|
Record |
Links |
|
Author |
Manaigo, F.; Chatterjee, A.; Bogaerts, A.; Snyders, R. |
|
|
Title |
Insight in NO synthesis in a gliding arc plasma via gas temperature and density mapping by laser-induced fluorescence |
Type |
A1 Journal Article |
|
Year |
2024 |
Publication |
Plasma Sources Science and Technology |
Abbreviated Journal |
Plasma Sources Sci. Technol. |
|
|
Volume |
33 |
Issue |
7 |
Pages |
075005 |
|
|
Keywords |
A1 Journal Article; plasma nitrogen fixation, gliding arc plasmatron, laser-induced fluorescence, afterglow rotational temperature, afterglow NO concentration; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ; |
|
|
Abstract |
A gliding arc (GA) plasma, operating at atmospheric pressure in a gas mixture of 50% N<sub>2</sub>and 50% O<sub>2</sub>, is studied using laser-induced fluorescence spectroscopy. The main goal is to determine the two-dimensional distribution of both the gas temperature and the NO ground state density in the afterglow. As GA plasma discharges at atmospheric pressure normally produce rather high NO<sub><italic>x</italic></sub>densities, the high concentration of relevant absorbers, such as NO, may impose essential restrictions for the use of ‘classical’ laser-induced fluorescence methods (dealing with excitation in the bandhead vicinity), as the laser beam would be strongly absorbed along its propagation in the afterglow. Since this was indeed the case for the studied discharge, an approach dealing with laser-based excitation of separate rotational lines is proposed. In this case, due to a non-saturated absorption regime, simultaneous and reliable measurements of both the NO density and the gas temperature (using a reference fitting spectrum) are possible. The proposed method is applied to provide a two-dimensional map for both the NO density and the gas temperature at different plasma conditions. The results show that the input gas flow rate strongly alters the plasma shape, which appears as an elongated column at low input gas flow rate and spreads laterally as the flow rate increases. Finally, based on temperature map analysis, a clear correlation between the gas temperature and NO concentration is found. The proposed method may be interesting for the plasma-chemical analysis of discharges with high molecular production yields, where knowledge of both molecular concentration and gas temperature is required. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
|
Publication Date |
2024-07-01 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0963-0252 |
ISBN |
|
Additional Links |
|
|
|
Impact Factor |
3.8 |
Times cited |
|
Open Access |
|
|
|
Notes |
Fonds De La Recherche Scientifique – FNRS, EOS O005118F ; |
Approved |
Most recent IF: 3.8; 2024 IF: 3.302 |
|
|
Call Number |
PLASMANT @ plasmant @ |
Serial |
9253 |
|
Permanent link to this record |