accuracy, when using the presented methods as compared to the hereto best practice of using Heun’s solver with a small fixed time step.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000418492500010 Publication Date 2017-12-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2158-3226 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.568 Times cited 13 Open Access  
  Notes This work was supported by the Fonds Wetenschappelijk Onderzoek (FWO-Vlaanderen) through Project No. G098917N and a postdoctoral fellowship (A.C.). J. L. is supported by the Ghent University Special Research Fund (BOF postdoctoral fellowship). We gratefully acknowl- edge the support of NVIDIA Corporation with the donation of the Titan Xp GPU used for this research. Approved Most recent IF: 1.568  
  Call Number CMT @ cmt @c:irua:147860 Serial 4799  
Permanent link to this record
 

 
Author Nikolaev, A.V.; Michel, K.H. doi  openurl
  Title Many electron- and hole terms of molecular ions C60n\pm Type A1 Journal article
  Year 2003 Publication Coupling In Chemistry And Physics Abbreviated Journal (down) Adv Quantum Chem  
  Volume 44 Issue Pages 305-312  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000188940800019 Publication Date 2004-05-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0065-3276; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.196 Times cited 1 Open Access  
  Notes Approved Most recent IF: 1.196; 2003 IF: 0.375  
  Call Number UA @ lucian @ c:irua:104131 Serial 1942  
Permanent link to this record
 

 
Author Hu, L.; Amini, M.N.; Wu, Y.; Jin, Z.; Yuan, J.; Lin, R.; Wu, J.; Dai, Y.; He, H.; Lu, Y.; Lu, J.; Ye, Z.; Han, S.-T.; Ye, J.; Partoens, B.; Zeng, Y.-J.; Ruan, S. pdf  doi
openurl 
  Title Charge transfer doping modulated raman scattering and enhanced stability of black phosphorus quantum dots on a ZnO nanorod Type A1 Journal article
  Year 2018 Publication Advanced Optical Materials Abbreviated Journal (down) Adv Opt Mater  
  Volume 6 Issue 15 Pages 1800440  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Black phosphorus (BP) has recently triggered an unprecedented interest in the 2D community. However, many of its unique properties are not exploited and the well-known environmental vulnerability is not conquered. Herein, a type-I mixed-dimensional (0D-1D) van der Waals heterojunction is developed, where three-atomic-layer BP quantum dots (QDs) are assembled on a single ZnO nanorod (NR). By adjusting the indium (In) content in ZnO NRs, the degree and even the direction of surface charge transfer doping within the heterojunction can be tuned, which result in selective Raman scattering enhancements between ZnO and BP. The maximal enhancement factor is determined as 4340 for BP QDs with sub-ppm level. Furthermore, an unexpected long-term ambient stability (more than six months) of BP QDs is revealed, which is ascribed to the electron doping from ZnO:In NRs. The first demonstration of selective Raman enhancements between two inorganic semiconductors as well as the improved stability of BP shed light on this emerging 2D material.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000440815200023 Publication Date 2018-05-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2195-1071 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.875 Times cited 37 Open Access Not_Open_Access  
  Notes ; L. Hu and M. N. Amini contributed equally to this work. This work was supported by the National Natural Science Foundation of China under Grant Nos. 51502178, 81571763 and 81622026, the Shenzhen Science and Technology Project under Grant Nos. JCYJ20150324141711644, JCYJ20170412105400428, KQJSCX20170727101208249 and JCYJ20170302153853962. Parts of the computational calculations were carried out using the HPC infrastructure at University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center VSC, supported financially by the FWO-Vlaanderen and the Flemish Government (EWI Department). L. H. acknowledges the PhD Start-up Fund of Natural Science Foundation of Guangdong Province under Grand No. 2017A030310072. J. Y. acknowledges the funding of Shanghai Jiao Tong University (Nos. YG2016MS51 and YG2017MS54). ; Approved Most recent IF: 6.875  
  Call Number UA @ lucian @ c:irua:153112UA @ admin @ c:irua:153112 Serial 5082  
Permanent link to this record
 

 
Author Yang, S.; Kang, J.; Yue, Q.; Coey, J.M.D.; Jiang, C. pdf  doi
openurl 
  Title Defect-modulated transistors and gas-enhanced photodetectors on ReS2 nanosheets Type A1 Journal article
  Year 2016 Publication Advanced Materials Interfaces Abbreviated Journal (down) Adv Mater Interfaces  
  Volume 3 Issue 3 Pages 1500707  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000373149400011 Publication Date 2016-01-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2196-7350; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.279 Times cited 22 Open Access  
  Notes ; This work was supported by the National Natural Science Foundations of China (NSFC) under Grant No.51331001. The authors thank S. Tongay for giving them the ReS<INF>2</INF> crystals. ; Approved Most recent IF: 4.279  
  Call Number UA @ lucian @ c:irua:133232 Serial 4159  
Permanent link to this record
 

 
Author Han, S.; Tang, C.S.; Li, L.; Liu, Y.; Liu, H.; Gou, J.; Wu, J.; Zhou, D.; Yang, P.; Diao, C.; Ji, J.; Bao, J.; Zhang, L.; Zhao, M.; Milošević, M.V.; Guo, Y.; Tian, L.; Breese, M.B.H.; Cao, G.; Cai, C.; Wee, A.T.S.; Yin, X. pdf  url
doi  openurl
  Title Orbital-hybridization-driven charge density wave transition in CsV₃Sb₅ kagome superconductor Type A1 Journal article
  Year 2022 Publication Advanced materials Abbreviated Journal (down) Adv Mater  
  Volume Issue Pages 1-9  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Owing to its inherent non-trivial geometry, the unique structural motif of the recently discovered kagome topological superconductor AV(3)Sb(5) (A = K, Rb, Cs) is an ideal host of diverse topologically non-trivial phenomena, including giant anomalous Hall conductivity, topological charge order, charge density wave (CDW), and unconventional superconductivity. Despite possessing a normal-state CDW order in the form of topological chiral charge order and diverse superconducting gaps structures, it remains unclear how fundamental atomic-level properties and many-body effects including Fermi surface nesting, electron-phonon coupling, and orbital hybridization contribute to these symmetry-breaking phenomena. Here, the direct participation of the V3d-Sb5p orbital hybridization in mediating the CDW phase transition in CsV3Sb5 is reported. The combination of temperature-dependent X-ray absorption and first-principles studies clearly indicates the inverse Star-of-David structure as the preferred reconstruction in the low-temperature CDW phase. The results highlight the critical role that Sb orbitals play and establish orbital hybridization as the direct mediator of the CDW states and structural transition dynamics in kagome unconventional superconductors. This is a significant step toward the fundamental understanding and control of the emerging correlated phases from the kagome lattice through the orbital interactions and provides promising approaches to novel regimes in unconventional orders and topology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000903664200001 Publication Date 2022-12-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 29.4 Times cited 1 Open Access OpenAccess  
  Notes Approved Most recent IF: 29.4  
  Call Number UA @ admin @ c:irua:193500 Serial 7328  
Permanent link to this record
 

 
Author Bafekry, A.; Stampfl, C.; Shayesteh, S.F.; Peeters, F.M. pdf  doi
openurl 
  Title Exploiting the novel electronic and magnetic structure of C3Nvia functionalization and conformation Type A1 Journal article
  Year 2019 Publication Advanced Electronic Materials Abbreviated Journal (down) Adv Electron Mater  
  Volume 5 Issue 5 Pages 1900459  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract 2D polyaniline, C3N, is of recent high interest due to its unusual properties and potential use in various technological applications. In this work, through systematic first-principles calculations, the atomic, electronic, and magnetic structure of C3N and the changes induced due to functionalization by the adsorption of hydrogen, oxygen, and fluorine, for different coverages and sites, as well as on formation of nanoribbons including the effect of adsorbed hydrogen and oxygen, and the effect of strain, are investigated. Among other interesting phenomena, for hydrogen adsorption, a semiconductor-to-topological insulator transition, where two Dirac-points appear around the Fermi level, as well as ferromagnetic ordering for both hydrogen and oxygen functionalization, is identified. Considering C3N nanoribbons, adsorption of H leads to significant changes in the electronic properties, such as transforming the structures from semiconductor to metallic. Furthermore, investigating the effect of strain on the physical properties, it is found that the band gap can be significantly altered and controlled. The present findings predict that a wide variation in the magnetic and electronic structure of C3N can be achieved by adatom functionalization and conformation indicating its high potential for use in various technological applications, ranging from catalysis, energy storage, and nanoelectronic devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000486528200001 Publication Date 2019-09-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2199-160x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.193 Times cited 35 Open Access  
  Notes ; This work was supported by the FLAG-ERA project 2DTRANS and the Flemish Science Foundation (FWO-Vl). In addition, we acknowledge the OpenMX team for OpenMX code. ; Approved Most recent IF: 4.193  
  Call Number UA @ admin @ c:irua:162790 Serial 5414  
Permanent link to this record
 

 
Author Anisimovas, E.; Matulis, A.; Peeters, F.M. url  openurl
  Title Classical nature of quantum dots in a magnetic field Type A1 Journal article
  Year 2005 Publication Acta physica Polonica: A: general physics, solid state physics, applied physics Abbreviated Journal (down) Acta Phys Pol A  
  Volume 107 Issue 1 Pages 188-192  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A quasiclassical theory of few-electron quantum dots in a strong magnetic field is developed. The ground state energy and the corresponding many-electron wave function are obtained and used to derive a universal relation of critical magnetic fields and calculate the currents and the density-current correlation function.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Warszawa Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0587-4246 ISBN Additional Links UA library record; WoS full record;  
  Impact Factor 0.469 Times cited Open Access  
  Notes Approved Most recent IF: 0.469; 2005 IF: 0.394  
  Call Number UA @ lucian @ c:irua:94749 Serial 369  
Permanent link to this record
 

 
Author Peelaers, H.; Partoens, B.; Peeters, F.M. url  openurl
  Title Free-standing Si and Ge, and Ge/Si core-shell semiconductor nanowires Type A1 Journal article
  Year 2012 Publication Acta physica Polonica: A: general physics, solid state physics, applied physics T2 – WELCOME Scientific Meeting on Hybrid Nanostructures, AUG 28-31, 2011, Torun, POLAND Abbreviated Journal (down) Acta Phys Pol A  
  Volume 122 Issue 2 Pages 294-298  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The properties of free-standing silicon and germanium nanowires oriented along the [110] direction are studied using different first principles methods. We show the corrections due to quasi-particles to the band structures obtained using the local-density approximation. The formation energies of B and P doped nanowires are calculated, both in the absence and presence of dangling bond defects and we link these to experimental results. Furthermore, we report on the phonon properties of pure Si and Ge nanowires, as well as Ge/Si core-shell nanowires, and discuss the differences between them.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Warszawa Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0587-4246 ISBN Additional Links UA library record; WoS full record;  
  Impact Factor 0.469 Times cited Open Access  
  Notes Approved Most recent IF: 0.469; 2012 IF: 0.531  
  Call Number UA @ lucian @ c:irua:101896 Serial 1277  
Permanent link to this record
 

 
Author Arsoski, V.; Tadić, M.; Peeters, F.M. url  openurl
  Title Interband optical properties of concentric type-I nanorings in a normal magnetic field Type A1 Journal article
  Year 2010 Publication Acta physica Polonica: A: general physics, solid state physics, applied physics Abbreviated Journal (down) Acta Phys Pol A  
  Volume 117 Issue 5 Pages 733-737  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Two concentric two-dimensional GaAs/(Al,Ga)As nanorings in a normal magnetic field are theoretically studied. The single-band effective mass approximation is adopted for both the electron and the hole states, and the analytical solutions are given. We find that the electronic single particle states are arranged in pairs, which exhibit anticrossings and the orbital momentum transitions in the energy spectrum when magnetic field increases. Their period is essentially determined by the radius of the outer ring. The oscillator strength for interband transitions is strongly reduced close to each anticrossing. We show that an optical excitonic Aharonov-Bohm effect may occur in concentric nanorings.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Warszawa Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0587-4246 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.469 Times cited Open Access  
  Notes Approved Most recent IF: 0.469; 2010 IF: 0.467  
  Call Number UA @ lucian @ c:irua:83377 Serial 1690  
Permanent link to this record
 

 
Author Tadić, M.; Arsoski, V.; Čukarić, N.; Peeters, F.M. url  openurl
  Title The optical excitonic Aharonov-Bohm effect in a few nanometer wide type-I nanorings Type A1 Journal article
  Year 2010 Publication Acta physica Polonica: A: general physics, solid state physics, applied physics Abbreviated Journal (down) Acta Phys Pol A  
  Volume 117 Issue 6 Pages 974-977  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The optical excitonic Aharonov-Bohm effect in type-1 three-dimensional (In, Ga)As/GaAs nanorings in theoretically explored. The single-particle states of the electron and the hole are extracted from the effective mass theory in the presence of inhomogeneous strain, and an exact numerical diagonalization approach is used to compute the exciton states and the oscillator strength fx for exciton recombination. We studied both the large lithographically-defined and small self-assembled rings. Only in smaller self-assembled nanorings we found optical excitonic AharonovBohm effect. Those oscillations are established by anticrossings between the optically active exciton states with zero orbital momentum. In lithographically defined rings, whose average radius is 33 nm, fx shows no oscillations, whereas in the smaller self-assembled nanoring with average radius of 11.5 nm oscillations in fx for the ground exciton state are found as function of the magnetic field that is superposed on a linear dependence. These oscillations are smeared out at finite temperature, thus photoluminescence intensity exhibits step-like variation with magnetic field even at temperature as small as 4.2 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Warszawa Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0587-4246 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.469 Times cited Open Access  
  Notes Approved Most recent IF: 0.469; 2010 IF: 0.467  
  Call Number UA @ lucian @ c:irua:84080 Serial 2474  
Permanent link to this record
 

 
Author Michel, K.H.; Lamoen, D.; David, W.I.F. doi  openurl
  Title Orientational order and disorder in solid C60 : theory and diffraction experiments Type A1 Journal article
  Year 1995 Publication Acta crystallographica: section A: foundations of crystallography Abbreviated Journal (down) Acta Crystallogr A  
  Volume 51 Issue 3 Pages 365-374  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Starting from a microscope model of the intermolecular potential, a unified description is presented of the Bragg scattering law in the orientationally disordered and in the ordered phase of solid C-60. The orientational structure factor is expanded in terms of symmetry-adapted surface harmonics. The expansion coefficients are calculated from theory and compared with experiment Their temperature evolution is studied in the disordered phase at the 260 K transitions and in the ordered phase. In the ordered phase, new results from high-resolution neutron powder diffraction are given. In the disordered phase, space group Fm $($) over bar$$ 3m, the reflections have A(1g) symmetry; in the ordered phase, space group Pa $$($) over bar 3, reflections of T-2g symmetry appear and in addition the A(1g) reflections are renormalized. The orientational density distribution is calculated. The effective crystal-field potential is constructed, its temperature evolution in the ordered phase is studied and related to the occurrence of an orientational glass.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Copenhagen Editor  
  Language Wos A1995RB59400018 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0108-7673; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.307 Times cited 14 Open Access  
  Notes Approved CHEMISTRY, MULTIDISCIPLINARY 65/163 Q2 # CRYSTALLOGRAPHY 10/26 Q2 #  
  Call Number UA @ lucian @ c:irua:12189 Serial 2518  
Permanent link to this record
 

 
Author Chen, B.; Sahin, H.; Suslu, A.; Ding, L.; Bertoni, M.I.; Peeters, F.M.; Tongay, S. doi  openurl
  Title Environmental changes in MoTe2 excitonic dynamics by defects-activated molecular interaction Type A1 Journal article
  Year 2015 Publication ACS nano Abbreviated Journal (down) Acs Nano  
  Volume 9 Issue 9 Pages 5326-5332  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Monolayers of group VI transition metal dichalcogenides possess direct gaps in the visible spectrum with the exception of MoTe2, where its gap is suitably located in the infrared region but its stability is of particular interest, as tellurium compounds are acutely sensitive to oxygen exposure. Here, our environmental (time-dependent) measurements reveal two distinct effects on MoTe2 monolayers: For weakly luminescent monolayers, photoluminescence signal and optical contrast disappear, as if they are decomposed, but yet remain intact as evidenced by AFM and Raman measurements. In contrast, strongly luminescent monolayers retain their optical contrast for a prolonged amount of time, while their PL peak blue-shifts and PL intensity saturates to slightly lower values. Our X-ray photoelectron spectroscopy measurements and DFT calculations suggest that the presence of defects and functionalization of these defect sites with O-2 molecules strongly dictate their material properties and aging response by changing the excitonic dynamics due to deep or shallow states that are created within the optical band gap. Presented results not only shed light on environmental effects on fundamental material properties and excitonic dynamics of MoTe2 monolayers but also highlight striking material transformation for metastable 20 systems such as WTe2, silicone, and phosphorene.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000355383000068 Publication Date 2015-04-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 150 Open Access  
  Notes ; This work was supported by the Arizona State University seeding program. The authors thank Hui Cai and Kedi Wu for useful discussions. We gratefully acknowledge the use of facilities at the LeRoy Eyring Center for Solid State Science at Arizona State University. This work was supported by the Flemish Science Foundation (FWO-VI) and the Methusalem Foundation of the Flemish government. H.S. is supported by a FWO Pegasus Long Marie Curie Fellowship. ; Approved Most recent IF: 13.942; 2015 IF: 12.881  
  Call Number c:irua:126441 Serial 1068  
Permanent link to this record
 

 
Author Tognalii, N.G.; Cortés, E.; Hernández-Nieves, A.D.; Carro, P.; Usaj, G.; Balseiro, C.A.; Vela, M.E.; Salvarezza, R.C.; Fainstein, A. doi  openurl
  Title From single to multiple Ag-layer modification of Au nanocavity substrates : a tunable probe of the chemical surface-enhanced Raman scattering mechanism Type A1 Journal article
  Year 2011 Publication ACS nano Abbreviated Journal (down) Acs Nano  
  Volume 5 Issue 7 Pages 5433-5443  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We present experimental and computational results that enlighten the mechanisms underlying the chemical contribution to surface-enhanced Raman scattering (SERS). Gold void metallic arrays electrochemically covered either by a Ag monolayer or 10100 Ag layers were modified with a self-assembled monolayer of 4-mercaptopyridine as a molecular Raman probe displaying a rich and unexpected Raman response. A resonant increase of the Raman intensity in the red part of the spectrum is observed that cannot be related to plasmon excitations of the cavity-array. Notably, we find an additional 1020 time increase of the SERS amplification upon deposition of a single Ag layer on the Au substrate, which is, however, almost quenched upon deposition of 10 atomic layers. Further deposition of 100 atomic Ag layers results in a new increase of the SERS signal, consistent with the improved plasmonic efficiency of Ag bulk-like structures. The SERS response as a function of the Ag layer thickness is analyzed in terms of ab initio calculations and a microscopic model for the SERS chemical mechanism based on a resonant charge transfer process between the molecular HOMO state and the Fermi level in the metal surface. We find that a rearrangement of the electronic charge density related to the presence of the Ag monolayer in the Au/Ag/molecule complex causes an increase in the distance between the HOMO center of charge and the metallic image plane that is responsible for the variation of Raman enhancement between the studied substrates. Our results provide a general platform for studying the chemical contribution to SERS, and for enhancing the Raman efficiency of tailored Au-SERS templates through electrochemical modification with Ag films.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000293035200019 Publication Date 2011-06-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 26 Open Access  
  Notes ; We acknowledge financial support from ANPCyT (Argentina, PICT08-1617, PICT08-2236, PICT06-621, PICT-CNPQ-08-0019, PAE 22711, PICT06-01061, PICT06-483) and Project CTQ2008-06017/BQU, Spain. N.G.T, E.C., A.D.H.N., R.C.S, G.U., C.A.B., and A.F. are also at CONICET. M.E.V. is a member of the research career of CIC BsAs. R.C.S., C.A.B., and A.F. are Guggenheim Foundation Fellows. We would like to thank Dr. M. H. Fonticelli for fruitful discussions on the electrochemical measurements and Dr. H. Pastoriza for the help with the SEM measurements. ; Approved Most recent IF: 13.942; 2011 IF: 11.421  
  Call Number UA @ lucian @ c:irua:91775 Serial 1285  
Permanent link to this record
 

 
Author Walter, A.L.; Sahin, H.; Jeon, K.J.; Bostwick, A.; Horzum, S.; Koch, R.; Speck, F.; Ostler, M.; Nagel, P.; Merz, M.; Schupler, S.; Moreschini, L.; Chang, Y.J.; Seyller, T.; Peeters, F.M.; Horn, K.; Rotenberg, E.; doi  openurl
  Title Luminescence, patterned metallic regions, and photon-mediated electronic changes in single-sided fluorinated graphene sheets Type A1 Journal article
  Year 2014 Publication ACS nano Abbreviated Journal (down) Acs Nano  
  Volume 8 Issue 8 Pages 7801-7808  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Single-sided fluorination has been predicted to open an electronic band gap in graphene and to exhibit unique electronic and magnetic properties; however, this has not been substantiated by experimental reports. Our comprehensive experimental and theoretical study of this material on a SiC(0001) substrate shows that single-sided fluorographene exhibits two phases, a stable one with a band gap of similar to 6 eV and a metastable one, induced by UV irradiation, with a band gap of similar to 2.5 eV. The metastable structure, which reverts to the stable “ground-state” phase upon annealing under emission of blue light, in our view is induced by defect states, based on the observation of a nondispersive electronic state at the top of the valence band, not unlike that found in organic molecular layers. Our structural data show that the stable C2F ground state has a “boat” structure, in agreement with our X-ray magnetic circular dichroism data, which show the absence of an ordered magnetic phase. A high flux of UV or X-ray photons removes the fluorine atoms, demonstrating the possibility of lithographically patterning conducting regions into an otherwise semiconducting 2D material.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000340992300025 Publication Date 2014-08-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 23 Open Access  
  Notes Approved Most recent IF: 13.942; 2014 IF: 12.881  
  Call Number UA @ lucian @ c:irua:119263 Serial 1857  
Permanent link to this record
 

 
Author Neek-Amal, M.; Peeters, F.M.; Grigorieva, I.V.; Geim, A.K. url  doi
openurl 
  Title Commensurability Effects in Viscosity of Nanoconfined Water Type A1 Journal article
  Year 2016 Publication ACS nano Abbreviated Journal (down) Acs Nano  
  Volume 10 Issue 10 Pages 3685-3692  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The rate of water flow through hydrophobic nanocapillaries is greatly enhanced as compared to that expected from macroscopic hydrodynamics. This phenomenon is usually described in terms of a relatively large slip length, which is in turn defined by such microscopic properties as the friction between water and capillary surfaces and the viscosity of water. We show that the viscosity of water and, therefore, its flow rate are profoundly affected by the layered structure of confined water if the capillary size becomes less than 2 nm. To this end, we study the structure and dynamics of water confined between two parallel graphene layers using equilibrium molecular dynamics simulations. We find that the shear viscosity is not only greatly enhanced for subnanometer capillaries, but also exhibits large oscillations that originate from commensurability between the capillary size and the size of water molecules. Such oscillating behavior of viscosity and, consequently, the slip length should be taken into account in designing and studying graphene-based and similar membranes for desalination and filtration.  
  Address School of Physics and Astronomy, University of Manchester , Manchester M13 9PL, United Kingdom  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000372855400073 Publication Date 2016-02-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 160 Open Access  
  Notes ; M.N.A. was support by Shahid Rajaee Teacher Training University under contract number 29605. ; Approved Most recent IF: 13.942  
  Call Number c:irua:133237 Serial 4012  
Permanent link to this record
 

 
Author Galván-Moya, J.E.; Altantzis, T.; Nelissen, K.; Peeters, F.M.; Grzelczak, M.; Liz-Marán, L.M.; Bals, S.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Self-organization of highly symmetric nanoassemblies : a matter of competition Type A1 Journal article
  Year 2014 Publication ACS nano Abbreviated Journal (down) Acs Nano  
  Volume 8 Issue 4 Pages 3869-3875  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract The properties and applications of metallic nanoparticles are inseparably connected not only to their detailed morphology and composition but also to their structural configuration and mutual interactions. As a result, the assemblies often have superior properties as compared to individual nanoparticles. Although it has been reported that nanoparticles can form highly symmetric clusters, if the configuration can be predicted as a function of the synthesis parameters, more targeted and accurate synthesis will be possible. We present here a theoretical model that accurately predicts the structure and configuration of self-assembled gold nanoclusters. The validity of the model is verified using quantitative experimental data extracted from electron tomography 3D reconstructions of different assemblies. The present theoretical model is generic and can in principle be used for different types of nanoparticles, providing a very wide window of potential applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000334990600084 Publication Date 2014-03-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 34 Open Access OpenAccess  
  Notes FWO; Methusalem; 246791 COUNTATOMS; 335078 COLOURATOM; 262348 ESMI; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 13.942; 2014 IF: 12.881  
  Call Number UA @ lucian @ c:irua:116955 Serial 2977  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: