toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Vijayakumar, J.; Savchenko, T.M.; Bracher, D.M.; Lumbeeck, G.; Béché, A.; Verbeeck, J.; Vajda, Š.; Nolting, F.; Vaz, Ca.f.; Kleibert, A. url  doi
openurl 
  Title Absence of a pressure gap and atomistic mechanism of the oxidation of pure Co nanoparticles Type A1 Journal article
  Year 2023 Publication Nature communications Abbreviated Journal (up) Nat Commun  
  Volume 14 Issue 1 Pages 174  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Understanding chemical reactivity and magnetism of 3<italic>d</italic>transition metal nanoparticles is of fundamental interest for applications in fields ranging from spintronics to catalysis. Here, we present an atomistic picture of the early stage of the oxidation mechanism and its impact on the magnetism of Co nanoparticles. Our experiments reveal a two-step process characterized by (i) the initial formation of small CoO crystallites across the nanoparticle surface, until their coalescence leads to structural completion of the oxide shell passivating the metallic core; (ii) progressive conversion of the CoO shell to Co<sub>3</sub>O<sub>4</sub>and void formation due to the nanoscale Kirkendall effect. The Co nanoparticles remain highly reactive toward oxygen during phase (i), demonstrating the absence of a pressure gap whereby a low reactivity at low pressures is postulated. Our results provide an important benchmark for the development of theoretical models for the chemical reactivity in catalysis and magnetism during metal oxidation at the nanoscale.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000955726400021 Publication Date 2023-01-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 16.6 Times cited 1 Open Access OpenAccess  
  Notes Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung, 200021160186 2002153540 ; EC | Horizon 2020 Framework Programme, 810310 823717 ; University of Basel | Swiss Nanoscience Institute, P1502 ; This work is funded by Swiss National Foundation (SNF) (Grants. No 200021160186 and 2002153540) and the Swiss Nanoscience Institut (SNI) (Grant No. SNI P1502). S.V. acknowledges support from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 810310, which corresponds to the J. Heyrovsky Chair project (“ERA Chair at J. Heyrovský Institute of Physical Chemistry AS CR – The institutional approach towards ERA”). The funders had no role in the preparation of the article. Part of this work was performed at the Surface/Interface: Microscopy (SIM) beamline of the Swiss Light Source (SLS), Paul Scherrer Institut, Villigen, Switzerland. We kindly acknowledge Anja Weber and Elisabeth Müller from PSI for their help in fabricating the sample markers. A.B. and J. Verbeeck received funding from the European Union’s Horizon 2020 Research Infrastructure – Integrating Activities for Advanced Communities under grant agreement No. 823717 – ESTEEM3 reported Approved Most recent IF: 16.6; 2023 IF: 12.124  
  Call Number EMAT @ emat @c:irua:196738 Serial 8804  
Permanent link to this record
 

 
Author Moshnyaga, V.; Damaschke, B.; Shapoval, O.; Belenchuk, A.; Faupel, J.; Lebedev, O.I.; Verbeeck, J.; Van Tendeloo, G.; Mücksch, M.; Tsurkan, V.; Tidecks, R.; Samwer, K. openurl 
  Title Corrigendum: Structural phase transition at the percolation threshold in epitaxial (La0.7Ca0.3MnO3)1-x:(MgO)x nanocomposite films Type A1 Journal article
  Year 2005 Publication Nature materials Abbreviated Journal (up) Nat Mater  
  Volume 4 Issue Pages 104  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1476-1122 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 39.737 Times cited Open Access  
  Notes Approved Most recent IF: 39.737; 2005 IF: 15.941  
  Call Number UA @ lucian @ c:irua:54856 Serial 530  
Permanent link to this record
 

 
Author Huijben, M.; Rijnders, G.; Blank, D.H.A.; Bals, S.; Van Aert, S.; Verbeeck, J.; Van Tendeloo, G.; Brinkman, A.; Hilgenkamp, H. pdf  doi
openurl 
  Title Electronically coupled complementary interfaces between perovskite band insulators Type A1 Journal article
  Year 2006 Publication Nature materials Abbreviated Journal (up) Nat Mater  
  Volume 5 Issue Pages 556-560  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000238708900021 Publication Date 2006-06-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1476-1122;1476-4660; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 39.737 Times cited 315 Open Access  
  Notes Fwo Approved Most recent IF: 39.737; 2006 IF: 19.194  
  Call Number UA @ lucian @ c:irua:59713UA @ admin @ c:irua:59713 Serial 1019  
Permanent link to this record
 

 
Author Chen, Y.Z.; Trier, F.; Wijnands, T.; Green, R.J.; Gauquelin, N.; Egoavil, R.; Christensen, D.V.; Koster, G.; Huijben, M.; Bovet, N.; Macke, S.; He, F.; Sutarto, R.; Andersen, N.H.; Sulpizio, J.A.; Honig, M.; Prawiroatmodjo, G.E.D.K.; Jespersen, T.S.; Linderoth, S.; Ilani, S.; Verbeeck, J.; Van Tendeloo, G.; Rijnders, G.; Sawatzky, G.A.; Pryds, N. pdf  url
doi  openurl
  Title Extreme mobility enhancement of two-dimensional electron gases at oxide interfaces by charge-transfer-induced modulation doping Type A1 Journal article
  Year 2015 Publication Nature materials Abbreviated Journal (up) Nat Mater  
  Volume 14 Issue 14 Pages 801-806  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Two-dimensional electron gases (2DEGs) formed at the interface of insulating complex oxides promise the development of all-oxide electronic devices. These 2DEGs involve many-body interactions that give rise to a variety of physical phenomena such as superconductivity, magnetism, tunable metalinsulator transitions and phase separation. Increasing the mobility of the 2DEG, however, remains a major challenge. Here, we show that the electron mobility is enhanced by more than two orders of magnitude by inserting a single-unit-cell insulating layer of polar La1−xSrxMnO3 (x = 0, 1/8, and 1/3) at the interface between disordered LaAlO3 and crystalline SrTiO3 produced at room temperature. Resonant X-ray spectroscopy and transmission electron microscopy show that the manganite layer undergoes unambiguous electronic reconstruction, leading to modulation doping of such atomically engineered complex oxide heterointerfaces. At low temperatures, the modulation-doped 2DEG exhibits Shubnikovde Haas oscillations and fingerprints of the quantum Hall effect, demonstrating unprecedented high mobility and low electron density.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000358530100022 Publication Date 2015-06-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1476-1122;1476-4660; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 39.737 Times cited 170 Open Access  
  Notes 246102 IFOX; 246791 COUNTATOMS; 278510 VORTEX; Hercules; 312483 ESTEEM2; FWO G004413N; esteem2jra3 ECASJO; Approved Most recent IF: 39.737; 2015 IF: 36.503  
  Call Number c:irua:127184 c:irua:127184UA @ admin @ c:irua:127184 Serial 1163  
Permanent link to this record
 

 
Author Moshnyaga, V.; Damaschke, B.; Shapoval, O.; Belenchuk, A.; Faupel, J.; Lebedev, O.I.; Verbeeck, J.; Van Tendeloo, G.; Mücksch, M.; Tsurkan, V.; Tidecks, R.; Samwer, K. pdf  doi
openurl 
  Title Structural phase transition at the percolation threshold in epitaxial (La0.7Ca0.3MnO3)1-x:(MgO)x nanocomposite films Type A1 Journal article
  Year 2003 Publication Nature materials Abbreviated Journal (up) Nat Mater  
  Volume 2 Issue 4 Pages 247-252  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract 'Colossal magnetoresistance' in perovskite manganites such as La0.7Ca0.3MnO3 (LCMO), is caused by the interplay of ferro-paramagnetic, metal-insulator and structural phase transitions. Moreover, different electronic phases can coexist on a very fine scale resulting in percolative electron transport. Here we report on (LCMO)(1-x):(MgO)(x) (0 < x less than or equal to 0.8) epitaxial nano-composite films in which the structure and magnetotransport properties of the manganite nanoclusters can be tuned by the tensile stress originating from the MgO second phase. With increasing x, the lattice of LCMO was found to expand, yielding a bulk tensile strain. The largest colossal magnetoresistance of 10(5)% was observed at the percolation threshold in the conductivity at x(c) approximate to 0.3, which is coupled to a structural phase transition from orthorhombic (0 < x less than or equal to 0.1) to rhombohedral R (3) over barc structure (0.33 less than or equal to x less than or equal to 0.8). An increase of the Curie temperature for the R (3) over barc phase was observed. These results may provide a general method for controlling the magnetotransport properties of manganite-based composite films by appropriate choice of the second phase.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000182052700022 Publication Date 2003-03-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1476-1122;1476-4660; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 39.737 Times cited 177 Open Access  
  Notes Approved Most recent IF: 39.737; 2003 IF: 10.778  
  Call Number UA @ lucian @ c:irua:54855 Serial 3247  
Permanent link to this record
 

 
Author Liao, Z.; Huijben, M.; Zhong, Z.; Gauquelin, N.; Macke, S.; Green, R.J.; Van Aert, S.; Verbeeck, J.; Van Tendeloo, G.; Held, K.; Sawatzky, G.A.; Koster, G.; Rijnders, G. url  doi
openurl 
  Title Controlled lateral anisotropy in correlated manganite heterostructures by interface-engineered oxygen octahedral coupling Type A1 Journal article
  Year 2016 Publication Nature materials Abbreviated Journal (up) Nat Mater  
  Volume 15 Issue 15 Pages 425-431  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Controlled in-plane rotation of the magnetic easy axis in manganite heterostructures by tailoring the interface oxygen network could allow the development of correlated oxide-based magnetic tunnelling junctions with non-collinear magnetization, with possible practical applications as miniaturized high-switching-speed magnetic random access memory (MRAM) devices. Here, we demonstrate how to manipulate magnetic and electronic anisotropic properties in manganite heterostructures by engineering the oxygen network on the unit-cell level. The strong oxygen octahedral coupling is found to transfer the octahedral rotation, present in the NdGaO3 (NGO) substrate, to the La2/3Sr1/3MnO3 (LSMO) film in the interface region. This causes an unexpected realignment of the magnetic easy axis along the short axis of the LSMO unit cell as well as the presence of a giant anisotropic transport in these ultrathin LSMO films. As a result we possess control of the lateral magnetic and electronic anisotropies by atomic-scale design of the oxygen octahedral rotation.  
  Address MESA+ Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000372591700017 Publication Date 2016-03-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1476-1122 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 39.737 Times cited 273 Open Access  
  Notes We would like to acknowledge Dr. Evert Houwman for stimulated discussion. M.H., G.K. and G.R. acknowledge funding from DESCO program of the Dutch Foundation for Fundamental Research on Matter (FOM) with financial support from the Netherlands Organization for Scientific Research (NWO). This work was funded by the European Union Council under the 7th Framework Program (FP7) grant nr NMP3-LA-2010- 246102 IFOX. J.V. and S.V.A. acknowledges funding from FWO project G.0044.13N and G. 0368.15N. The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. N.G. acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant 278510 VORTEX. N.G., S.V.A., J.V. and G.V.T. acknowledge financial support from the European Union under the Seventh Framework Program under a contract for an Integrated Infrastructure Initiative (Reference No. 312483-ESTEEM2). The Canadian work was supported by NSERC and the Max Planck-UBC Centre for Quantum Materials. Some experiments for this work were performed at the Canadian Light Source, which is funded by the Canada Foundation for Innovation, NSERC, the National Research Council of Canada, the Canadian Institutes of Health Research, the Government of Saskatchewan, Western Economic Diversification Canada, and the University of Saskatchewan. Z.Z. acknowledges funding from the SFB ViCoM (Austrian Science Fund project ID F4103- N13), and Calculations have been done on the Vienna Scientific Cluster (VSC).; esteem2jra2; esteem2jra3 ECASJO_; Approved Most recent IF: 39.737  
  Call Number c:irua:133190 c:irua:133190UA @ admin @ c:irua:133190 Serial 4041  
Permanent link to this record
 

 
Author Béché, A.; Van Boxem, R.; Van Tendeloo, G.; Verbeeck, J. url  doi
openurl 
  Title Magnetic monopole field exposed by electrons Type A1 Journal article
  Year 2014 Publication Nature physics Abbreviated Journal (up) Nat Phys  
  Volume 10 Issue 1 Pages 26-29  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The experimental search for magnetic monopole particles(1-3) has, so far, been in vain. Nevertheless, these elusive particles of magnetic charge have fuelled a rich field of theoretical study(4-10). Here, we created an approximation of a magnetic monopole in free space at the end of a long, nanoscopically thin magnetic needle(11). We experimentally demonstrate that the interaction of this approximate magnetic monopole field with a beam of electrons produces an electron vortex state, as theoretically predicted for a true magnetic monopole(3,11-18). This fundamental quantum mechanical scattering experiment is independent of the speed of the electrons and has consequences for all situations where electrons meet such monopole magnetic fields, as, for example, in solids. The set-up not only shows an attractive way to produce electron vortex states but also provides a unique insight into monopole fields and shows that electron vortices might well occur in unexplored solid-state physics situations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000328940100012 Publication Date 2013-11-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1745-2473;1745-2481; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 22.806 Times cited 131 Open Access  
  Notes Vortex; Countatoms; Fwo ECASJO_; Approved Most recent IF: 22.806; 2014 IF: 20.147  
  Call Number UA @ lucian @ c:irua:113740UA @ admin @ c:irua:113740 Serial 1885  
Permanent link to this record
 

 
Author Verbeeck, J.; Tian, H.; Schattschneider, P. pdf  doi
openurl 
  Title Production and application of electron vortex beams Type A1 Journal article
  Year 2010 Publication Nature Abbreviated Journal (up) Nature  
  Volume 467 Issue 7313 Pages 301-304  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Vortex beams (also known as beams with a phase singularity) consist of spiralling wavefronts that give rise to angular momentum around the propagation direction. Vortex photon beams are widely used in applications such as optical tweezers to manipulate micrometre-sized particles and in micro-motors to provide angular momentum1, 2, improving channel capacity in optical3 and radio-wave4 information transfer, astrophysics5 and so on6. Very recently, an experimental realization of vortex beams formed of electrons was demonstrated7. Here we describe the creation of vortex electron beams, making use of a versatile holographic reconstruction technique in a transmission electron microscope. This technique is a reproducible method of creating vortex electron beams in a conventional electron microscope. We demonstrate how they may be used in electron energy-loss spectroscopy to detect the magnetic state of materials and describe their properties. Our results show that electron vortex beams hold promise for new applications, in particular for analysing and manipulating nanomaterials, and can be easily produced.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000281824900033 Publication Date 2010-09-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836;1476-4687; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 40.137 Times cited 626 Open Access  
  Notes Esteem 026019; Fwo Approved Most recent IF: 40.137; 2010 IF: 36.104  
  Call Number UA @ lucian @ c:irua:84878UA @ admin @ c:irua:84878 Serial 2720  
Permanent link to this record
 

 
Author Prabhakara, V.; Nuytten, T.; Bender, H.; Vandervorst, W.; Bals, S.; Verbeeck, J. pdf  url
doi  openurl
  Title Linearized radially polarized light for improved precision in strain measurements using micro-Raman spectroscopy Type A1 Journal article
  Year 2021 Publication Optics Express Abbreviated Journal (up) Opt Express  
  Volume 29 Issue 21 Pages 34531  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Strain engineering in semiconductor transistor devices has become vital in the semiconductor industry due to the ever-increasing need for performance enhancement at the nanoscale. Raman spectroscopy is a non-invasive measurement technique with high sensitivity to mechanical stress that does not require any special sample preparation procedures in comparison to characterization involving transmission electron microscopy (TEM), making it suitable for inline strain measurement in the semiconductor industry. Indeed, at present, strain measurements using Raman spectroscopy are already routinely carried out in semiconductor devices as it is cost effective, fast and non-destructive. In this paper we explore the usage of linearized radially polarized light as an excitation source, which does provide significantly enhanced accuracy and precision as compared to linearly polarized light for this application. Numerical simulations are done to quantitatively evaluate the electric field intensities that contribute to this enhanced sensitivity. We benchmark the experimental results against TEM diffraction-based techniques like nano-beam diffraction and Bessel diffraction. Differences between both approaches are assigned to strain relaxation due to sample thinning required in TEM setups, demonstrating the benefit of Raman for nondestructive inline testing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000708940500144 Publication Date 2021-10-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1094-4087 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.307 Times cited 2 Open Access OpenAccess  
  Notes Horizon 2020 Framework Programme, 823717 – ESTEEM3 ; GOA project, “Solarpaint” ; Herculesstichting;; esteem3jra; esteem3reported; Approved Most recent IF: 3.307  
  Call Number EMAT @ emat @c:irua:182472 Serial 6816  
Permanent link to this record
 

 
Author Kuznetsov, A.S.; Lu, Y.-G.; Turner, S.; Shestakov, M.V.; Tikhomirov, V.K.; Kirilenko, D.; Verbeeck, J.; Baranov, A.N.; Moshchalkov, V.V. url  doi
openurl 
  Title Preparation, structural and optical characterization of nanocrystalline ZnO doped with luminescent Ag-nanoclusters Type A1 Journal article
  Year 2012 Publication Optical materials express Abbreviated Journal (up) Opt Mater Express  
  Volume 2 Issue 6 Pages 723-734  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Nanocrystalline ZnO doped with Ag-nanoclusters has been synthesized by a salt solid state reaction. Three overlapping broad emission bands due to the Ag nanoclusters have been detected at about 570, 750 and 900 nm. These emission bands are excited by an energy transfer from the exciton state of the ZnO host when pumped in the wavelength range from 250 to 400 nm. The 900 nm emission band shows characteristic orbital splitting into three components pointing out that the anisotropic crystalline wurtzite host of ZnO is responsible for this feature. Heat-treatment and temperature dependence studies confirm the origin of these emission bands. An energy level diagram for the emission process and a model for Ag nanoclusters sites are suggested. The emission of nanocrystalline ZnO doped with Ag nanoclusters may be applied for white light generation, displays driven by UV light, down-convertors for solar cells and luminescent lamps.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000304953700004 Publication Date 2012-04-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2159-3930; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.591 Times cited Open Access  
  Notes We are grateful to the Methusalem Funding of Flemish Government for the support of this work. Y.-G. L. and S. T. acknowledge funding from the Fund for Scientific Research Flanders (FWO) for a postdoctoral grant and under grant number G056810N. The microscope used in this study was partially financed by the Hercules Foundation. J.V. acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC grant No246791 – COUNTATOMS and ERC Starting Grant 278510 VORTEX. The authors acknowledge the guidance of Prof. G. Van Tendeloo, EMAT Antwerpen University, in transmission electron microscopy study in this work. ECASJO_; Approved Most recent IF: 2.591; 2012 IF: 2.616  
  Call Number UA @ lucian @ c:irua:97709UA @ admin @ c:irua:97709 Serial 2707  
Permanent link to this record
 

 
Author Liao, Z.; Gauquelin, N.; Green, R.J.; Müller-Caspary, K.; Lobato, I.; Li, L.; Van Aert, S.; Verbeeck, J.; Huijben, M.; Grisolia, M.N.; Rouco, V.; El Hage, R.; Villegas, J.E.; Mercy, A.; Bibes, M.; Ghosez, P.; Sawatzky, G.A.; Rijnders, G.; Koster, G. pdf  url
doi  openurl
  Title Metal–insulator-transition engineering by modulation tilt-control in perovskite nickelates for room temperature optical switching Type A1 Journal article
  Year 2018 Publication America Abbreviated Journal (up) P Natl Acad Sci Usa  
  Volume 115 Issue 38 Pages 9515-9520  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract In transition metal perovskites ABO3 the physical properties are largely driven by the rotations of the BO6 octahedra, which can be tuned in thin films through strain and dimensionality control. However, both approaches have fundamental and practical limitations due to discrete and indirect variations in bond angles, bond lengths and film symmetry by using commercially available substrates. Here, we introduce modulation tilt control as a new approach to tune the ground state of perovskite oxide thin films by acting explicitly on the oxygen octahedra rotation modes, i.e. directly on the bond angles. By intercalating the prototype SmNiO3 target material with a tilt-control layer, we cause the system to change the natural amplitude of a given rotation mode without affecting the interactions. In contrast to strain and dimensionality engineering, our method enables a continuous fine-tuning of the materials properties. This is achieved through two independent adjustable parameters: the nature of the tilt-control material (through its symmetry, elastic constants and oxygen rotation angles) and the relative thicknesses of the target and tilt-control materials. As a result, a magnetic and electronic phase diagram can be obtained, normally only accessible by A-site element substitution, within the single SmNiO3 compound. With this unique approach, we successfully adjusted the metal-insulator transition (MIT) to room temperature to fulfill the desired conditions for optical switching applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000447224900057 Publication Date 2018-09-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0027-8424 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.661 Times cited 50 Open Access OpenAccess  
  Notes We would like to acknowledge Prof. Z. Zhong for stimulated discussion. M.H., G.K. and G.R. acknowledge funding from DESCO program of the Dutch Foundation for Fundamental Research on Matter (FOM) with financial support from the Netherlands Organization for Scientific Research (NWO). This work was funded by the European Union Council under the 7th Framework Program (FP7) grant nr NMP3-LA-2010-246102 IFOX. J.V., S.V.A, N.G. and K.M.C. acknowledge funding from FWO projects G.0044.13N, G.0374.13N, G. 0368.15N, and G.0369.15N. The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. N.G. acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant 278510 VORTEX. N.G. and J.V. acknowledge financial support from the European Union under the Seventh Framework Program under a contract for an Integrated Infrastructure Initiative (Reference No. 312483- ESTEEM2). The Canadian work was supported by NSERC and the Max Planck-UBC Centre for Quantum Materials. Some experiments for this work were performed at the Canadian Light Source, which is funded by the Canada Foundation for Innovation, NSERC, the National Research Council of Canada, the Canadian Institutes of Health Research, the Government of Saskatchewan, Western Economic Diversification Canada, and the University of Saskatchewan. MB acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC CoG grant MINT #615759. A.M. and Ph.G. were supported by the ARC project AIMED and F.R.S-FNRS PDR project HiT4FiT and acknowledge access to Céci computing facilities funded by F.R.S-FNRS (Grant No 2.5020.1), Tier-1 supercomputer of the Fédération Wallonie-Bruxelles funded by the Walloon Region (Grant No 1117545) and HPC resources from the PRACE project Megapasta. Approved Most recent IF: 9.661  
  Call Number EMAT @ emat @c:irua:154784UA @ admin @ c:irua:154784 Serial 5059  
Permanent link to this record
 

 
Author Vanrompay, H.; Béché, A.; Verbeeck, J.; Bals, S. pdf  doi
openurl 
  Title Experimental Evaluation of Undersampling Schemes for Electron Tomography of Nanoparticles Type A1 Journal article
  Year 2019 Publication Particle and particle systems characterization Abbreviated Journal (up) Part Part Syst Char  
  Volume 36 Issue 36 Pages 1900096  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract One of the emerging challenges in the field of 3D characterization of nanoparticles by electron tomography is to avoid degradation and deformation of the samples during the acquisition of a tilt series. In order to reduce the required electron dose, various undersampling approaches have been proposed. These methods include lowering the number of 2D projection images, reducing the probe current during the acquisition, and scanning a smaller number of pixels in the 2D images. A comparison is made between these approaches based on tilt series acquired for a gold nanoparticle.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000477679400014 Publication Date 2019-05-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0934-0866 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.474 Times cited 12 Open Access Not_Open_Access  
  Notes H.V. acknowledges financial support by the Research Foundation Flanders (FWO Grant No. 1S32617N). A.B. and J.V. acknowledge FWO project 6093417N “Compressed sensing enabling low dose imaging in STEM.” The authors thank G. González-Rubio, A. Sánchez-Iglesias, and L.M. Liz-Marzán for provision of the samples. Approved Most recent IF: 4.474  
  Call Number EMAT @ emat @UA @ admin @ c:irua:159986 Serial 5175  
Permanent link to this record
 

 
Author Lebedev, O.I.; Verbeeck, J.; Van Tendeloo, G.; Hayashi, N.; Terashima, T.; Takano, M. pdf  doi
openurl 
  Title Structure and microstructure of epitaxial SrnFenO3n-1 films Type A1 Journal article
  Year 2004 Publication Philosophical magazine Abbreviated Journal (up) Philos Mag  
  Volume 84 Issue 36 Pages 3825-3841  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Thin films of SrFeO3-x (0 less than or equal to x less than or equal to 0.5) (SFO) grown on a (LaAlO3)(0.3) (SrAl0.5Ta0.5O3)(0.7) (LSAT) substrate by Pulsed laser deposition have been structurally investigated by electron diffraction and high resolution transmission electron microscopy for different post-deposition oxygen treatments. During the deposition and post-growth oxidation, the oxygen-reduced SFO films accept extra oxygen along the tetrahedral layers to minimize the elastic strain energy. The oxidation process stops at a concentration SFO2.875 and/or SFO2.75 because a zero misfit with the LSAT substrate is reached. A possible growth mechanism and phase transition mechanism are suggested. The non-oxidized films exhibit twin boundaries having a local perovskite-type structure with a nominal composition close to SFO3.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000225854700001 Publication Date 2005-01-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1478-6435;1478-6443; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.505 Times cited 4 Open Access  
  Notes reprint Approved Most recent IF: 1.505; 2004 IF: 1.167  
  Call Number UA @ lucian @ c:irua:54755 Serial 3287  
Permanent link to this record
 

 
Author Lebedev, O.I.; Verbeeck, J.; Van Tendeloo, G.; Amelinckx, S.; Ravazi, F.S.; Habermeier, H.-U. pdf  doi
openurl 
  Title Structure and microstructure of La1-xSrxMnO3 (x=0.16) films grown on a SrTiO3(110) substrate Type A1 Journal article
  Year 2001 Publication Philosophical magazine: A: physics of condensed matter: defects and mechanical properties Abbreviated Journal (up) Philos Mag A  
  Volume 81 Issue 12 Pages 2865-2884  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000172348000008 Publication Date 2007-07-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0141-8610;1460-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.136 Times cited 12 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:57132 Serial 3290  
Permanent link to this record
 

 
Author Bliokh, K.Y.; Ivanov, I.P.; Guzzinati, G.; Clark, L.; Van Boxem, R.; Béché, A.; Juchtmans, R.; Alonso, M.A.; Schattschneider, P.; Nori, F.; Verbeeck, J. url  doi
openurl 
  Title Theory and applications of free-electron vortex states Type A1 Journal article
  Year 2017 Publication Physics reports Abbreviated Journal (up) Phys Rep  
  Volume 690 Issue 690 Pages 1-70  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Both classical and quantum waves can form vortices: with helical phase fronts and azimuthal current densities. These features determine the intrinsic orbital angular momentum carried by localized vortex states. In the past 25 years, optical vortex beams have become an inherent part of modern optics, with many remarkable achievements and applications. In the past decade, it has been realized and demonstrated that such vortex beams or wavepackets can also appear in free electron waves, in particular, in electron microscopy. Interest in free-electron vortex states quickly spread over different areas of physics: from basic aspects of quantum mechanics, via applications for fine probing of matter (including individual atoms), to high-energy particle collision and radiation processes. Here we provide a comprehensive review of theoretical and experimental studies in this emerging field of research. We describe the main properties of electron vortex states, experimental achievements and possible applications within transmission electron microscopy, as well as the possible role of vortex electrons in relativistic and high-energy processes. We aim to provide a balanced description including a pedagogical introduction, solid theoretical basis, and a wide range of practical details. Special attention is paid to translate theoretical insights into suggestions for future experiments, in electron microscopy and beyond, in any situation where free electrons occur.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000406169900001 Publication Date 2017-05-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-1573 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 17.425 Times cited 210 Open Access OpenAccess  
  Notes AFOSR, FA9550-14-1-0040 ; CREST, JPMJCR1676 ; Portuguese Fundação para a Ciência e a Tecnologia (FCT), IF/00989/2014/CP1214/CT0004 ; Austrian Science Fund, I543-N20 ; ERC, 278510 VORTEX ; We acknowledge discussions with Mark R. Dennis and Andrei Afanasev. This work was supported by the RIKEN Interdisciplinary Theoretical Science Research Group (iTHES) Project, the Multi-University Research Initiative (MURI) Center for Dynamic Magneto-Optics via the Air Force Office of Scientific Research (AFOSR) (Grant No. FA9550-14-1-0040), Grant-in-Aid for Scientific Research (A), Core Research for Evolutionary Science and Technology (CREST), the John Templeton Foundation, the Australian Research Council, the Portuguese Funda¸c˜ao para a Ciˆencia e a Tecnologia (FCT) (contract IF/00989/2014/CP1214/CT0004 under the IF2014 Program), contracts UID/FIS/00777/2013 and CERN/FIS-NUC/0010/2015 (partially funded through POCTI, COMPETE, QREN, and the European Union), Austrian Science Fund Grant No. I543-N20, the European Research Council under the 7th Framework Program (FP7) (ERC Starting Grant No. 278510 VORTEX), and FWO PhD Fellowship grants (Aspirant Fonds Wetenschappelijk OnderzoekVlaanderen). Approved Most recent IF: 17.425  
  Call Number EMAT @ emat @ c:irua:143262 Serial 4574  
Permanent link to this record
 

 
Author Van Boxem, R.; Partoens, B.; Verbeeck, J. url  doi
openurl 
  Title Inelastic electron-vortex-beam scattering Type A1 Journal article
  Year 2015 Publication Physical review : A : atomic, molecular and optical physics Abbreviated Journal (up) Phys Rev A  
  Volume 91 Issue 91 Pages 032703  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract Recent theoretical and experimental developments in the field of electron-vortex-beam physics have raised questions about what exactly this novelty in the field of electron microscopy (and other fields, such as particle physics) really provides. An important part of the answer to these questions lies in scattering theory. The present investigation explores various aspects of inelastic quantum scattering theory for cylindrically symmetric beams with orbital angular momentum. The model system of Coulomb scattering on a hydrogen atom provides the setting to address various open questions: How is momentum transferred? Do vortex beams selectively excite atoms, and how can one employ vortex beams to detect magnetic transitions? The analytical approach presented here provides answers to these questions. OAM transfer is possible, but not through selective excitation; rather, by pre- and postselection one can filter out the relevant contributions to a specific signal.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000351035000004 Publication Date 2015-03-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1050-2947;1094-1622; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.925 Times cited 31 Open Access  
  Notes Fwo; 312483 Esteem2; 278510 Vortex; esteem2jra3 ECASJO; Approved Most recent IF: 2.925; 2015 IF: 2.808  
  Call Number c:irua:123925 c:irua:123925UA @ admin @ c:irua:123925 Serial 1607  
Permanent link to this record
 

 
Author Guzzinati, G.; Clark, L.; Béché, A.; Verbeeck, J. url  doi
openurl 
  Title Measuring the orbital angular momentum of electron beams Type A1 Journal article
  Year 2014 Publication Physical review : A : atomic, molecular and optical physics Abbreviated Journal (up) Phys Rev A  
  Volume 89 Issue Pages 025803  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The recent demonstration of electron vortex beams has opened up the new possibility of studying orbital angular momentum (OAM) in the interaction between electron beams and matter. To this aim, methods to analyze the OAM of an electron beam are fundamentally important and a necessary next step. We demonstrate the measurement of electron beam OAM through a variety of techniques. The use of forked holographic masks, diffraction from geometric apertures, and diffraction from a knife edge and the application of an astigmatic lens are all experimentally demonstrated. The viability and limitations of each are discussed with supporting numerical simulations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000332224100014 Publication Date 2014-02-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1050-2947;1094-1622; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.925 Times cited 42 Open Access  
  Notes Vortex; FP7; Countatoms; ESTEEM2; esteem2jra3 ECASJO; Approved Most recent IF: 2.925; 2014 IF: 2.808  
  Call Number UA @ lucian @ c:irua:114577UA @ admin @ c:irua:114577 Serial 1972  
Permanent link to this record
 

 
Author Clark, L.; Béché, A.; Guzzinati, G.; Verbeeck, J. url  doi
openurl 
  Title Quantitative measurement of orbital angular momentum in electron microscopy Type A1 Journal article
  Year 2014 Publication Physical review : A : atomic, molecular and optical physics Abbreviated Journal (up) Phys Rev A  
  Volume 89 Issue 5 Pages 053818  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Electron vortex beams have been predicted to enable atomic scale magnetic information measurement, via transfer of orbital angular momentum. Research so far has focused on developing production techniques and applications of these beams. However, methods to measure the outgoing orbital angular momentum distribution are also a crucial requirement towards this goal. Here, we use a method to obtain the orbital angular momentum decomposition of an electron beam, using a multipinhole interferometer. We demonstrate both its ability to accurately measure orbital angular momentum distribution, and its experimental limitations when used in a transmission electron microscope.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000335826300012 Publication Date 2014-05-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1050-2947;1094-1622; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.925 Times cited 23 Open Access  
  Notes 7th Framework Program (FP7); ERC Starting Grant No. 278510- VORTEX 7th Framework Program (FP7) under a contract for an Integrated Infrastructure Initiative (Reference No. 312483 ESTEEM2). 7th Framework Program (FP7), ERC Grant No. 246791- COUNTATOMS. SP – 053818-1; esteem2jra3 ECASJO; Approved Most recent IF: 2.925; 2014 IF: 2.808  
  Call Number UA @ lucian @ c:irua:117093UA @ admin @ c:irua:117093 Serial 2758  
Permanent link to this record
 

 
Author Van Boxem, R.; Partoens, B.; Verbeeck, J. url  doi
openurl 
  Title Rutherford scattering of electron vortices Type A1 Journal article
  Year 2014 Publication Physical review : A : atomic, molecular and optical physics Abbreviated Journal (up) Phys Rev A  
  Volume 89 Issue 3 Pages 032715-32719  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract By considering a cylindrically symmetric generalization of a plane wave, the first-order Born approximation of screened Coulomb scattering unfolds two new dimensions in the scattering problem: transverse momentum and orbital angular momentum of the incoming beam. In this paper, the elastic Coulomb scattering amplitude is calculated analytically for incoming Bessel beams. This reveals novel features occurring for wide-angle scattering and quantitative insights for small-angle vortex scattering. The result successfully generalizes the well-known Rutherford formula, incorporating transverse and orbital angular momentum into the formalism.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000333690500008 Publication Date 2014-03-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1050-2947;1094-1622; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.925 Times cited 34 Open Access  
  Notes 312483-Esteem2; N246791 – Countatoms; 278510 Vortex; esteem2jra1; esteem2jra3 ECASJO_; Approved Most recent IF: 2.925; 2014 IF: 2.808  
  Call Number UA @ lucian @ c:irua:115562UA @ admin @ c:irua:115562 Serial 2936  
Permanent link to this record
 

 
Author Lubk, A.; Clark, L.; Guzzinati, G.; Verbeeck, J. url  doi
openurl 
  Title Topological analysis of paraxially scattered electron vortex beams Type A1 Journal article
  Year 2013 Publication Physical review : A : atomic, molecular and optical physics Abbreviated Journal (up) Phys Rev A  
  Volume 87 Issue 3 Pages 033834-33838  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We investigate topological aspects of subnanometer electron vortex beams upon elastic propagation through atomic scattering potentials. Two main aspects can be distinguished: (i) significantly reduced delocalization compared to a similar nonvortex beam if the beam centers on an atomic column and (ii) site symmetry dependent splitting of higher-order vortex beams. Furthermore, the results provide insight into the complex vortex line fabric within the elastically scattered wave containing characteristic vortex loops predominantly attached to atomic columns and characteristic twists of vortex lines around atomic columns. DOI: 10.1103/PhysRevA.87.033834  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000316790600011 Publication Date 2013-03-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1050-2947;1094-1622; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.925 Times cited 26 Open Access  
  Notes Countatoms; Vortex; Esteem2; esteem2jra3 ECASJO; Approved Most recent IF: 2.925; 2013 IF: 2.991  
  Call Number UA @ lucian @ c:irua:108496 Serial 3673  
Permanent link to this record
 

 
Author Juchtmans, R.; Verbeeck, J. url  doi
openurl 
  Title Local orbital angular momentum revealed by spiral-phase-plate imaging in transmission-electron microscopy Type A1 Journal article
  Year 2016 Publication Physical Review A Abbreviated Journal (up) Phys Rev A  
  Volume 93 Issue 93 Pages 023811  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The orbital angular momentum (OAM) of light and matter waves is a parameter that has been getting increasingly more attention over the past couple of years. Beams with a well-defined OAM, the so-called vortex beams, are applied already in, e.g., telecommunication, astrophysics, nanomanipulation, and chiral measurements in optics and electron microscopy. Also, the OAM of a wave induced by the interaction with a sample has attracted a lot of interest. In all these experiments it is crucial to measure the exact (local) OAM content of the wave, whether it is an incoming vortex beam or an exit wave after interacting with a sample. In this work we investigate the use of spiral phase plates (SPPs) as an alternative to the programmable phase plates used in optics to measure OAM. We derive analytically how these can be used to study the local OAM components of any wave function. By means of numerical simulations we illustrate how the OAM of a pure vortex beam can be measured. We also look at a sum of misaligned vortex beams and show how, by using SPPs, the position and the OAM of each individual beam can be detected. Finally, we look at the OAM induced by a magnetic dipole on a free-electron wave and show how the SPP can be used to localize the magnetic poles and measure their “magnetic charge.” Although our findings can be applied to study the OAM of any wave function, our findings are of particular interest for electron microscopy where versatile programmable phase plates do not yet exist.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000369367700006 Publication Date 2016-02-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1050-2947;1094-1622; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.925 Times cited 12 Open Access  
  Notes The authors acknowledge support from the Aspirant Fonds Wetenschappelijk Onderzoek–Vlaanderen (FPO), the EU un- der the Seventh Framework Program (FP7) under a contract for an Integrated Infrastructure Initiative, Reference No. 312483- ESTEEM2, and the ERC Starting Grant 278510 VORTEX.; esteem2jra2 ECASJO; Approved Most recent IF: 2.925  
  Call Number c:irua:131613 c:irua:131613UA @ admin @ c:irua:131613 Serial 4030  
Permanent link to this record
 

 
Author Clark, L.; Guzzinati, G.; Béché, A.; Lubk, A.; Verbeeck, J. pdf  url
doi  openurl
  Title Symmetry-constrained electron vortex propagation Type A1 Journal article
  Year 2016 Publication Physical review A Abbreviated Journal (up) Phys Rev A  
  Volume 93 Issue 93 Pages 063840  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Electron vortex beams hold great promise for development in transmission electron microscopy but have yet to be widely adopted. This is partly due to the complex set of interactions that occur between a beam carrying orbital angular momentum (OAM) and a sample. Herein, the system is simplified to focus on the interaction between geometrical symmetries, OAM, and topology. We present multiple simulations alongside experimental data to study the behavior of a variety of electron vortex beams after interacting with apertures of different symmetries and investigate the effect on their OAM and vortex structure, both in the far field and under free-space propagation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000378197200006 Publication Date 2016-06-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9926 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.925 Times cited 7 Open Access  
  Notes L.C., A.B., G.G., and J.V. acknowledge funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant No. 278510—VORTEX. J.V. and A.L. acknowledge financial support from the European Union through the 7th Framework Program (FP7) under a contract for an Integrated Infrastructure Initiative (Reference No. 312483 ESTEEM2). The Qu-Ant-EM microscope was partly funded by the Hercules fund of the Flemish Government.; esteem2jra3; ECASJO; Approved Most recent IF: 2.925  
  Call Number c:irua:134086 c:irua:134086 Serial 4090  
Permanent link to this record
 

 
Author Juchtmans, R.; Guzzinati, G.; Verbeeck, J. url  doi
openurl 
  Title Extension of Friedel's law to vortex-beam diffraction Type A1 Journal article
  Year 2016 Publication Physical Review A Abbreviated Journal (up) Phys Rev A  
  Volume 94 Issue 94 Pages 033858  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Friedel's law states that the modulus of the Fourier transform of real functions is centrosymmetric, while the phase is antisymmetric. As a consequence of this, elastic scattering of plane-wave photons or electrons within the first-order Born-approximation, as well as Fraunhofer diffraction on any aperture, is bound to result in centrosymmetric diffraction patterns. Friedel's law, however, does not apply for vortex beams, and centrosymmetry in general is not present in their diffraction patterns. In this work we extend Friedel's law for vortex beams by showing that the diffraction patterns of vortex beams with opposite topological charge, scattered on the same two-dimensional potential, always are centrosymmetric to one another, regardless of the symmetry of the scattering object. We verify our statement by means of numerical simulations and experimental data. Our research provides deeper understanding in vortex-beam diffraction and can be used to design new experiments to measure the topological charge of vortex beams with diffraction gratings or to study general vortex-beam diffraction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000384374500010 Publication Date 2016-09-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9926 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.925 Times cited 13 Open Access  
  Notes The authors acknowledge support from the FWO (Aspirant Fonds Wetenschappelijk Onderzoek – Vlaanderen) and the EU under the Seventh Framework Program (FP7) under a contract for an Integrated Infrastructure Initiative, Reference No. 312483-ESTEEM2 and ERC Starting Grant No. 278510 VORTEX.; ECASJO_; Approved Most recent IF: 2.925  
  Call Number EMAT @ emat @ c:irua:137200UA @ admin @ c:irua:137200 Serial 4314  
Permanent link to this record
 

 
Author Juchtmans, R.; Clark, L.; Lubk, A.; Verbeeck, J. url  doi
openurl 
  Title Spiral phase plate contrast in optical and electron microscopy Type A1 Journal article
  Year 2016 Publication Physical review A Abbreviated Journal (up) Phys Rev A  
  Volume 94 Issue 94 Pages 023838  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The use of phase plates in the back focal plane of a microscope is a well-established technique in optical microscopy to increase the contrast of weakly interacting samples and is gaining interest in electron microscopy as well. In this paper we study the spiral phase plate (SPP), also called helical, vortex, or two-dimensional Hilbert phase plate, which adds an angularly dependent phase of the form exp(iℓϕk) to the exit wave in Fourier space. In the limit of large collection angles, we analytically calculate that the average of a pair of l=+-1

SPP filtered images is directly proportional to the gradient squared of the exit wave, explaining the edge contrast previously seen in optical SPP work. We discuss the difference between a clockwise-anticlockwise pair of SPP filtered images and derive conditions under which the modulus of the wave's gradient can be seen directly from one SPP filtered image. This work provides the theoretical background to interpret images obtained with a SPP, thereby opening new perspectives for new experiments to study, for example, magnetic materials in an electron microscope.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000381882800011 Publication Date 2016-08-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9926 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.925 Times cited 10 Open Access  
  Notes The authors acknowledge support from the FWO (Aspirant Fonds Wetenschappelijk Onderzoek – Vlaanderen) and the EU under the Seventh Framework Program (FP7) under a contract for an Integrated Infrastructure Initiative, Reference No. 312483-ESTEEM2 and ERC Starting Grant No. 278510 VORTEX.; ECASJO_ Approved Most recent IF: 2.925  
  Call Number EMAT @ emat @ c:irua:140086 Serial 4418  
Permanent link to this record
 

 
Author Vávra, O.; Gaži, S.; Golubović, D.S.; Vávra, I.; Dérer, J.; Verbeeck, J.; Van Tendeloo, G.; Moshchalkov, V.V. doi  openurl
  Title 0 and π phase Josephson coupling through an insulating barrier with magnetic impurities Type A1 Journal article
  Year 2006 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal (up) Phys Rev B  
  Volume 74 Issue 2 Pages 020502  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We have studied the temperature and field dependencies of the critical current I(C) in the Nb-Fe(0.1)Si(0.9)-Nb Josephson junction with a tunneling barrier formed by a paramagnetic insulator. We demonstrate that in these junctions coexistence of both the 0 and the pi states within one tunnel junction occurs, and leads to the appearance of a sharp cusp in the temperature dependence I(C)(T), similar to the I(C)(T) cusp found for the 0-pi transition in metallic pi junctions. This cusp is not related to the 0-pi temperature-induced transition itself, but is caused by the different temperature dependencies of the opposing 0 and pi supercurrents through the barrier.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000239426600010 Publication Date 2006-07-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 27 Open Access  
  Notes Approved Most recent IF: 3.836; 2006 IF: 3.107  
  Call Number UA @ lucian @ c:irua:60087 c:irua:60087 c:irua:60087 c:irua:60087UA @ admin @ c:irua:60087 Serial 1  
Permanent link to this record
 

 
Author Moshnyaga, V.; Gehrke, K.; Sudheendra, L.; Belenchuk, A.; Raabe, S.; Shapoval, O.; Verbeeck, J.; Van Tendeloo, G.; Samwer, K. url  doi
openurl 
  Title Electrical nonlinearity in colossal magnetoresistance manganite films: relevance of correlated polarons Type A1 Journal article
  Year 2009 Publication Physical review : B : solid state Abbreviated Journal (up) Phys Rev B  
  Volume 79 Issue 13 Pages 134413,1-134413,8  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The metal-insulator (MI) transition in epitaxial thin films of La0.75Ca0.25MnO3 (LCMO) is accompanied by the appearance of an intrinsic electrical nonlinearity. The latter, probed by electrical third harmonic voltage, U3, or resistance, R3=dU3/dJ, is drastically enhanced in the vicinity of the MI transition, TMI=267 K. Applied magnetic field, B=5 T, suppresses the nonlinearity, resulting in a huge nonlinear CMR3(TMI)~105%. R3 shows a peculiar low-frequency (1 kHz) dependence, R3~(-0)n, with exponent, n, changing across the MI transition from n~1,52 for TTMI to n=1 (T<TMI). The observed electrical nonlinearity in LCMO reflects the behavior of correlated polarons, the number of which dramatically enhances in the vicinity of TMI. We argued that correlated polarons, considered as electric-elastic quadrupoles, provide a nonlinear (quadratic) coupling to the electric field, yielding a third harmonic electric nonlinearity in LCMO. The reference film of La0.7Sr0.3MnO3 (LSMO), a prototypic double exchange system with second-order phase transition, is characterized as a linear metallic material in the whole range of temperatures (T=10400 K), magnetic fields (B=05 T), and frequencies (=11000 Hz).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000265942800074 Publication Date 2009-04-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 28 Open Access  
  Notes Esteem 026019 Approved Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:77022UA @ admin @ c:irua:77022 Serial 893  
Permanent link to this record
 

 
Author Verbeeck, J.; Bals, S.; Lamoen, D.; Luysberg, M.; Huijben, M.; Rijnders, G.; Brinkman, A.; Hilgenkamp, H.; Blank, D.H.A.; Van Tendeloo, G. url  doi
openurl 
  Title Electronic reconstruction at n-type SrTiO3/LaAlO3 interfaces Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal (up) Phys Rev B  
  Volume 81 Issue 8 Pages 085113,1-085113,6  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Electron-energy-loss spectroscopy (EELS) is used to investigate single layers of LaAlO3 grown on SrTiO3 having an n-type interface as well as multilayers of LaAlO3 and SrTiO3 in which both n- and p-type interfaces occur. Only minor changes in Ti valence at the n-type interface are observed. This finding seems to contradict earlier experiments for other SrTiO3/LaAlO3 systems where large deviations in Ti valency were assumed to be responsible for the conductivity of these interfaces. Ab initio calculations have been carried out in order to interpret our EELS results. Using the concept of Bader charges, it is demonstrated that the so-called polar discontinuity is mainly resolved by lattice distortions and to a far lesser extent by changes in valency for both single layer and multilayer geometries.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000275053300040 Publication Date 2010-02-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 25 Open Access  
  Notes Esteem 026019; Fwo Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:81768UA @ admin @ c:irua:81768 Serial 1005  
Permanent link to this record
 

 
Author Dobrynin, A.N.; Ievlev, D.N.; Hendrich, C.; Temst, K.; Lievens, P.; Hörmann, U.; Verbeeck, J.; Van Tendeloo, G.; Vantomme, A. doi  openurl
  Title Influence of finite size effects on exchange anisotropy in oxidized Co nanocluster assembled films Type A1 Journal article
  Year 2006 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal (up) Phys Rev B  
  Volume 73 Issue 24 Pages 245416,1-8  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We compare the magnetic properties of Co cluster assembled films with different degrees of oxidation. Clusters with grain size (2.3 +/- 0.7) nm are produced in a laser vaporization cluster source and soft-landed in ultrahigh vacuum conditions, forming highly porous nanogranular films. After exposure to air for different periods of time, the Co clusters oxidize and the sample may be considered as a thin antiferromagnetic Co oxide matrix containing ferromagnetic Co clusters. Magnetization measurements were performed in a temperature range from 300 down to 5 K, at applied magnetic fields up to 30 kOe. The exchange bias value at 5 K for the strongly oxidized sample is 4.8 kOe against the value of 0.75 kOe for the less oxidized sample. The mean values of the thicknesses of the Co oxide layers are estimated to be 0.6 and 0.3 nm for the more and less oxidized sample, respectively. We propose a method of measuring the exchange bias inducing temperature, i.e., the temperature at which exchange anisotropy is established. We determined the mean inducing temperatures for both samples, which are 55 and 25 K, respectively, for the more and less oxidized samples. Both temperatures are well below the bulk CoO Neel temperature of 292 K. A low value of the inducing temperature of the Co oxide layer is a consequence of its subnanometer thickness, while a large exchange bias value is a consequence of different dimensionality of Co clusters and Co oxide matrix.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000238696900114 Publication Date 2006-06-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 17 Open Access  
  Notes Fwo; Gao; Iap; Hprn-Ct Approved Most recent IF: 3.836; 2006 IF: 3.107  
  Call Number UA @ lucian @ c:irua:59709UA @ admin @ c:irua:59709 Serial 1622  
Permanent link to this record
 

 
Author Gehrke, K.; Moshnyaga, V.; Samwer, K.; Lebedev, O.I.; Verbeeck, J.; Kirilenko, D.; Van Tendeloo, G. url  doi
openurl 
  Title Interface controlled electronic variations in correlated heterostructures Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal (up) Phys Rev B  
  Volume 82 Issue 11 Pages 113101,1-113101,4  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract An interface modification of (LaCa)MnO3-BaTiO3 superlattices was found to massively influence magnetic and magnetotransport properties. Moreover it determines the crystal structure of the manganite layers, changing it from orthorhombic (Pnma) for the conventional superlattice (cSL), to rhombohedral (R3̅ c) for the modified one (mSL). While the cSL shows extremely nonlinear ac transport, the mSL is an electrically homogeneous material. The observations go beyond an oversimplified picture of dead interface layers and evidence the importance of electronic correlations at perovskite interfaces.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000281643200001 Publication Date 2010-09-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 9 Open Access  
  Notes This work was supported by DFG via SFB 602, TPA2. Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:84249UA @ admin @ c:irua:84249 Serial 1691  
Permanent link to this record
 

 
Author Tan, H.; Egoavil, R.; Béché, A.; Martinez, G.T.; Van Aert, S.; Verbeeck, J.; Van Tendeloo, G.; Rotella, H.; Boullay, P.; Pautrat, A.; Prellier, W. url  doi
openurl 
  Title Mapping electronic reconstruction at the metal-insulator interface in LaVO3/SrVO3 heterostructures Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal (up) Phys Rev B  
  Volume 88 Issue 15 Pages 155123-155126  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A (LaVO3)6/(SrVO3)(3) superlattice is studied with a combination of sub-A resolved scanning transmission electron microscopy and monochromated electron energy-loss spectroscopy. The V oxidation state is mapped with atomic spatial resolution enabling us to investigate electronic reconstruction at the LaVO3/SrVO3 interfaces. Surprisingly, asymmetric charge distribution is found at adjacent chemically symmetric interfaces. The local structure is proposed and simulated with a double channeling calculation which agrees qualitatively with our experiment. We demonstrate that local strain asymmetry is the likely cause of the electronic asymmetry of the interfaces. The electronic reconstruction at the interfaces extends much further than the chemical composition, varying from 0.5 to 1.2 nm. This distance corresponds to the length of charge transfer previously found in the (LaVO3)./(SrVO3). metal/insulating and the (LaAlO3)./(SrTiO3). insulating/insulating interfaces.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000326087100003 Publication Date 2013-10-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 15 Open Access  
  Notes Hercules; 246791 COUNTATOMS; 278510 VORTEX; 246102 IFOX; 312483 ESTEEM2; FWO; GOA XANES meets ELNES; esteem2jra3 ECASJO; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:112733UA @ admin @ c:irua:112733 Serial 1944  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: