toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Hu, S.; Gopinadhan, K.; Rakowski, A.; Neek-Amal, M.; Heine, T.; Grigorieva, I.V.; Haigh, S.J.; Peeters, F.M.; Geim, A.K.; Lozada-Hidalgo, M. pdf  doi
openurl 
  Title Transport of hydrogen isotopes through interlayer spacing in van der Waals crystals Type A1 Journal article
  Year 2018 Publication Nature nanotechnology Abbreviated Journal (down) Nat Nanotechnol  
  Volume 13 Issue 6 Pages 468-+  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Atoms start behaving as waves rather than classical particles if confined in spaces commensurate with their de Broglie wavelength. At room temperature this length is only about one angstrom even for the lightest atom, hydrogen. This restricts quantum-confinement phenomena for atomic species to the realm of very low temperatures(1-5). Here, we show that van der Waals gaps between atomic planes of layered crystals provide angstrom-size channels that make quantum confinement of protons apparent even at room temperature. Our transport measurements show that thermal protons experience a notably higher barrier than deuterons when entering van der Waals gaps in hexagonal boron nitride and molybdenum disulfide. This is attributed to the difference in the de Broglie wavelengths of the isotopes. Once inside the crystals, transport of both isotopes can be described by classical diffusion, albeit with unexpectedly fast rates comparable to that of protons in water. The demonstrated angstrom-size channels can be exploited for further studies of atomistic quantum confinement and, if the technology can be scaled up, for sieving hydrogen isotopes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000434715700015 Publication Date 2018-04-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-3387; 1748-3395 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 38.986 Times cited 32 Open Access  
  Notes ; The authors acknowledge support from the Lloyd's Register Foundation, EPSRC – EP/N010345/1, the European Research Council ARTIMATTER project – ERC-2012-ADG and from Graphene Flagship. M.L.-H. acknowledges a Leverhulme Early Career Fellowship. ; Approved Most recent IF: 38.986  
  Call Number UA @ lucian @ c:irua:152014UA @ admin @ c:irua:152014 Serial 5046  
Permanent link to this record
 

 
Author Mogg, L.; Hao, G.-P.; Zhang, S.; Bacaksiz, C.; Zou, Y.; Haigh, S.J.; Peeters, F.M.; Geim, A.K.; Lozada-Hidalgo, M. url  doi
openurl 
  Title Atomically thin micas as proton-conducting membranes Type A1 Journal article
  Year 2019 Publication Nature nanotechnology Abbreviated Journal (down) Nat Nanotechnol  
  Volume 14 Issue 10 Pages 962-+  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Monolayers of graphene and hexagonal boron nitride (hBN) are highly permeable to thermal protons1,2. For thicker two-dimensional (2D) materials, proton conductivity diminishes exponentially, so that, for example, monolayer MoS2 that is just three atoms thick is completely impermeable to protons1. This seemed to suggest that only one-atom-thick crystals could be used as proton-conducting membranes. Here, we show that few-layer micas that are rather thick on the atomic scale become excellent proton conductors if native cations are ion-exchanged for protons. Their areal conductivity exceeds that of graphene and hBN by one to two orders of magnitude. Importantly, ion-exchanged 2D micas exhibit this high conductivity inside the infamous gap for proton-conducting materials3, which extends from ∼100 °C to 500 °C. Areal conductivity of proton-exchanged monolayer micas can reach above 100 S cm−2 at 500 °C, well above the current requirements for the industry roadmap4. We attribute the fast proton permeation to ~5-Å-wide tubular channels that perforate micas’ crystal structure, which, after ion exchange, contain only hydroxyl groups inside. Our work indicates that there could be other 2D crystals5 with similar nanometre-scale channels, which could help close the materials gap in proton-conducting applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000488977100016 Publication Date 2019-09-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-3387; 1748-3395 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 38.986 Times cited 37 Open Access  
  Notes ; The work was supported by the Lloyd's Register Foundation, the Engineering and Physical Sciences Research Council (EPSRC)-EP/N010345/1, EP/M010619/1 and EP/ P009050/1, the European Research Council, the Graphene Flagship and the Royal Society. M.L.-H. acknowledges a Leverhulme Early Career Fellowship, G.-P.H. acknowledges a Marie Curie International Incoming Fellowship, and L.M. acknowledges the EPSRC NOWNano programme for funding. Y.Z. acknowledges the assistance of Eric Prestat in TEM specimen preparation. Computational resources were provided by the TUBITAK ULAKBIM High Performance and Grid Computing Center (TR-Grid e-Infrastructure). ; Approved Most recent IF: 38.986  
  Call Number UA @ admin @ c:irua:163589 Serial 5407  
Permanent link to this record
 

 
Author Zou, Y.-C.; Mogg, L.; Clark, N.; Bacaksiz, C.; Milanovic, S.; Sreepal, V.; Hao, G.-P.; Wang, Y.-C.; Hopkinson, D.G.; Gorbachev, R.; Shaw, S.; Novoselov, K.S.; Raveendran-Nair, R.; Peeters, F.M.; Lozada-Hidalgo, M.; Haigh, S.J. url  doi
openurl 
  Title Ion exchange in atomically thin clays and micas Type A1 Journal article
  Year 2021 Publication Nature Materials Abbreviated Journal (down) Nat Mater  
  Volume 20 Issue 12 Pages 1677-1682  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The physical properties of clays and micas can be controlled by exchanging ions in the crystal lattice. Atomically thin materials can have superior properties in a range of membrane applications, yet the ion-exchange process itself remains largely unexplored in few-layer crystals. Here we use atomic-resolution scanning transmission electron microscopy to study the dynamics of ion exchange and reveal individual ion binding sites in atomically thin and artificially restacked clays and micas. We find that the ion diffusion coefficient for the interlayer space of atomically thin samples is up to 10(4) times larger than in bulk crystals and approaches its value in free water. Samples where no bulk exchange is expected display fast exchange at restacked interfaces, where the exchanged ions arrange in islands with dimensions controlled by the moire superlattice dimensions. We attribute the fast ion diffusion to enhanced interlayer expandability resulting from weaker interlayer binding forces in both atomically thin and restacked materials. This work provides atomic scale insights into ion diffusion in highly confined spaces and suggests strategies to design exfoliated clay membranes with enhanced performance. Layered clays are of interest for membranes and many other applications but their ion-exchange dynamics remain unexplored in atomically thin materials. Here, using electron microscopy, it is found that the ion diffusion for few-layer two-dimensional clays approaches that of free water and that superlattice cation islands can form in twisted and restacked materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000689664000001 Publication Date 2021-09-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1476-1122; 1476-4660 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 39.737 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 39.737  
  Call Number UA @ admin @ c:irua:181691 Serial 6999  
Permanent link to this record
 

 
Author Bals, S.; Van Aert, S.; Romero, C.P.; Lauwaet, K.; Van Bael, M.J.; Schoeters, B.; Partoens, B.; Yuecelen, E.; Lievens, P.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Atomic scale dynamics of ultrasmall germanium clusters Type A1 Journal article
  Year 2012 Publication Nature communications Abbreviated Journal (down) Nat Commun  
  Volume 3 Issue 897 Pages 897  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract Starting from the gas phase, small clusters can be produced and deposited with huge flexibility with regard to composition, materials choice and cluster size. Despite many advances in experimental characterization, a detailed morphology of such clusters is still lacking. Here we present an atomic scale observation as well as the dynamical behaviour of ultrasmall germanium clusters. Using quantitative scanning transmission electron microscopy in combination with ab initio calculations, we are able to characterize the transition between different equilibrium geometries of a germanium cluster consisting of less than 25 atoms. Seven-membered rings, trigonal prisms and some smaller subunits are identified as possible building blocks that stabilize the structure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000306099900024 Publication Date 2012-06-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 90 Open Access  
  Notes Fwo; Iap; Iwt Approved Most recent IF: 12.124; 2012 IF: 10.015  
  Call Number UA @ lucian @ c:irua:100340 Serial 183  
Permanent link to this record
 

 
Author Tongay, S.; Sahin, H.; Ko, C.; Luce, A.; Fan, W.; Liu, K.; Zhou, J.; Huang, Y.S.; Ho, C.H.; Yan, J.; Ogletree, D.F.; Aloni, S.; Ji, J.; Li, S.; Li, J.; Peeters, F.M.; Wu, J.; doi  openurl
  Title Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling Type A1 Journal article
  Year 2014 Publication Nature communications Abbreviated Journal (down) Nat Commun  
  Volume 5 Issue Pages 3252  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Semiconducting transition metal dichalcogenides consist of monolayers held together by weak forces where the layers are electronically and vibrationally coupled. Isolated monolayers show changes in electronic structure and lattice vibration energies, including a transition from indirect to direct bandgap. Here we present a new member of the family, rhenium disulphide (ReS2), where such variation is absent and bulk behaves as electronically and vibrationally decoupled monolayers stacked together. From bulk to monolayers, ReS2 remains direct bandgap and its Raman spectrum shows no dependence on the number of layers. Interlayer decoupling is further demonstrated by the insensitivity of the optical absorption and Raman spectrum to interlayer distance modulated by hydrostatic pressure. Theoretical calculations attribute the decoupling to Peierls distortion of the 1T structure of ReS2, which prevents ordered stacking and minimizes the interlayer overlap of wavefunctions. Such vanishing interlayer coupling enables probing of two-dimensional-like systems without the need for monolayers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000332666700010 Publication Date 2014-02-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 806 Open Access  
  Notes ; This work was supported by the United States Department of Energy Early Career Award DE-FG02-11ER46796. The high pressure part of this work was supported by COMPRES, the Consortium for Materials Properties Research in Earth Sciences, under National Science Foundation Cooperative Agreement EAR 11-577758. The electron microscopy and nano-Auger measurements were supported by the user programme at the Molecular Foundry, which was supported by the Office of Science, Office of Basic Energy Sciences, of the United States Department of Energy under contract no. DE-AC02-05CH11231. S. A. gratefully acknowledges Dr Virginia Altoe of the Molecular Foundry for help with the TEM data acquisition and analysis. J.L. acknowledges support from the Natural Science Foundation of China for Distinguished Young Scholar (grant nos. 60925016 and 91233120). Y.-S.H. and C.-H. H. acknowledge support from the National Science Council of Taiwan under project nos. NSC 100-2112-M-011-001-MY3 and NSC 101-2221-E-011-052-MY3. H. S. was supported by the FWO Pegasus Marie Curie Long Fellowship programme. The DFT work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem programme of the Flemish government. Computational resources were partially provided by TUBITAK ULAKBIM, High Performance and Grid Computing Centre. ; Approved Most recent IF: 12.124; 2014 IF: 11.470  
  Call Number UA @ lucian @ c:irua:119247 Serial 2192  
Permanent link to this record
 

 
Author Neek-Amal, M.; Xu, P.; Schoelz, J.K.; Ackerman, M.L.; Barber, S.D.; Thibado, P.M.; Sadeghi, A.; Peeters, F.M. doi  openurl
  Title Thermal mirror buckling in freestanding graphene locally controlled by scanning tunnelling microscopy Type A1 Journal article
  Year 2014 Publication Nature communications Abbreviated Journal (down) Nat Commun  
  Volume 5 Issue Pages 4962  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Knowledge of and control over the curvature of ripples in freestanding graphene are desirable for fabricating and designing flexible electronic devices, and recent progress in these pursuits has been achieved using several advanced techniques such as scanning tunnelling microscopy. The electrostatic forces induced through a bias voltage (or gate voltage) were used to manipulate the interaction of freestanding graphene with a tip (substrate). Such forces can cause large movements and sudden changes in curvature through mirror buckling. Here we explore an alternative mechanism, thermal load, to control the curvature of graphene. We demonstrate thermal mirror buckling of graphene by scanning tunnelling microscopy and large-scale molecular dynamic simulations. The negative thermal expansion coefficient of graphene is an essential ingredient in explaining the observed effects. This new control mechanism represents a fundamental advance in understanding the influence of temperature gradients on the dynamics of freestanding graphene and future applications with electro-thermal-mechanical nanodevices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000342984800018 Publication Date 2014-09-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 36 Open Access  
  Notes ; Financial support for this study was provided, in part, by the Office of Naval Research under grant N00014-10-1-0181, the National Science Foundation under grant DMR-0855358, the EU-Marie Curie IIF postdoc Fellowship/299855 (for M. N.-A.), the ESF-EuroGRAPHENE project CONGRAN, the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government. M.N.-A. has also been supported partially by BOF project of University of Antwerp number 28033. ; Approved Most recent IF: 12.124; 2014 IF: 11.470  
  Call Number UA @ lucian @ c:irua:121121 Serial 3628  
Permanent link to this record
 

 
Author Xu, P.; Neek-Amal, M.; Barber, S.D.; Schoelz, J.K.; Ackerman, M.L.; Thibado, P.M.; Sadeghi, A.; Peeters, F.M. doi  openurl
  Title Unusual ultra-low-frequency fluctuations in freestanding graphene Type A1 Journal article
  Year 2014 Publication Nature communications Abbreviated Journal (down) Nat Commun  
  Volume 5 Issue Pages 3720  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Intrinsic ripples in freestanding graphene have been exceedingly difficult to study. Individual ripple geometry was recently imaged using scanning tunnelling microscopy, but these measurements are limited to static configurations. Thermally-activated flexural phonon modes should generate dynamic changes in curvature. Here we show how to track the vertical movement of a one-square-angstrom region of freestanding graphene using scanning tunnelling microscopy, thereby allowing measurement of the out-of-plane time trajectory and fluctuations over long time periods. We also present a model from elasticity theory to explain the very-low-frequency oscillations. Unexpectedly, we sometimes detect a sudden colossal jump, which we interpret as due to mirror buckling. This innovative technique provides a much needed atomic-scale probe for the time-dependent behaviours of intrinsic ripples. The discovery of this novel progenitor represents a fundamental advance in the use of scanning tunnelling microscopy, which together with the application of a thermal load provides a low-frequency nano-resonator.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000335223200007 Publication Date 2014-04-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 62 Open Access  
  Notes ; This work was financially supported, in part, by the Office of Naval Research under grant N00014-10-1-0181, the National Science Foundation under grant DMR-0855358, the EU-Marie Curie IIF postdoc Fellowship/299855 (for M.N.-A.), the ESF-Euro-GRAPHENE project CONGRAN, the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government. ; Approved Most recent IF: 12.124; 2014 IF: 11.470  
  Call Number UA @ lucian @ c:irua:117201 Serial 3819  
Permanent link to this record
 

 
Author Buh, J.; Kabanov, V.; Baranov, V.; Mrzel, A.; Kovic, A.; Mihailovic, D. url  doi
openurl 
  Title Control of switching between metastable superconducting states in delta-MoN nanowires Type A1 Journal article
  Year 2015 Publication Nature communications Abbreviated Journal (down) Nat Commun  
  Volume 6 Issue 6 Pages 10250  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The superconducting state in one-dimensional nanosystems is very delicate. While fluctuations of the phase of the superconducting wave function lead to the spontaneous decay of persistent supercurrents in thin superconducting wires and nanocircuits, discrete phase-slip fluctuations can also lead to more exotic phenomena, such as the appearance of metastable superconducting states in current-bearing wires. Here we show that switching between different metastable superconducting states in d-MoN nanowires can be very effectively manipulated by introducing small amplitude electrical noise. Furthermore, we show that deterministic switching between metastable superconducting states with different numbers of phase-slip centres can be achieved in both directions with small electrical current pulse perturbations of appropriate polarity. The observed current-controlled bi-stability is in remarkable agreement with theoretically predicted trajectories of the system switching between different limit cycle solutions of a model one-dimensional superconductor.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000367576600002 Publication Date 2015-12-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 8 Open Access  
  Notes ; ; Approved Most recent IF: 12.124; 2015 IF: 11.470  
  Call Number UA @ lucian @ c:irua:131108 Serial 4156  
Permanent link to this record
 

 
Author Willhammar, T.; Sentosun, K.; Mourdikoudis, S.; Goris, B.; Kurttepeli, M.; Bercx, M.; Lamoen, D.; Partoens, B.; Pastoriza-Santos, I.; Pérez-Juste, J.; Liz-Marzán, L.M.; Bals, S.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Structure and vacancy distribution in copper telluride nanoparticles influence plasmonic activity in the near-infrared Type A1 Journal article
  Year 2017 Publication Nature communications Abbreviated Journal (down) Nat Commun  
  Volume 8 Issue 8 Pages 14925  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract Copper chalcogenides find applications in different domains including photonics, photothermal therapy and photovoltaics. CuTe nanocrystals have been proposed as an alternative to noble metal particles for plasmonics. Although it is known that deviations from stoichiometry are a prerequisite for plasmonic activity in the near-infrared, an accurate description of the material and its (optical) properties is hindered by an insufficient understanding of the atomic structure and the influence of defects, especially for materials in their nanocrystalline form. We demonstrate that the structure of Cu1.5±xTe nanocrystals canbe determined using electron diffraction tomography. Real-space high-resolution electron tomography directly reveals the three-dimensional distribution of vacancies in the structure. Through first-principles density functional theory, we furthermore demonstrate that the influence of these vacancies on the optical properties of the nanocrystals is determined. Since our methodology is applicable to a variety of crystalline nanostructured materials, it is expected to provide unique insights concerning structure–property correlations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000397799700001 Publication Date 2017-03-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 37 Open Access OpenAccess  
  Notes The work was financially supported by the European Research Council through an ERC Starting Grant (#335078-COLOURATOMS). T.W. acknowledges the Swedish Research Council for an international postdoc grant. We acknowledge financial support of FWO-Vlaanderen through project G.0216.14N, G.0369.15N and a postdoctoral research grant to B.G. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO-Vlaanderen and the Flemish Government–Department EWI. The work was further supported by the Spanish MINECO (MAT2013-45168-R). S.M. thanks the Action ooSupporting Postdoctoral Researchers44 of the Operational Program ‘Education and Lifelong Learning’ (Action’s Beneficiary: General Secretariat for Research and Technology of Greece), which was co-financed by the European Social Fund (ESF) and the Greek State. (ROMEO:green; preprint:; postprint:can ; pdfversion:can); ECAS_Sara Approved Most recent IF: 12.124  
  Call Number EMAT @ emat @ c:irua:142203UA @ admin @ c:irua:142203 Serial 4538  
Permanent link to this record
 

 
Author Ghorbanfekr-Kalashami, H.; Vasu, K.S.; Nair, R.R.; Peeters, F.M.; Neek-Amal, M. url  doi
openurl 
  Title Dependence of the shape of graphene nanobubbles on trapped substance Type A1 Journal article
  Year 2017 Publication Nature communications Abbreviated Journal (down) Nat Commun  
  Volume 8 Issue 8 Pages 15844  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Van der Waals (vdW) interaction between two-dimensional crystals (2D) can trap substances in high pressurized (of order 1 GPa) on nanobubbles. Increasing the adhesion between the 2D crystals further enhances the pressure and can lead to a phase transition of the trapped material. We found that the shape of the nanobubble can depend critically on the properties of the trapped substance. In the absence of any residual strain in the top 2D crystal, flat nanobubbles can be formed by trapped long hydrocarbons (that is, hexadecane). For large nanobubbles with radius 130 nm, our atomic force microscopy measurements show nanobubbles filled with hydrocarbons (water) have a cylindrical symmetry (asymmetric) shape which is in good agreement with our molecular dynamics simulations. This study provides insights into the effects of the specific material and the vdW pressure on the microscopic details of graphene bubbles.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000403417500001 Publication Date 2017-06-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 44 Open Access  
  Notes We acknowledge fruitful discussion with Irina Grigorieva and Andre K. Geim. This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program, the Royal Society and the Engineering and Physical Sciences Research Council, UK (EP/K016946/1). M.N.-A. was supported by Iran National Science Foundation (INSF). Approved Most recent IF: 12.124  
  Call Number CMT @ cmt @ c:irua:144189 Serial 4580  
Permanent link to this record
 

 
Author Chirayath, V.A.; Callewaert, V.; Fairchild, A.J.; Chrysler, M.D.; Gladen, R.W.; Mcdonald, A.D.; Imam, S.K.; Shastry, K.; Koymen, A.R.; Saniz, R.; Barbiellini, B.; Rajeshwar, K.; Partoens, B.; Weiss, A.H. pdf  url
doi  openurl
  Title Auger electron emission initiated by the creation of valence-band holes in graphene by positron annihilation Type A1 Journal article
  Year 2017 Publication Nature communications Abbreviated Journal (down) Nat Commun  
  Volume 8 Issue 8 Pages 16116  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Auger processes involving the filling of holes in the valence band are thought to make important contributions to the low-energy photoelectron and secondary electron spectrum from many solids. However, measurements of the energy spectrum and the efficiency with which electrons are emitted in this process remain elusive due to a large unrelated background resulting from primary beam-induced secondary electrons. Here, we report the direct measurement of the energy spectra of electrons emitted from single layer graphene as a result of the decay of deep holes in the valence band. These measurements were made possible by eliminating competing backgrounds by employing low-energy positrons (<1.25 eV) to create valence-band holes by annihilation. Our experimental results, supported by theoretical calculations, indicate that between 80 and 100% of the deep valence-band holes in graphene are filled via an Auger transition.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000405398200001 Publication Date 2017-07-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 20 Open Access  
  Notes The experiments in this work were supported by the grant NSF DMR 1508719. A.H.W and A.R.K. gratefully acknowledge support for the building of advanced positron beam through the grant NSF DMR MRI 1338130. V.C. and R.S. were supported by the FWO-Vlaanderen through Project No. G. 0224.14N. The computational resources and services used in this work were in part provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the Hercules Foundation and the Flemish Government (EWI Department). The work at Northeastern University was supported by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences grant number DE-FG02-07ER46352 (core research), and benefited from Northeastern University’s Advanced Scientific Computation Center (ASCC), the NERSC supercomputing center through DOE grant number DE-AC02-05CH11231, and support (applications to layered materials) from the DOE EFRC: Center for the Computational Design of Functional Layered Materials (CCDM) under DE-SC0012575. Approved Most recent IF: 12.124  
  Call Number CMT @ cmt @ c:irua:144625 Serial 4627  
Permanent link to this record
 

 
Author Wu, K.; Torun, E.; Sahin, H.; Chen, B.; Fan, X.; Pant, A.; Wright, D.P.; Aoki, T.; Peeters, F.M.; Soignard, E.; Tongay, S. url  doi
openurl 
  Title Unusual lattice vibration characteristics in whiskers of the pseudo-one-dimensional titanium trisulfide TiS3 Type A1 Journal article
  Year 2016 Publication Nature communications Abbreviated Journal (down) Nat Commun  
  Volume 7 Issue Pages 12952  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Transition metal trichalcogenides form a class of layered materials with strong in-plane anisotropy. For example, titanium trisulfide (TiS3) whiskers are made out of weakly interacting TiS3 layers, where each layer is made of weakly interacting quasi-one-dimensional chains extending along the b axis. Here we establish the unusual vibrational properties of TiS3 both experimentally and theoretically. Unlike other two-dimensional systems, the Raman active peaks of TiS3 have only out-of-plane vibrational modes, and interestingly some of these vibrations involve unique rigid-chain vibrations and S-S molecular oscillations. High-pressure Raman studies further reveal that the A(g)(S-S) S-S molecular mode has an unconventional negative pressure dependence, whereas other peaks stiffen as anticipated. Various vibrational modes are doubly degenerate at ambient pressure, but the degeneracy is lifted at high pressures. These results establish the unusual vibrational properties of TiS3 with strong in-plane anisotropy, and may have relevance to understanding of vibrational properties in other anisotropic two-dimensional material systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000385444300004 Publication Date 2016-09-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 50 Open Access  
  Notes ; S.T. acknowledges support from the National Science Foundation (DMR-1552220) and (CMMI-1561839). F.M.P., H.S. and E.T. were supported by the Flemish Science Foundation (FWO-Vl). Computational resources were partially provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e Infrastructure). H.S. acknowledges support from Bilim Akademisi-The Science Academy, Turkey under the BAGEP programme. F.P. acknowledges the funding from Flemish Science Foundation (FWO-Vl). K.W. acknowledges helpful discussions with H. Cai, W. Kong and X. Meng. We gratefully acknowledge the use of facilities within the LeRoy Eyring Center for Solid State Science at Arizona State University. ; Approved Most recent IF: 12.124  
  Call Number UA @ lucian @ c:irua:144662 Serial 4700  
Permanent link to this record
 

 
Author Embon, L.; Anahory, Y.; Jelić, Z.L.; Lachman, E.O.; Myasoedov, Y.; Huber, M.E.; Mikitik, G.P.; Silhanek, A.V.; Milošević, M.V.; Gurevich, A.; Zeldov, E. url  doi
openurl 
  Title Imaging of super-fast dynamics and flow instabilities of superconducting vortices Type A1 Journal article
  Year 2017 Publication Nature communications Abbreviated Journal (down) Nat Commun  
  Volume 8 Issue Pages 85  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Quantized magnetic vortices driven by electric current determine key electromagnetic properties of superconductors. While the dynamic behavior of slow vortices has been thoroughly investigated, the physics of ultrafast vortices under strong currents remains largely unexplored. Here, we use a nanoscale scanning superconducting quantum interference device to image vortices penetrating into a superconducting Pb film at rates of tens of GHz and moving with velocities of up to tens of km/s, which are not only much larger than the speed of sound but also exceed the pair-breaking speed limit of superconducting condensate. These experiments reveal formation of mesoscopic vortex channels which undergo cascades of bifurcations as the current and magnetic field increase. Our numerical simulations predict metamorphosis of fast Abrikosov vortices into mixed Abrikosov-Josephson vortices at even higher velocities. This work offers an insight into the fundamental physics of dynamic vortex states of superconductors at high current densities, crucial for many applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000405900400002 Publication Date 2017-07-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 124 Open Access  
  Notes ; We would like to thank M.L. Rappaport for fruitful discussions and technical support. This work was supported by the US-Israel Binational Science Foundation (BSF) grant No. 2014155 and the Israel Science Foundation grant No. 132/14. A.G. was also supported by the United States Department of Energy under Grant No. DE-SC0010081. M.V.M. acknowledges support from Research Foundation-Flanders (FWO). The work of Z.L.J. and A.V.S. was partially supported by “Mandat d'Impulsion Scientifique” MIS F.4527.13 of the F.R.S.-FNRS. This work benefited from the support of COST action MP-1201. ; Approved Most recent IF: 12.124  
  Call Number UA @ lucian @ c:irua:144832 Serial 4720  
Permanent link to this record
 

 
Author Zalalutdinov, M.K.; Robinson, J.T.; Fonseca, J.J.; LaGasse, S.W.; Pandey, T.; Lindsay, L.R.; Reinecke, T.L.; Photiadis, D.M.; Culbertson, J.C.; Cress, C.D.; Houston, B.H. url  doi
openurl 
  Title Acoustic cavities in 2D heterostructures Type A1 Journal article
  Year 2021 Publication Nature Communications Abbreviated Journal (down) Nat Commun  
  Volume 12 Issue 1 Pages 3267  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Two-dimensional (2D) materials offer unique opportunities in engineering the ultrafast spatiotemporal response of composite nanomechanical structures. In this work, we report on high frequency, high quality factor (Q) 2D acoustic cavities operating in the 50-600GHz frequency (f) range with f x Q up to 1 x 10(14). Monolayer steps and material interfaces expand cavity functionality, as demonstrated by building adjacent cavities that are isolated or strongly-coupled, as well as a frequency comb generator in MoS2/h-BN systems. Energy dissipation measurements in 2D cavities are compared with attenuation derived from phonon-phonon scattering rates calculated using a fully microscopic ab initio approach. Phonon lifetime calculations extended to low frequencies (<1THz) and combined with sound propagation analysis in ultrathin plates provide a framework for designing acoustic cavities that approach their fundamental performance limit. These results provide a pathway for developing platforms employing phonon-based signal processing and for exploring the quantum nature of phonons. Here, authors report on acoustic cavities in 2D materials operating in the 50-600GHz range and show that quality factors approach the limit set by lattice anharmonicity. Functionality expanded by heterogeneities (steps and interfaces) is demonstrated through coupled cavities and frequency comb generation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000660772400004 Publication Date 2021-06-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 12.124  
  Call Number UA @ admin @ c:irua:179597 Serial 6968  
Permanent link to this record
 

 
Author Sun, P.Z.; Yagmurcukardes, M.; Zhang, R.; Kuang, W.J.; Lozada-Hidalgo, M.; Liu, B.L.; Cheng, H.-M.; Wang, F.C.; Peeters, F.M.; Grigorieva, I.V.; Geim, A.K. url  doi
openurl 
  Title Exponentially selective molecular sieving through angstrom pores Type A1 Journal article
  Year 2021 Publication Nature Communications Abbreviated Journal (down) Nat Commun  
  Volume 12 Issue 1 Pages 7170  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Two-dimensional crystals with angstrom-scale pores are widely considered as candidates for a next generation of molecular separation technologies aiming to provide extreme, exponentially large selectivity combined with high flow rates. No such pores have been demonstrated experimentally. Here we study gas transport through individual graphene pores created by low intensity exposure to low kV electrons. Helium and hydrogen permeate easily through these pores whereas larger species such as xenon and methane are practically blocked. Permeating gases experience activation barriers that increase quadratically with molecules' kinetic diameter, and the effective diameter of the created pores is estimated as similar to 2 angstroms, about one missing carbon ring. Our work reveals stringent conditions for achieving the long sought-after exponential selectivity using porous two-dimensional membranes and suggests limits on their possible performance. Two-dimensional membranes with angstrom-sized pores are predicted to combine high permeability with exceptional selectivity, but experimental demonstration has been challenging. Here the authors realize angstrom-sized pores in monolayer graphene and demonstrate gas transport with activation barriers increasing quadratically with the molecular kinetic diameter.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000728562700016 Publication Date 2021-12-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 10 Open Access OpenAccess  
  Notes Approved Most recent IF: 12.124  
  Call Number UA @ admin @ c:irua:184840 Serial 6989  
Permanent link to this record
 

 
Author Lyu, Y.-Y.; Jiang, J.; Wang, Y.-L.; Xiao, Z.-L.; Dong, S.; Chen, Q.-H.; Milošević, M.V.; Wang, H.; Divan, R.; Pearson, J.E.; Wu, P.; Peeters, F.M.; Kwok, W.-K. url  doi
openurl 
  Title Superconducting diode effect via conformal-mapped nanoholes Type A1 Journal article
  Year 2021 Publication Nature Communications Abbreviated Journal (down) Nat Commun  
  Volume 12 Issue 1 Pages 2703  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract A superconducting diode is an electronic device that conducts supercurrent and exhibits zero resistance primarily for one direction of applied current. Such a dissipationless diode is a desirable unit for constructing electronic circuits with ultralow power consumption. However, realizing a superconducting diode is fundamentally and technologically challenging, as it usually requires a material structure without a centre of inversion, which is scarce among superconducting materials. Here, we demonstrate a superconducting diode achieved in a conventional superconducting film patterned with a conformal array of nanoscale holes, which breaks the spatial inversion symmetry. We showcase the superconducting diode effect through switchable and reversible rectification signals, which can be three orders of magnitude larger than that from a flux-quantum diode. The introduction of conformal potential landscapes for creating a superconducting diode is thereby proven as a convenient, tunable, yet vastly advantageous tool for superconducting electronics. This could be readily applicable to any superconducting materials, including cuprates and iron-based superconductors that have higher transition temperatures and are desirable in device applications. A superconducting diode is dissipationless and desirable for electronic circuits with ultralow power consumption, yet it remains challenging to realize it. Here, the authors achieve a superconducting diode in a conventional superconducting film patterned with a conformal array of nanoscale holes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000658724200018 Publication Date 2021-05-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 23 Open Access OpenAccess  
  Notes Approved Most recent IF: 12.124  
  Call Number UA @ admin @ c:irua:179611 Serial 7024  
Permanent link to this record
 

 
Author Cai, J.; Griffin, E.; Guarochico-Moreira, V.H.; Barry, D.; Xin, B.; Yagmurcukardes, M.; Zhang, S.; Geim, A.K.; Peeters, F.M.; Lozada-Hidalgo, M. url  doi
openurl 
  Title Wien effect in interfacial water dissociation through proton-permeable graphene electrodes Type A1 Journal article
  Year 2022 Publication Nature communications Abbreviated Journal (down) Nat Commun  
  Volume 13 Issue 1 Pages 5776-5777  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Strong electric fields can accelerate molecular dissociation reactions. The phenomenon known as the Wien effect was previously observed using high-voltage electrolysis cells that produced fields of about 10(7) V m(-1), sufficient to accelerate the dissociation of weakly bound molecules (e.g., organics and weak electrolytes). The observation of the Wien effect for the common case of water dissociation (H2O reversible arrow H+ + OH-) has remained elusive. Here we study the dissociation of interfacial water adjacent to proton-permeable graphene electrodes and observe strong acceleration of the reaction in fields reaching above 10(8) V m(-1). The use of graphene electrodes allows measuring the proton currents arising exclusively from the dissociation of interfacial water, while the electric field driving the reaction is monitored through the carrier density induced in graphene by the same field. The observed exponential increase in proton currents is in quantitative agreement with Onsager's theory. Our results also demonstrate that graphene electrodes can be valuable for the investigation of various interfacial phenomena involving proton transport.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000862552600012 Publication Date 2022-10-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 16.6 Times cited 3 Open Access OpenAccess  
  Notes Approved Most recent IF: 16.6  
  Call Number UA @ admin @ c:irua:191575 Serial 7228  
Permanent link to this record
 

 
Author Zhou, Z.; Tan, Y.; Yang, Q.; Bera, A.; Xiong, Z.; Yagmurcukardes, M.; Kim, M.; Zou, Y.; Wang, G.; Mishchenko, A.; Timokhin, I.; Wang, C.; Wang, H.; Yang, C.; Lu, Y.; Boya, R.; Liao, H.; Haigh, S.; Liu, H.; Peeters, F.M.; Li, Y.; Geim, A.K.; Hu, S. url  doi
openurl 
  Title Gas permeation through graphdiyne-based nanoporous membranes Type A1 Journal article
  Year 2022 Publication Nature communications Abbreviated Journal (down) Nat Commun  
  Volume 13 Issue 1 Pages 4031-4036  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Nanoporous membranes based on two dimensional materials are predicted to provide highly selective gas transport in combination with extreme permeance. Here we investigate membranes made from multilayer graphdiyne, a graphene-like crystal with a larger unit cell. Despite being nearly a hundred of nanometers thick, the membranes allow fast, Knudsen-type permeation of light gases such as helium and hydrogen whereas heavy noble gases like xenon exhibit strongly suppressed flows. Using isotope and cryogenic temperature measurements, the seemingly conflicting characteristics are explained by a high density of straight-through holes (direct porosity of similar to 0.1%), in which heavy atoms are adsorbed on the walls, partially blocking Knudsen flows. Our work offers important insights into intricate transport mechanisms playing a role at nanoscale.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000918423100001 Publication Date 2022-07-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 16.6 Times cited 10 Open Access OpenAccess  
  Notes Approved Most recent IF: 16.6  
  Call Number UA @ admin @ c:irua:194402 Serial 7308  
Permanent link to this record
 

 
Author Lee, Y.; Forte, J.D.'arf S.; Chaves, A.; Kumar, A.; Tran, T.T.; Kim, Y.; Roy, S.; Taniguchi, T.; Watanabe, K.; Chernikov, A.; Jang, J.I.; Low, T.; Kim, J. url  doi
openurl 
  Title Boosting quantum yields in two-dimensional semiconductors via proximal metal plates Type A1 Journal article
  Year 2021 Publication Nature Communications Abbreviated Journal (down) Nat Commun  
  Volume 12 Issue 1 Pages 7095  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The short exciton lifetime and strong exciton-exciton interaction in transition metal dichalcogenides limit the efficiency of exciton emission. Here, the authors show that exciton-exciton interaction in monolayer WS2 can be screened using proximal metal plates, leading to an improved quantum yield. Monolayer transition metal dichalcogenides (1L-TMDs) have tremendous potential as atomically thin, direct bandgap semiconductors that can be used as convenient building blocks for quantum photonic devices. However, the short exciton lifetime due to the defect traps and the strong exciton-exciton interaction in TMDs has significantly limited the efficiency of exciton emission from this class of materials. Here, we show that exciton-exciton interaction in 1L-WS2 can be effectively screened using an ultra-flat Au film substrate separated by multilayers of hexagonal boron nitride. Under this geometry, induced dipolar exciton-exciton interaction becomes quadrupole-quadrupole interaction because of effective image dipoles formed within the metal. The suppressed exciton-exciton interaction leads to a significantly improved quantum yield by an order of magnitude, which is also accompanied by a reduction in the exciton-exciton annihilation (EEA) rate, as confirmed by time-resolved optical measurements. A theoretical model accounting for the screening of the dipole-dipole interaction is in a good agreement with the dependence of EEA on exciton densities. Our results suggest that fundamental EEA processes in the TMD can be engineered through proximal metallic screening, which represents a practical approach towards high-efficiency 2D light emitters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000728559600014 Publication Date 2021-12-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 12.124  
  Call Number UA @ admin @ c:irua:184870 Serial 7566  
Permanent link to this record
 

 
Author Wang, F.; Wang, C.; Chaves, A.; Song, C.; Zhang, G.; Huang, S.; Lei, Y.; Xing, Q.; Mu, L.; Xie, Y.; Yan, H. doi  openurl
  Title Prediction of hyperbolic exciton-polaritons in monolayer black phosphorus Type A1 Journal article
  Year 2021 Publication Nature Communications Abbreviated Journal (down) Nat Commun  
  Volume 12 Issue 1 Pages 5628  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Hyperbolic polaritons exhibit large photonic density of states and can be collimated in certain propagation directions. The majority of hyperbolic polaritons are sustained in man-made metamaterials. However, natural-occurring hyperbolic materials also exist. Particularly, natural in-plane hyperbolic polaritons in layered materials have been demonstrated in MoO3 and WTe2, which are based on phonon and plasmon resonances respectively. Here, by determining the anisotropic optical conductivity (dielectric function) through optical spectroscopy, we predict that monolayer black phosphorus naturally hosts hyperbolic exciton-polaritons due to the pronounced in-plane anisotropy and strong exciton resonances. We simultaneously observe a strong and sharp ground state exciton peak and weaker excited states in high quality monolayer samples in the reflection spectrum, which enables us to determine the exciton binding energy of similar to 452 meV. Our work provides another appealing platform for the in-plane natural hyperbolic polaritons, which is based on excitons rather than phonons or plasmons.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000698984500003 Publication Date 2021-10-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 12.124  
  Call Number UA @ admin @ c:irua:191688 Serial 8404  
Permanent link to this record
 

 
Author Wang, M.; Chang, K.; Wang, L.G.; Dai, N.; Peeters, F.M. doi  openurl
  Title Crystallographic plane tuning of charge and spin transport in semiconductor quantum wires Type A1 Journal article
  Year 2009 Publication Nanotechnology Abbreviated Journal (down) Nanotechnology  
  Volume 20 Issue 36 Pages 365202,1-365202,8  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate theoretically the charge and spin transport in quantum wires grown along different crystallographic planes in the presence of the Rashba spinorbit interaction (RSOI) and the Dresselhaus spinorbit interaction (DSOI). We find that changing the crystallographic planes leads to a variation of the anisotropy of the conductance due to a different interplay between the RSOI and DSOI, since the DSOI is induced by bulk inversion asymmetry, which is determined by crystallographic plane. This interplay depends sensitively on the crystallographic planes, and consequently leads to the anisotropic charge and spin transport in quantum wires embedded in different crystallographic planes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000269077000003 Publication Date 2009-08-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484;1361-6528; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 14 Open Access  
  Notes Approved Most recent IF: 3.44; 2009 IF: 3.137  
  Call Number UA @ lucian @ c:irua:78933 Serial 588  
Permanent link to this record
 

 
Author Milošević, M.M.; Tadić, M.; Peeters, F.M. pdf  doi
openurl 
  Title Effects of lateral asymmetry on electronic structure of strained semiconductor nanorings in a magnetic field Type A1 Journal article
  Year 2008 Publication Nanotechnology Abbreviated Journal (down) Nanotechnology  
  Volume 19 Issue 45 Pages  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The influence of lateral asymmetry on the electronic structure and optical transitions in elliptical strained InAs nanorings is analyzed in the presence of a perpendicular magnetic field. Two-dimensional rings are assumed to have elliptical inner and outer boundaries oriented in mutually orthogonal directions. The influence of the eccentricity of the ring on the energy levels is analyzed. For large eccentricity of the ring, we do not find any AharonovBohm effect, in contrast to circular rings. Rather, the single-particle states of the electrons and the holes are localized as in two laterally coupled quantum dots formed in the lobes of the nanoring. Our work indicates that the control of shape is important for the existence of the AharonovBohm effect in semiconductor nanorings.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000259922000016 Publication Date 2008-10-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484;1361-6528; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 11 Open Access  
  Notes Approved Most recent IF: 3.44; 2008 IF: 3.446  
  Call Number UA @ lucian @ c:irua:76874 Serial 865  
Permanent link to this record
 

 
Author Wu, Z.; Zhang, Z.Z.; Chang, K.; Peeters, F.M. doi  openurl
  Title Quantum tunneling through graphene nanorings Type A1 Journal article
  Year 2010 Publication Nanotechnology Abbreviated Journal (down) Nanotechnology  
  Volume 21 Issue 18 Pages 185201  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate theoretically quantum transport through graphene nanorings in the presence of a perpendicular magnetic field. Our theoretical results demonstrate that the graphene nanorings behave like a resonant tunneling device, contrary to the Aharonov-Bohm oscillations found in conventional semiconductor rings. The resonant tunneling can be tuned by the Fermi energy, the size of the central part of the graphene nanorings and the external magnetic field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000276672100005 Publication Date 2010-04-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484;1361-6528; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 34 Open Access  
  Notes ; This work is partly supported by the NSFC, the project from the Chinese Academy of Sciences, the bilateral project between China and Sweden, the Flemish Science Foundation (FWLO-Vl) and the Belgium Science Policy (IAP). ; Approved Most recent IF: 3.44; 2010 IF: 3.652  
  Call Number UA @ lucian @ c:irua:95614 Serial 2796  
Permanent link to this record
 

 
Author Zhang, Z.Z.; Wu, Z.H.; Chang, K.; Peeters, F.M. doi  openurl
  Title Resonant tunneling through S- and U-shaped graphene nanoribbons Type A1 Journal article
  Year 2009 Publication Nanotechnology Abbreviated Journal (down) Nanotechnology  
  Volume 20 Issue 41 Pages 415203,1-415203,7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We theoretically investigate resonant tunneling through S- and U-shaped nanostructured graphene nanoribbons. A rich structure of resonant tunneling peaks is found emanating from different quasi-bound states in the middle region. The tunneling current can be turned on and off by varying the Fermi energy. Tunability of resonant tunneling is realized by changing the width of the left and/or right leads and without the use of any external gates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000269930100007 Publication Date 2009-09-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484;1361-6528; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 32 Open Access  
  Notes Approved Most recent IF: 3.44; 2009 IF: 3.137  
  Call Number UA @ lucian @ c:irua:79311 Serial 2893  
Permanent link to this record
 

 
Author Badalyan, S.M.; Peeters, F.M. doi  openurl
  Title Transport of magnetic edge states in a quantum wire exposed to a non-homogeneous magnetic field Type A1 Journal article
  Year 2001 Publication Nanotechnology Abbreviated Journal (down) Nanotechnology  
  Volume 12 Issue Pages 570-576  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000173305300041 Publication Date 2002-08-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484;1361-6528; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 5 Open Access  
  Notes Approved Most recent IF: 3.44; 2001 IF: 1.621  
  Call Number UA @ lucian @ c:irua:37276 Serial 3727  
Permanent link to this record
 

 
Author Scuracchio, P.; Dobry, A.; Costamagna, S.; Peeters, F.M. pdf  doi
openurl 
  Title Tuning the polarized quantum phonon transmission in graphene nanoribbons Type A1 Journal article
  Year 2015 Publication Nanotechnology Abbreviated Journal (down) Nanotechnology  
  Volume 26 Issue 26 Pages 305401  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract We propose systems that allow a tuning of the phonon transmission function T(omega) in graphene nanoribbons by using C-13 isotope barriers, antidot structures, and distinct boundary conditions. Phonon modes are obtained by an interatomic fifth-nearest neighbor force-constant model (5NNFCM) and T(omega) is calculated using the non-equilibrium Green's function formalism. We show that by imposing partial fixed boundary conditions it is possible to restrict contributions of the in-plane phonon modes to T(omega) at low energy. On the contrary, the transmission functions of out-of-plane phonon modes can be diminished by proper antidot or isotope arrangements. In particular, we show that a periodic array of them leads to sharp dips in the transmission function at certain frequencies omega(nu) which can be pre-defined as desired by controlling their relative distance and size. With this, we demonstrated that by adequate engineering it is possible to govern the magnitude of the ballistic transmission functions T(omega) in graphene nanoribbons. We discuss the implications of these results in the design of controlled thermal transport at the nanoscale as well as in the enhancement of thermo-electric features of graphene-based materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000358675900010 Publication Date 2015-07-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484;1361-6528; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 5 Open Access  
  Notes ; Discussions with C E Repetto, C R Stia and K H Michel are gratefully acknowledged. This work was partially supported by the Flemish Science Foundation (FWO-Vl) and PIP 11220090100392 of CONICET (Argentina). We acknowledge funding from the FWO (Belgium)-MINCyT (Argentina) collaborative research project. ; Approved Most recent IF: 3.44; 2015 IF: 3.821  
  Call Number c:irua:127186 Serial 3759  
Permanent link to this record
 

 
Author Milovanovic, S.P.; Peeters, F.M. pdf  url
doi  openurl
  Title Characterization of the size and position of electron-hole puddles at a graphene p-n junction Type A1 Journal article
  Year 2016 Publication Nanotechnology Abbreviated Journal (down) Nanotechnology  
  Volume 27 Issue 27 Pages 105203  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The effect of an electron-hole puddle on the electrical transport when governed by snake states in a bipolar graphene structure is investigated. Using numerical simulations we show that information on the size and position of the electron-hole puddle can be obtained using the dependence of the conductance on magnetic field and electron density of the gated region. The presence of the scatterer disrupts snake state transport which alters the conduction pattern. We obtain a simple analytical formula that connects the position of the electron-hole puddle with features observed in the conductance. The size of the electron-hole puddle is estimated from the magnetic field and gate potential that maximizes the effect of the puddle on the electrical transport.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000369849200003 Publication Date 2016-02-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 3 Open Access  
  Notes This work was supported by the Flemish Science Foundation (FWO-Vl) and the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE within the project CONGRAN. We acknowledge interesting correspondence with Thiti Taychatanapat. Approved Most recent IF: 3.44  
  Call Number c:irua:131907 Serial 4025  
Permanent link to this record
 

 
Author Cai, H.; Kang, J.; Sahin, H.; Chen, B.; Suslu, A.; Wu, K.; Peeters, F.; Meng, X.; Tongay, S. pdf  doi
openurl 
  Title Exciton pumping across type-I gallium chalcogenide heterojunctions Type A1 Journal article
  Year 2016 Publication Nanotechnology Abbreviated Journal (down) Nanotechnology  
  Volume 27 Issue 27 Pages 065203  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Quasi-two-dimensional gallium chalcogenide heterostructures are created by transferring exfoliated few-layer GaSe onto bulk GaTe sheets. Luminescence spectroscopy measurements reveal that the light emission from underlying GaTe layers drastically increases on heterojunction regions where GaSe layers make contact with the GaTe. Density functional theory (DFT) and band offset calculations show that conduction band minimum (CBM) (valance band maximum (VBM)) values of GaSe are higher (lower) in energy compared to GaTe, forming type-I band alignment at the interface. Consequently, GaSe layers provide photo-excited electrons and holes to GaTe sheets through relatively large built-in potential at the interface, increasing overall exciton population and light emission from GaTe. Observed results are not specific to the GaSe/GaTe system but observed on GaS/GaSe heterolayers with type-I band alignment. Observed experimental findings and theoretical studies provide unique insights into interface effects across dissimilar gallium chalcogenides and offer new ways to boost optical performance by simple epitaxial coating.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000368897100008 Publication Date 2016-01-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 15 Open Access  
  Notes ; This work was supported by the Arizona State University seeding program, the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. HS is supported by a FWO Pegasus Long Marie Curie Fellowship. JK is supported by a FWO Pegasus-short Marie Curie Fellowship. We acknowledge the use of the John M Cowley Center for High Resolution Electron Microscopy at Arizona State University. The authors thank Anupum Pant for useful discussions. We gratefully acknowledge the use of the facilities at the LeRoy Eyring Center for Solid State Science at Arizona State University. S Tongay acknowledges support from DMR-1552220. ; Approved Most recent IF: 3.44  
  Call Number UA @ lucian @ c:irua:131570 Serial 4179  
Permanent link to this record
 

 
Author Kiymaz, D.; Yagmurcukardes, M.; Tomak, A.; Sahin, H.; Senger, R.T.; Peeters, F.M.; Zareie, H.M.; Zafer, C. doi  openurl
  Title Controlled growth mechanism of poly (3-hexylthiophene) nanowires Type A1 Journal article
  Year 2016 Publication Nanotechnology Abbreviated Journal (down) Nanotechnology  
  Volume 27 Issue 27 Pages 455604  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Synthesis of 1D-polymer nanowires by a self-assembly method using marginal solvents is an attractive technique. While the formation mechanism is poorly understood, this method is essential in order to control the growth of nanowires. Here we visualized the time-dependent assembly of poly (3-hexyl-thiophene-2,5-diyl) (P3HT) nanowires by atomic force microscopy and scanning tunneling microscopy. The assembly of P3HT nanowires was carried out at room temperature by mixing cyclohexanone (CHN), as a poor solvent, with polymer solution in 1,2-dichlorobenzene (DCB). Both pi-pi stacking and planarization, obtained at the mix volume ratio of P3HT (in DCB):CHN (10:7), were considered during the investigation. We find that the length of nanowires was determined by the ordering of polymers in the polymer repetition direction. Additionally, our density functional theory calculations revealed that the presence of DCB and CHN molecules that stabilize the structural distortions due to tail group of polymers was essential for the core-wire formation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000386132600003 Publication Date 2016-10-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 24 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, the High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and the HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules Foundation. HS is supported by a FWO Pegasus-Long Marie Curie Fellowship. HS and RTS acknowledge support from TUBITAK through Project No. 114F397. Also, DA is supported by the Scientific Research Project Fund of Ege University (Project Nr: 12GEE011). ; Approved Most recent IF: 3.44  
  Call Number UA @ lucian @ c:irua:138159 Serial 4350  
Permanent link to this record
 

 
Author Tomak, A.; Bacaksiz, C.; Mendirek, G.; Sahin, H.; Hur, D.; Gorgun, K.; Senger, R.T.; Birer, O.; Peeters, F.M.; Zareie, H.M. pdf  doi
openurl 
  Title Structural changes in a Schiff base molecular assembly initiated by scanning tunneling microscopy tip Type A1 Journal article
  Year 2016 Publication Nanotechnology Abbreviated Journal (down) Nanotechnology  
  Volume 27 Issue 27 Pages 335601  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract We report the controlled self-organization and switching of newly designed Schiff base (E)-4-((4-(phenylethynyl) benzylidene) amino) benzenethiol (EPBB) molecules on a Au (111) surface at room temperature. Scanning tunneling microscopy and spectroscopy (STM/STS) were used to image and analyze the conformational changes of the EPBB molecules. The conformational change of the molecules was induced by using the STM tip while increasing the tunneling current. The switching of a domain or island of molecules was shown to be induced by the STM tip during scanning. Unambiguous fingerprints of the switching mechanism were observed via STM/STS measurements. Surface-enhanced Raman scattering was employed, to control and identify quantitatively the switching mechanism of molecules in a monolayer. Density functional theory calculations were also performed in order to understand the microscopic details of the switching mechanism. These calculations revealed that the molecular switching behavior stemmed from the strong interaction of the EPBB molecules with the STM tip. Our approach to controlling intermolecular mechanics provides a path towards the bottom-up assembly of more sophisticated molecular machines.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000383780500012 Publication Date 2016-07-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 2 Open Access  
  Notes ; The authors acknowledge financial support from TUBITAK (PROJECT NO: 112T507). This work was also supported by the Flemish Science Foundation (FWO-Vl). Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid-Infrastructure). HS is supported by an FWO Pegasus Long Marie Curie Fellowship. ; Approved Most recent IF: 3.44  
  Call Number UA @ lucian @ c:irua:137155 Serial 4363  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: