toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Kapra, A.V.; Vodolazov, D.Y.; Misko, V.R. url  doi
openurl 
  Title Vortex transport in a channel with periodic constrictions Type A1 Journal article
  Year (down) 2013 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech  
  Volume 26 Issue 9 Pages 095010-95011  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract By numerically solving the time-dependent Ginzburg-Landau equations in a type-II superconductor, characterized by a critical temperature T-c1, and the coherence length xi(1), with a channel formed by overlapping rhombuses (diamond-like channel) made of another type-II superconductor, characterized, in general, by different T-c2 and xi(2), we investigate the dynamics of driven vortex matter for varying parameters of the channel: the width of the neck connecting the diamond cells, the cell geometry, and the ratio between the coherence lengths in the bank and the channel. We analyzed samples with periodic boundary conditions (which we call 'infinite' samples) and finite-size samples (with boundaries for vortex entry/exit), and we found that by tuning the channel parameters, one can manipulate the vortex dynamics, e.g., change the transition from flux-pinned to flux-flow regime and tune the slope of the IV-curves. In addition, we analyzed the effect of interstitial vortices on these characteristics. The critical current of this device was studied as a function of the applied magnetic field, j(c)(H). The function j(c)(H) reveals a striking commensurability peak, in agreement with recent experimental observations. The obtained results suggest that the diamond channel, which combines the properties of pinning arrays and flux-guiding channels, can be a promising candidate for potential use in devices controlling magnetic flux motion.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000323073800016 Publication Date 2013-07-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.878 Times cited 2 Open Access  
  Notes ; This work was supported by the 'Odysseus' Program of the Flemish Government and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 2.878; 2013 IF: 2.796  
  Call Number UA @ lucian @ c:irua:110737 Serial 3898  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: