|   | 
Details
   web
Records
Author van Walsem, J.
Title Design and optimization of a photocatalytic reactor for air purification in ventilation systems Type Doctoral thesis
Year (down) 2019 Publication Abbreviated Journal
Volume Issue Pages 158 p.
Keywords Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Photocatalysis has been labeled for decades as a promising technique for air purification. The principle seems straightforward and requires a photocatalyst that is immobilized on a substrate, and one or more UV sources to activate the photocatalyst. No waste products are produced, the reactions occur in mild conditions and the supplies are relatively cheap. Yet it seems that the commercialization of photocatalytic systems does not break through on the global market. The aim of this thesis is to identify and tackle the bottlenecks that impede commercialization from an application-oriented approach. The problem of indoor air pollution is enhanced by the fact that people spend more and more time indoors and that ventilation is kept to a minimum as an energy-saving measure. This inevitably leads to an accumulation of volatile organic compounds (VOCs) that are emitted by e.g. building materials, paint and furniture. Human exposure to VOCs is directly related to the sick building syndrome leading to complaints such as headache, fatigue, dizziness and lack of concentration. In addition, exposure to VOCs is related to serious long-term health effects such as cancer or respiratory diseases. Therefore, significant research efforts are focused on advanced indoor air purification methods. Integration or retrofitting of a photocatalytic (PCO) air purifying unit into heating, ventilation and air conditioning (HVAC) equipment has been chosen as an interesting approach. As a starting point of this thesis, the operational conditions of a ventilation system were mapped. These systems are characterized by high flow rates and the necessity of minimal pressure losses. Pressure losses increase the energy demand and can lead to failure of the ventilation fan and thereby undermine the proper functioning of the ventilation system. A suitable substrate must allow the contaminated air to pass through with a minimal pressure drop, allow sufficient contact time between VOC and photocatalyst, have a large surface area available for coating with excellent adhesion, and be transparent to UV light. Therefore, the permeability and the available exposed surface were selected as main selection criteria. After a thorough quantitative analysis of potential substrates, borosilicate glass tubes were selected. Glass tubes can easily be stacked to constitute a transparent monolithic multi-tube reactor, with their length parallel to the air flow in order to minimize the pressure drop. Moreover, borosilicate glass is relatively inexpensive and has excellent UV-A light transmitting properties. Based on a literature study, a sol-gel coating procedure was selected that is extremely suitable for coating glass substrates. The next step was to optimize the amount of P25 (commercial titanium dioxide) in the photocatalytic sol-gel coating for its application. More P25 in the sol-gel coating results in a higher adsorption capacity and consequently a higher photocatalytic activity, but greatly reduces the transparency of the coating. After an in-depth study, the concentration of 10 g L-1 P25 was selected as the most feasible for multi-tube reactors. Since the operation of photocatalytic reactors is based on a complex interaction of physical and chemical processes, mathematical models were developed, supported by experimental data, that include all these phenomena as a tool for reactor design and optimization. By making use of such models, time-consuming and expensive experimental research can be minimized. However, the experimental validation of models is of utmost importance to prove its reliability and accuracy. Intrinsic kinetic parameters provide the fundamentals for these models as they describe the photocatalytic reaction rate, independent of fluid dynamics, reactor geometry and radiation field. In this work they were estimated by means of a Computational Fluid Dynamics (CFD) study, based on FTIR (Fourier-transform infrared spectroscopy) experiments with a lab scale multi-tube reactor. The kinetic parameters were validated by an alternative analytic approach, emphasizing the accuracy and reliability of the simulations. Finally, the aforementioned CFD approach, based on the simultaneously modelling of airflow, mass transfer, UV light irradiation and photocatalytic reactions, was used to obtain insights for the light source configuration in upscaled multi-tube reactors. After taking all these insights and some practical implications into account, a final upscaled multi-tube reactor design was proposed and converted into a first built prototype. Subsequently, it was evaluated according the CEN-EN-16486-1 standard for VOC removal by the external scientific research center ‘CERTECH’. The scientific results, regarding the mineralization of the VOCs and photocatalytic efficiency of the reactor, demonstrated the feasibility for indoor air purification by the upscaled multi-tube reactor and the possible implementation in ventilation systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:160205 Serial 7763
Permanent link to this record
 

 
Author Wood, J.; Geerts, R.; Majean, L.; Coene, V.; Vanheeswijck, J.; de Smalen, D.; Ronda, T.; Keizer, K.
Title De combinatie werk-gezin en het gebruik van formele kinderopvang bij vrouwen met een migratieachtergrond : een mixed methods-benadering Type A1 Journal article
Year (down) 2019 Publication Sociologos (Brussel) Abbreviated Journal
Volume 40 Issue 2-3-4 Pages 123-149
Keywords A1 Journal article; Sociology; Centre for Population, Family and Health; Sustainable Energy, Air and Water Technology (DuEL); Centre for Research on Environmental and Social Change
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2295-8150 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:167658 Serial 7678
Permanent link to this record
 

 
Author Heyne, M.H.
Title Chemistry and plasma physics challenges for 2D materials technology Type Doctoral thesis
Year (down) 2019 Publication Abbreviated Journal
Volume Issue Pages 167 p.
Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Transition-metal dichalcogenides such as MoS2 or WS2 are semiconducting materials with a layered structure. One single layer consists of a plane of metal atoms terminated on the top and bottom by the chalcogen atoms sulfur, selenium, or tellurium. These layers show strong in-plane covalent bonding, whereas the Van-der-Waals bonds in between adjacent layers are weak. Those weak bonds allow the microcleavage and extraction of a monolayer. Transistors built on such monolayer nanosheets are promising due to high electrostatic controllability in comparison to a bulk semiconductor. This is important for fast switching speed and low-power consumption in the OFF-state. Nonetheless, prototypes of such nanosheet transistors show non-idealities due to the fabrication process. Closed films on a large area cannot be obtained by mechanical exfoliation from mm-sized crystals. For wafer-level processing, synthetic growth methods are needed. It is a challenge to obtain a few layer thick crystals with large lateral grains or even without grain boundaries with synthetic growth techniques. This requires pre-conditioned monocrystalline substrates, high-temperature deposition, and polymer-assisted transfer to other target substrates after the growth. Such transfer is a source of cracks in the film and degrades the layers' promising properties by residual polymer from the bond material. Apart from transfer, patterning of the stacked 2D layers is necessary to build devices. The patterning of a 2D material itself or another material on top of it is challenging. The integration of the nanosheets into miniaturized devices cannot be done by conventional continuous-wave dry etching techniques due to the absence of etch stop layers and the vulnerability of these thin layers. To eliminate these issues in growth and integration, we explored the deposition methods on wafer-level and low-damage integration schemes. To this end, we studied the growth of MoS2 by a hybrid physical-chemical vapor deposition for which metal layers were deposited and subsequently sulfurized in H2S to obtain large area 2D layers. The impact of sulfurization temperature, time, partial H2S pressure, and H2 addition on the stoichiometry, crystallinity, and roughness were explored. Furthermore, a selective low-temperature deposition and conversion process at 450 °C for WS2 by the precursors WF6, H2S, and Si was considered. Si was used as a reducing agent for WF6 to deposit thin W films and H2S sulfurized this film in situ. The impact of the reducing agent amount, its surface condition, the temperature window, and the necessary time for the conversion of Si into W and W into WS2 were studied. Further quality improvement strategies on the WS2 were implemented by using extra capping layers in combination with annealing. Capping layers such as Ni and Co for metal-induced crystallization were compared to dielectric capping layers. The impact of the metal capping layer and its thickness on the recrystallization was evaluated. The dielectric capping layer's property to suppress sulfur loss under high temperature was explored. The annealings, which were done by rapid thermal annealing and nanosecond laser annealing, were discussed. Eventually, the fabrication of a heterostack with a MoS2 base layer and selectively grown WS2 was studied. Atomic layer etching was identified as attractive technique to remove the solid precursor Si from MoS2 in a layer-by-layer fashion. The in-situ removal of native SiO2 and the impact towards MoS2 was determined. The created patterned Si on MoS2 was then converted into patterned WS2 on MoS2 by the selective WF6/H2S process developed earlier. This procedure offers an attractive, scalable way to enable the fabrication of 2D devices with CMOS-compatible processes and contributes essential progress in the field 2D materials technology.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:162027 Serial 7662
Permanent link to this record
 

 
Author Sóti, V.
Title Catalytic detoxification of lignocellulose hydrolyzate Type Doctoral thesis
Year (down) 2019 Publication Abbreviated Journal
Volume Issue Pages XXVII, 243 p.
Keywords Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Biochemical Wastewater Valorization & Engineering (BioWaVE)
Abstract The present PhD research investigated the possibility of catalytic detoxification of poplar wood based and steam exploded lignocellulosic hydrolyzate with different types of laccase enzymes, with special focus on ethanol and lactic acid products at industrially relevant parameters: high final product concentration, high initial substrate loading and integrated processes. The simultaneous saccharification and fermentation (SSF) process was taken as a base case and five types of laccases were thoroughly investigated on their utilization potential. Phenolic removal from the liquid xylose rich fraction (XRF) was higher with fungal laccases (65-90 %) compared to approximately 30 % removal with bacterial laccase. Moreover, the optimal pH of fungal laccases was close to pH 4.5, the optimum for cellulase, while the bacterial laccase worked at basic pH. Integrating laccase treatment and hydrolysis together showed that fungal laccases have negative impact on final sugar concentration, while bacterial laccase had a strong positive effect. Although bacterial laccase removed less phenol and although its optimal conditions are difficult to integrate with hydrolysis, its enhancing effect on cellulase activity makes it a better candidate for application. The presence of the solid fraction (SF) alters the phenolic concentration evolution significantly, thus screening experiments with the liquid fraction alone do not provide sufficient information for the combined process. Magnetic Cross-Linked Enzyme Aggregates (m-CLEAs) immobilization was assessed for bacterial laccase. m-CLEAs decreased phenolic concentration faster at every pH compared to free bacterial laccase; however, the removal was caused by adsorption rather than by enzyme activity. Although the size of m-CLEAs particles are in the µm range, around 90 % of the initial catalyst mass was recycled from a dense (15 % substrate loading) mixture via magnetic separation. The high recycling rate is promising; m-CLEAs immobilization method can have industrial utilization potential. Minimum sugar revenue (MSR) estimations show that currently hardwood based MSR is 70 % more expensive than corn grain based MSR. About 7-10 fold cellulase activity increase will be needed until MSR will be competitive with corn grain MSR. However, m-CLEAs cellulase can already be competitive if the corn prices are in the higher regime of last year’s prices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:180125 Serial 7584
Permanent link to this record
 

 
Author Bottari, F.
Title Bio(inspired) strategies for the electro-sensing of β-lactam antibiotics Type Doctoral thesis
Year (down) 2019 Publication Abbreviated Journal
Volume Issue Pages 205 p.
Keywords Doctoral thesis; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract In the broad context of food and environmental safety, the development of selective and sensitive analytical tools for the detection of β-lactam antibiotics in milk down to their Maximum Residues Limits (MRL), is still an open challenge. To address this need, the design of new bio(mimetic) electrochemical sensors was investigated in the present thesis. These sensors are based on the intrinsic electrochemistry of β-lactam antibiotics, taking advantages of the characteristic electrochemical fingerprints of the core structures and redox active side chain groups. The electrochemistry of nafcillin (NAF) and the isoxazolyl penicillins (ISOXA) was investigated, identifying the peculiar electrochemical fingerprint of each antibiotic, proving that it is possible to use electrochemistry for the selective detection of these antimicrobial drugs. Once verified the applicability of a direct detection, different sensor configurations were tested mainly focusing on: – the selection and validation of aptamers to be used as bioreceptors in the development of β-lactam biosensors; – the design of biomimetic receptors, particularly molecularly imprinted polymers, and other synthetic electrode modifiers compatible with a direct detection strategy. The selection of novel aptamers was performed following both a traditional FluMag SELEX protocol and a novel variant based on graphene oxide (GO). First results with the modified GO-SELEX are promising but more work still needs to be done to validate this novel approach. The few aptamers for β-lactam antibiotics, already reported in literature by other groups, were poorly characterized up to now. For this reason, a multi-analytical characterization protocol for aptamer binding studies was optimized and validated by focusing on aptamer AMP17 against ampicillin. The protocol combines ITC, nESI-MS and 1H-NMR. Very striking was the fact that the aptamer sequence did not show any sign of specific binding for its target, even if it was used in many other studies in the past. This thesis now offers a validated protocol for testing the affinity and binding capabilities of aptamer sequences. In parallel, the functionalization of the electrode surface with polymer modifiers was studied. In particular we optimized a MIP electrochemical sensor based on 4-aminobenzoic acid for the direct electrochemical detection of CFQ. Another approach was tested based on the intrinsic affinity of NAF for an oPD electropolymerized film on the electrode surface. Both sensors were found to be sensitive and selective for the detection of CFQ and NAF at MRLs in buffer solutions. The proposed protocols are robust and promising for technological transfer. Lastly, the research activity was directed towards milk sample analysis following two parallel routes: the development of a pre-treatment protocol for raw milk, based on solvent addition (ACN or ISO), and the study of β-lactam antibiotics electrochemistry in undiluted raw milk with addition of KNO3 as supporting electrolyte. Both approaches gave encouraging results and the detection of NAF, CFQ and CFU in the micromolar range was achieved, with the second approach in undiluted raw milk.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:164996 Serial 7557
Permanent link to this record
 

 
Author Idrissi, H.; Samaee, V.; Lumbeeck, G.; van der Werf, T.; Pardoen, T.; Schryvers, D.; Cordier, P.
Title Supporting data for “In situ Quantitative Tensile Tests on Antigorite in a Transmission Electron Microscope” Type Dataset
Year (down) 2019 Publication Abbreviated Journal
Volume Issue Pages
Keywords Dataset; Electron microscopy for materials research (EMAT)
Abstract The determination of the mechanical properties of serpentinites is essential towards the understanding of the mechanics of faulting and subduction. Here, we present the first in situ tensile tests on antigorite in a transmission electron microscope. A push-to-pull deformation device is used to perform quantitative tensile tests, during which force and displacement are measured, while the microstructure is imaged with the microscope. The experiments have been performed at room temperature on beams prepared by focused ion beam. The specimens are not single crystals despite their small sizes. Orientation mapping indicated that some grains were well-oriented for plastic slip. However, no dislocation activity has been observed even though engineering tensile stress went up to 700 MPa. We show also that antigorite does not exhibit an pure elastic-brittle behaviour since, despite the presence of defects, the specimens underwent plastic deformation and did not fail within the elastic regime. Instead, we observe that strain localizes at grain boundaries. All observations concur to show that under our experimental conditions, grain boundary sliding is the dominant deformation mechanism. This study sheds a new light on the mechanical properties of antigorite and calls for further studies on the structure and properties of grain boundaries in antigorite and more generally in phyllosilicates.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:169107 Serial 6891
Permanent link to this record
 

 
Author Jannis, D.; Müller-Caspary, K.; Béché, A.; Oelsner, A.; Verbeeck, J.
Title Spectrocopic coincidence experiment in transmission electron microscopy Type Dataset
Year (down) 2019 Publication Abbreviated Journal
Volume Issue Pages
Keywords Dataset; Electron microscopy for materials research (EMAT)
Abstract This dataset contains individual EEL and EDX events where for every event (electron or X-ray), their energy and time of arrival is stored. The experiment was performed in a transmission electron microscope (Tecnai Osiris) at 200 keV. The material investigated is an Al-Mg-Si-Cu alloy. The 'full_dataset.mat' contains the full dataset and the 'subset.mat' has the first five frames of the full dataset. The attached 'EELS-EDX.ipynb' is a jupyter notebook file. This file describes the data processing in order to observe the temporal correlation between the electrons and X-rays.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:169112 Serial 6888
Permanent link to this record
 

 
Author Guzzinati, G.; Béché, A.; McGrouther, D.; Verbeeck, J.
Title Rotation of electron beams in the presence of localised, longitudinal magnetic fields Type Dataset
Year (down) 2019 Publication Abbreviated Journal
Volume Issue Pages
Keywords Dataset; Electron microscopy for materials research (EMAT)
Abstract Electron Bessel beams have been generated by inserting an annular aperture in the illumination system of a TEM. These beams have passed through a localised magnetic field. As a result a low amount of image rotation (which is expected to be proportional to the longitudinal component of the magnetic field) is observed in the far field. A measure of this rotation should give access to the magneti field. The two datasets have been acquired in a FEI Titan3 microscope, operated at 300kV. The file focalseries.tif contains a series of images acquired varying the magnetic field through the objective lens. The file lineprofile.ser contains a series of images acquired by scanning the beam over a sample with several magnetised nanopillars. For reference, check the associated publication.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:169135 Serial 6883
Permanent link to this record
 

 
Author Guzzinati, G.; Ghielens, W.; Mahr, C.; Béché, A.; Rosenauer, A.; Calders, T.; Verbeeck, J.
Title Electron Bessel beam diffraction patterns, line scan of Si/SiGe multilayer Type Dataset
Year (down) 2019 Publication Abbreviated Journal
Volume Issue Pages
Keywords Dataset; ADReM Data Lab (ADReM); Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:169114 Serial 6865
Permanent link to this record
 

 
Author Chuon, S.
Title Simulation numérique multi-échelles du procédé de dépôt par pulvérisation cathodique magnétron Type Doctoral thesis
Year (down) 2019 Publication Abbreviated Journal
Volume Issue Pages 137 p.
Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:166091 Serial 6322
Permanent link to this record
 

 
Author Anđelković, M.
Title O(N) numerical methods for investigating graphene heterostructures and moiré patterns Type Doctoral thesis
Year (down) 2019 Publication Abbreviated Journal
Volume Issue Pages 207 p.
Keywords Doctoral thesis; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:165205 Serial 6315
Permanent link to this record
 

 
Author Lumbeeck, G.
Title Mechanisms of nano-plasticity in as-deposited and hydrided nanocrystalline Pd and Ni thin films Type Doctoral thesis
Year (down) 2019 Publication Abbreviated Journal
Volume Issue Pages 130 p.
Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:164918 Serial 6309
Permanent link to this record
 

 
Author Van der Paal, J.
Title Generation, transport and molecular interactions of reactive species in plasma medicine Type Doctoral thesis
Year (down) 2019 Publication Abbreviated Journal
Volume Issue Pages 237 p.
Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:162591 Serial 6297
Permanent link to this record
 

 
Author Trenchev, G.
Title Computational modelling of atmospheric DC discharges for CO2 conversion Type Doctoral thesis
Year (down) 2019 Publication Abbreviated Journal
Volume Issue Pages 206 p.
Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:163986 Serial 6290
Permanent link to this record
 

 
Author Yao, X.
Title An advanced TEM study on quantification of Ni4Ti3 precipitates in low temperature aged Ni-Ti shape memory alloy Type Doctoral thesis
Year (down) 2019 Publication Abbreviated Journal
Volume Issue Pages 149 p.
Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:164987 Serial 6284
Permanent link to this record
 

 
Author Vieira De Castro, L.
Title Properties of quasi particles on two dimensional materials and related structures Type Doctoral thesis
Year (down) 2019 Publication Abbreviated Journal
Volume Issue Pages 79 p.
Keywords Doctoral thesis; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:161999 Serial 5424
Permanent link to this record
 

 
Author Van der Donck, M.
Title Excitonic complexes in transition metal dichalcogenides and related materials Type Doctoral thesis
Year (down) 2019 Publication Abbreviated Journal
Volume Issue Pages 224 p.
Keywords Doctoral thesis; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:162525 Serial 5412
Permanent link to this record
 

 
Author Fatermans, J.
Title Quantitative atom detection from atomic-resolution transmission electron microscopy images Type Doctoral thesis
Year (down) 2019 Publication Abbreviated Journal
Volume Issue Pages 155 p.
Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:162101 Serial 5394
Permanent link to this record
 

 
Author Cautaerts, N.
Title Nanoscale study of ageing and irradiation induced precipitates in the DIN 1.4970 alloy Type Doctoral thesis
Year (down) 2019 Publication Abbreviated Journal
Volume Issue Pages 306 p.
Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:161997 Serial 5392
Permanent link to this record
 

 
Author Ramakers, M.
Title Using a gliding arc plasmatron for CO2 conversion : the future in industry? Type Doctoral thesis
Year (down) 2019 Publication Abbreviated Journal
Volume Issue Pages 235 p.
Keywords Doctoral thesis; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record;
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:158254 Serial 5282
Permanent link to this record
 

 
Author Michielsen, I.
Title Plasma catalysis : study of packing materials on CO2 reforming in a DBD reactor Type Doctoral thesis
Year (down) 2019 Publication Abbreviated Journal
Volume Issue Pages 215 p.
Keywords Doctoral thesis; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:160087 Serial 5278
Permanent link to this record
 

 
Author Razzokov, J.
Title Molecular level simulations for plasma medicine applications Type Doctoral thesis
Year (down) 2019 Publication Abbreviated Journal
Volume Issue Pages 173 p.
Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:159654 Serial 5277
Permanent link to this record
 

 
Author Ghorbanfekr Kalashami, H.
Title Graphene-based membranes and nanoconfined water : molecular dynamics simulation study Type Doctoral thesis
Year (down) 2019 Publication Abbreviated Journal
Volume Issue Pages 243 p.
Keywords Doctoral thesis; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:160548 Serial 5216
Permanent link to this record
 

 
Author Li, L.
Title First-principles studies of novel two-dimensional dirac materials Type Doctoral thesis
Year (down) 2019 Publication Abbreviated Journal
Volume Issue Pages 152 p.
Keywords Doctoral thesis; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:160527 Serial 5214
Permanent link to this record
 

 
Author Rezvani, S.J.; Perali, A.; Fretto, M.; De Leo, N.; Flammia, L.; Milošević, M.; Nannarone, S.; Pinto, N.
Title Substrate-induced proximity effect in superconducting niobium nanofilms Type A1 Journal article
Year (down) 2018 Publication Condensed Matter Abbreviated Journal
Volume 4 Issue 1 Pages 4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Structural and superconducting properties of high-quality niobium nanofilms with different thicknesses are investigated on silicon oxide (SiO2) and sapphire substrates. The role played by the different substrates and the superconducting properties of the Nb films are discussed based on the defectivity of the films and on the presence of an interfacial oxide layer between the Nb film and the substrate. The X-ray absorption spectroscopy is employed to uncover the structure of the interfacial layer. We show that this interfacial layer leads to a strong proximity effect, especially in films deposited on a SiO2 substrate, altering the superconducting properties of the Nb films. Our results establish that the critical temperature is determined by an interplay between quantum-size effects, due to the reduction of the Nb film thicknesses, and proximity effects. The detailed investigation here provides reference characterizations and has direct and important implications for the fabrication of superconducting devices based on Nb nanofilms.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000464289300001 Publication Date 2018-12-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2410-3896 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 3 Open Access
Notes ; This project was financially supported by University of Camerino, FAR project CESEMN. ; Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:159463 Serial 5233
Permanent link to this record
 

 
Author Kolev, S.; Bogaerts, A.
Title Three-dimensional modeling of energy transport in a gliding arc discharge in argon Type A1 Journal Article
Year (down) 2018 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T
Volume 27 Issue 12 Pages 125011
Keywords A1 Journal Article; gliding arc discharge, sliding arc discharge, energy transport, fluid plasma model, atmospheric pressure plasmas; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract In this work we study energy transport in a gliding arc discharge with two diverging flat

electrodes in argon gas at atmospheric pressure. The discharge is ignited at the shortest electrode

gap and it is pushed downstream by a forced gas flow. The current values considered are

relatively low and therefore a non-equilibrium plasma is produced. We consider two cases, i.e.

with high and low discharge current (28 mA and 2.8mA), and a constant gas flow of 10 lmin −1 ,

with a significant turbulent component to the velocity. The study presents an analysis of the

various energy transport mechanisms responsible for the redistribution of Joule heating to the

plasma species and the moving background gas. The objective of this work is to provide a

general understanding of the role of the different energy transport mechanisms in arc formation

and sustainment, which can be used to improve existing or new discharge designs. The work is

based on a three-dimensional numerical model, combining a fluid plasma model, the shear stress

transport Reynolds averaged Navier–Stokes turbulent gas flow model, and a model for gas

thermal balance. The obtained results show that at higher current the discharge is constricted

within a thin plasma column several hundred kelvin above room temperature, while in the low-

current discharge the combination of intense convective cooling and low Joule heating prevents

discharge contraction and the plasma column evolves to a static non-moving diffusive plasma,

continuously cooled by the flowing gas. As a result, the energy transport in the two cases is

determined by different mechanisms. At higher current and a constricted plasma column, the

plasma column is cooled mainly by turbulent transport, while at low current and an unconstricted

plasma, the major cooling mechanism is energy transport due to non-turbulent gas convection. In

general, the study also demonstrates the importance of turbulent energy transport in

redistributing the Joule heating in the arc and its significant role in arc cooling and the formation

of the gas temperature profile. In general, the turbulent energy transport lowers the average gas

temperature in the arc, thus allowing additional control of thermal non-equilibrium in the

discharge.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000454555600005 Publication Date 2018-12-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited Open Access Not_Open_Access
Notes This work was supported by the European Regional Devel- opment Fund within the Operational Programme ’Science and Education for Smart Growth 2014 – 2020’ under the Project CoE ’National center of mechatronics and clean technologies’ BG05M2OP001-1.001-0008-C01, and by the Flemish Fund for Scientific Research (FWO); grant no G.0383.16N. Approved Most recent IF: 3.302
Call Number PLASMANT @ plasmant @c:irua:155973 Serial 5140
Permanent link to this record
 

 
Author Kuo, C.-T.; Lin, S.-C.; Ghiringhelli, G.; Peng, Y.; De Luca, G.M.; Di Castro, D.; Betto, D.; Gehlmann, M.; Wijnands, T.; Huijben, M.; Meyer-Ilse, J.; Gullikson, E.; Kortright, J.B.; Vailionis, A.; Gauquelin, N.; Verbeeck, J.; Gerber, T.; Balestrino, G.; Brookes, N.B.; Braicovich, L.; Fadley, C.S.
Title Depth-resolved resonant inelastic x-ray scattering at a superconductor/half-metallic-ferromagnet interface through standing wave excitation Type A1 Journal article
Year (down) 2018 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 98 Issue 23 Pages 235146
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We demonstrate that combining standing wave (SW) excitation with resonant inelastic x-ray scattering (RIXS) can lead to depth resolution and interface sensitivity for studying orbital and magnetic excitations in correlated oxide heterostructures. SW-RIXS has been applied to multilayer heterostructures consisting of a superconductor La1.85Sr0.15CuO4 (LSCO) and a half-metallic ferromagnet La0.67Sr0.33MnO3 (LSMO). Easily observable SW effects on the RIXS excitations were found in these LSCO/LSMO multilayers. In addition, we observe different depth distribution of the RIXS excitations. The magnetic excitations are found to arise from the LSCO/LSMO interfaces, and there is also a suggestion that one of the dd excitations comes from the interfaces. SW-RIXS measurements of correlated-oxide and other multilayer heterostructures should provide unique layer-resolved insights concerning their orbital and magnetic excitations, as well as a challenge for RIXS theory to specifically deal with interface effects.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000454160800004 Publication Date 2018-12-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 5 Open Access
Notes J.V. and N.G. acknowledge ˝ funding through the GOA project “Solarpaint” of the University of Antwerp. The microscope used in this work was partly funded by the Hercules Fund from the Flemish Government. Approved Most recent IF: 3.836
Call Number UA @ admin @ c:irua:156784 Serial 5363
Permanent link to this record
 

 
Author Bogaerts, A.; Snoeckx, R.; Trenchev, G.; Wang, W.
Title Modeling for a Better Understanding of Plasma-Based CO2 Conversion Type H1 Book Chapter
Year (down) 2018 Publication Plasma Chemistry and Gas Conversion Abbreviated Journal
Volume Issue Pages
Keywords H1 Book Chapter; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract This chapter discusses modeling efforts for plasma-based CO2 conversion, which are needed to obtain better insight in the underlying mechanisms, in order to improve this application. We will discuss two types of (complementary) modeling efforts that are most relevant, that is, (i) modeling of the detailed plasma chemistry by zero-dimensional (0D) chemical kinetic models and (ii) modeling of reactor design, by 2D or 3D fluid dynamics models. By showing some characteristic calculation results of both models, for CO2 splitting and in combination with a H-source, and for packed bed DBD and gliding arc plasma, we can illustrate the type of information they can provide.
Address
Corporate Author Thesis
Publisher IntechOpen Place of Publication Rijeka Editor Britun, N.; Silva, T.
Language Wos Publication Date 2018-12-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @ Bogaerts18c:irua:155915 Serial 5142
Permanent link to this record
 

 
Author Lumbeeck, G.; Idrissi, H.; Amin-Ahmadi, B.; Favache, A.; Delmelle, R.; Samaee, V.; Proost, J.; Pardoen, T.; Schryvers, D.
Title Effect of hydriding induced defects on the small-scale plasticity mechanisms in nanocrystalline palladium thin films Type A1 Journal Article
Year (down) 2018 Publication Journal Of Applied Physics Abbreviated Journal J Appl Phys
Volume 124 Issue 22 Pages 225105
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract Nanoindentation tests performed on nanocrystalline palladium films subjected to hydriding/dehydriding cycles demonstrate a significant softening when compared to the as-received material. The origin of this softening is unraveled by combining in situ TEM nanomechanical testing with automated crystal orientation mapping in TEM and high resolution TEM. The softening is attributed to the presence of a high density of stacking faults and of Shockley partial dislocations after hydrogen loading. The hydrogen induced defects affect the elementary plasticity mechanisms and the mechanical response by acting as preferential sites for twinning/detwinning during deformation. These results are analyzed and compared to previous experimental and simulation works in the literature. This study provides new insights into the effect of hydrogen on the atomistic deformation and cracking mechanisms as well as on the mechanical properties of nanocrystalline thin films and membranes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000453254000025 Publication Date 2018-12-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 2 Open Access Not_Open_Access
Notes This work was supported by the Hercules Foundation under Grant No. AUHA13009, the Flemish Research Fund (FWO) under Grant No. G.0365.15N, and the Flemish Strategic Initiative for Materials (SIM) under the project InterPoCo. Dr. H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSR-FNRS). We would like to thank Dr. Hadi Pirgazi from UGent for his technical support to process the ACOM data in the OIM Analysis software. Approved Most recent IF: 2.068
Call Number EMAT @ emat @c:irua:155742 Serial 5135
Permanent link to this record
 

 
Author Saberi-Pouya, S.; Zarenia, M.; Vazifehshenas, T.; Peeters, F.M.
Title Anisotropic charge density wave in electron-hole double monolayers : applied to phosphorene Type A1 Journal article
Year (down) 2018 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 98 Issue 24 Pages 245115
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The possibility of an inhomogeneous charge density wave phase is investigated in a system of two coupled electron and hole monolayers separated by a hexagonal boron nitride insulating layer. The charge-density-wave state is induced through the assumption of negative compressibility of electron/hole gases in a Coulomb drag configuration between the electron and hole sheets. Under equilibrium conditions, we derive analytical expressions for the density oscillation along the zigzag and armchair directions. We find that the density modulation not only depends on the sign of the compressibility but also on the anisotropy of the low-energy bands. Our results are applicable to any two-dimensional system with anisotropic parabolic bands, characterized by different effective masses. For equal effective masses, i.e., isotropic energy bands, our results agree with Hroblak et al. [Phys. Rev. B 96, 075422 (2017)]. Our numerical results are applied to phosphorene.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000452995600001 Publication Date 2018-12-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.836 Times cited Open Access
Notes ; This work was partially supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program of the Flemish government and Iran Science Elites Federation. ; Approved Most recent IF: 3.836
Call Number UA @ admin @ c:irua:156233 Serial 5195
Permanent link to this record