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Abstract

By numerically solving the time-dependent Ginzburg—Landau equations in a type-II superconductor,
characterized by a critical temperature 7., and the coherence length &1, with a channel formed by
overlapping rhombuses (diamond-like channel) made of another type-II superconductor, characterized,
in general, by different 7, and &, we investigate the dynamics of driven vortex matter for varying
parameters of the channel: the width of the neck connecting the diamond cells, the cell geometry, and the
ratio between the coherence lengths in the bank and the channel. We analyzed samples with periodic
boundary conditions (which we call ‘infinite’ samples) and finite-size samples (with boundaries for
vortex entry/exit), and we found that by tuning the channel parameters, one can manipulate the vortex
dynamics, e.g., change the transition from flux-pinned to flux-flow regime and tune the slope of the
IV-curves. In addition, we analyzed the effect of interstitial vortices on these characteristics. The critical
current of this device was studied as a function of the applied magnetic field, j.(H). The function j.(H)
reveals a striking commensurability peak, in agreement with recent experimental observations. The
obtained results suggest that the diamond channel, which combines the properties of pinning arrays and
flux-guiding channels, can be a promising candidate for potential use in devices controlling magnetic

flux motion.

(Some figures may appear in colour only in the online journal)

1. Introduction

The critical current j.(H) is the maximum current a
superconductor can carry without dissipation. The first
theoretical model to determine the critical current in a
superconductor was the well-known Bean model [1]. The
first ‘microscopic’ derivation of the Bean model, using a
simple model of repelling vortices and pinning sites, was
done by Richardson et al [2]. The dissipation is caused by
vortex motion. Therefore, in order to increase the critical
current, vortices should be either immobilized (i.e., pinned)
or removed from the active area of a superconducting device.
The former can be achieved by using various artificial pinning
arrays including regular pinning arrays, e.g., square and
triangular arrays of sub-xum holes (antidots) [3—14] or sub-um
Ni triangles on top of Si substrate [15] or blind antidots
(i.e., holes which partially perforate the film to a certain
depth) [16] and pinning arrays with field-dependent pinning
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strength [17]. Even a few individual pinning sites arranged at
proper positions can be very efficient in trapping undesired
vortices. For example, it was demonstrated [18] that the
low-frequency noise due to vortex motion in high-temperature
superconducting quantum interference devices (SQUIDs) can
be strongly reduced by a ‘strategic’ arrangement of antidots
patterned into the SQUID. Alternatively, it was recently
proposed to use aperiodic pinning arrays instead of periodic
arrays. Despite the fact that they are incommensurate with
the (undistorted) vortex lattice, these pinning arrays were
proven to be even more efficient in magnetic flux pinning
than regular arrays. The enhancement of the pinning strength
in a broad range of magnetic fields is provided by elastic
deformation of a vortex lattice, as was recently demonstrated
theoretically [19, 20] and experimentally [21-23, 26] for
quasiperiodic Penrose-tiling pinning arrays and for graded
pinning arrays [24, 25].

© 2013 IOP Publishing Ltd Printed in the UK & the USA
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Another efficient method of the critical current control
in superconducting nano- and micro-devices is to remove
magnetic flux from the active area of the device. For this
purpose, it was proposed to use various realizations of vortex
ratchets, e.g., fluxon pumps and lenses [27] using a ‘funnel’
channel [28], voltage rectifiers [29], and Josephson vortex
ratchets [30]. Thus it was shown that vortex ratchets can be
used for vortex removal (or significant reduction of number)
from a superconductor [15, 31-34]. Also, the effect of the field
history on the vortex dynamics in narrow ratchet channels
was investigated [35]. It was shown that the edge barrier
controls the critical current in a thin film of a weak-pinning
superconductor [36] and in a similar system with periodic
constrictions [37].

In addition, the motion of the magnetic flux can be
controlled using the vortex guidance effect [7, 38—40], which
manifests itself in the flux motion along the symmetry
directions of an array of pinning sites. It was shown [38]
that the vortex lattice undergoes a series of locking transitions
when increasing the applied driving force. As the vortex
lattice passes through these phases, the transverse velocity
component as a function of increasing transverse drive
shows a series of plateaus which form a devil’s staircase
structure. Experimentally, controlled trapping and guided
motion of vortices via special arrangements of antidots in
YBayCuz 07 films was demonstrated using resistive Hall-type
measurements. In contrast to conventional vortex motion
due to the vortex unpinning at currents exceeding the
critical current, this motion was present down to zero
current and low temperatures and it was characterized by a
linear voltage—current dependence, i.e., Ohmic behavior [7].
Magneto-optical imaging measurements of a YBa;CuzOy
film shaped as a long strip with perpendicular antidot arrays
revealed [40] strong guidance of flux and large perturbations
of the overall flux penetration and flow of current.

When driven across the guiding channel, vortices display
a very unusual dynamics. Thus in [41] the motion of vortices
confined to a straight pin-free channel in a strong-pinning
superconducting sample was studied. It was found that, when
a constant current is applied across this system, a very unusual
oscillatory shearing appears, in which the vortices moving at
the edges of the channel periodically trail behind and then
suddenly leapfrog past the vortices moving in the inner rows.

Recently, the effect of magnetic flux guidance in a
hybrid superconductor magnetic-dot-array bilayer was theo-
retically analyzed, using Langevin-type molecular-dynamics
simulations [42] and the time-dependent Ginzburg-Landau
equations [43]. In particular, the vortex—antivortex dynamics
was analyzed for different arrangements and magnetic
moments of the dipoles, as a function of the angle between
the direction of the magnetic dipole and that of the
Lorentz force produced by the applied current. It was
shown that the interplay of the attractive interaction between
a vortex—antivortex pair and the Lorentz force resulted
either in separation of (anti)vortices and their motion in
opposite directions or in their annihilation. The guided
motion effect was analyzed [43] in finite and in infinite
samples. It was shown that in finite samples the magnetic-
dipole-induced vortex—antivortex guidance is influenced by

the self-interaction of the vortex—antivortex pairs with their
images, while in a periodic array of dipoles the guidance is
determined by the interaction of a vortex—antivortex pair with
other dipoles and vortex—antivortex pairs created by them.

In this work, we investigate the vortex dynamics in
a system consisting of a superconductor with a channel
made of another superconductor. The channel is formed
by compartments in the shape of rhombuses (‘diamonds’)
partially overlapped such that they form a continuous channel
(in the limiting case, adjacent ‘diamonds’ touch each other
just at one point). Our choice of the channel geometry was
motivated by the recent experiment [37] on vortex dynamics
in channels with periodic constrictions. The authors measured
the critical current J. in diamond-cell channels and found
reversible oscillations in J. as a function of the applied
magnetic field [37]. The goal of our study is the understanding
of: (i) the dynamics of moving vortices in detail and (ii) the
possibility of manipulation of this dynamics by tuning the
geometric and material parameters of the channel (which
is hardly accessible in experiments). We analyze the vortex
dynamics in a diamond-cell channel from the point of view
of pinning properties of the system and the possibility of
manipulating the dynamical regimes (e.g., flux-pinned regime
and flux-flow regime). As we show below, each individual
compartment of the channel acts as a ‘soft-pinning’ site
which is the key property of this system. The ‘magnetic
core’ of a vortex (i.e., the region with the radius equal to
the magnetic field penetration depth A, where the screening
current of the vortex decreases from the maximum value
to approximately zero) extends outside the channel, and by
changing the degree of overlap of the diamond cells (and
thus the minimum width of the channel at the neck between
neighboring compartments), one can manipulate the pinning
strength. As we further show in this work, this provides a
flexible tool for controlling the dynamical regimes in this
system. On the other hand, the diamond channel acts as a
guiding ‘row of pinning sites’ but appears to be more efficient
than an array of separate pinning sites, due to the partial
overlap of the pinning potentials created by each diamond cell.

To study the vortex dynamics, in this work we rely upon
the time-dependent Ginzburg-Landau equations (TDGL)
which take into account the influence of the cell confinement
on the vortex motion. We investigate the equilibrium and
transport properties of driven vortices. In particular, we
study the flux motion in the diamond channel for different
material parameters and geometries of the channel and
calculate appropriate IV-curves and the critical current,
Jjc(H), as a function of the applied magnetic field. We
found that the critical current, j.(H), demonstrates striking
commensurability effect, in agreement with the experimental
observations [37]. Analyzing the IV-curves, we show that,
by varying the material parameters (i.e., the ratio of the
coherence lengths inside and outside the channel, &,/&;), the
‘gap’ between the diamond cells (i.e., the minimum channel
width, w) and the geometry of the cell, one can manipulate
the dynamical regimes in the diamond channel, e.g., switch
between the flux-pinning and flux-flow regimes, and control
the slope of the corresponding /V-curves.
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The pinning properties of the system are related to
the magnetic core pinning. Despite the fact that the vortex
core can be very small (e.g., & ~ 1-5 nm in HTSC), its
supercurrent spreads over a wide range (~X > &). Therefore,
if we construct a magnetic barrier with an opening w, such
that A > w > & than the vortex interaction with the opening
edges would lead to pinning. Also the opening w influences
the surface barrier energy, which leads to a vortex generation
for lower values of magnetic field (in finite-size samples).
The diamond channel confines the vortex motion in the
transverse (y-) direction. On the other hand, the modulation
of the channel width introduces pinning in the x-direction.
Our calculations show that by adjusting the ratio &/&; and
the external magnetic field, one can maintain the necessary
amount of vortices in the channel. This provides opportunities
for studying the interaction between satellite (bank) vortices
and vortices in the channel.

The paper is organized as follows. In section 2 we
introduce the model system. In section 3, we describe the
mechanism of vortex generation in the channel for two
different system preparation regimes, i.e., field-cooled and
zero-field-cooled regime, and we analyze equilibrium vortex
states in finite and ‘infinite’ (i.e., with periodic boundary
conditions) samples. In section 4, we discuss the flux
dynamics in the diamond channel, including the analysis
of the IV-curves for varying material parameters and the
channel geometry, the effect of commensurability observed
in the critical current j.(H). The conclusions are presented in
section 5.

2. Model

Our system consists of a type-II SC film characterized by the
coherence length &; with a channel formed by diamond-shape
cells of another type-II SC with a larger coherence length
&: & > £1. Our model channel is shown in figure 1. This
configuration provides a vortex-flow channel with modulated
width, the so-called diamond-cell channel [37]. The ratio
between the coherence lengths in the channel and in the
bank superconductor, & /€1, is a variable parameter, typically
taken as & /&1 = 6. The bottleneck w (see figure 1) of the
channel varies from 0 to 8. The ratio & /| mainly controls
the vortex mobility in the channel. By changing the width
of the channel and the ratio & /£;, we can manipulate the
vortex motion inside it. An external homogeneous magnetic
field generates vortices in the channel which are driven by an
external transport current.

We consider samples either finite or infinite in the
x-direction. To model an infinite channel, we use periodic
boundary conditions applied to the phase and the amplitude
of the SC order parameter. In our simulations, we typically
consider samples with dimensions 80&; x 50&; and 20&; x
501, where & is the superconducting coherence length at
zero temperature 7. We use the field-cooled regime (FC) and
then (after some relaxation time) we turn the transport current
on and investigate the vortex motion.

In order to avoid the influence of the metal leads on
channel vortices and study the interaction of vortices in the
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Figure 1. Sketch of the model system. The ‘diamond channel’ is
filled by blue (gray). The channel is characterized by the coherence
length &, while the main superconductor (bank) has &;. The channel
parameters (shown in the sketch) are: the ratio &, /£, the minimum
width of the channel, w, and the cell shape characterized by angle «.

channel with satellite vortices (i.e., out-of-channel), we set the
boundaries of the film ~30&; away from the each side of the
diamond channel (in the y-direction). Note that for & /& = 1
we observe the behavior typical for a homogeneous SC film.

After the initial vortex configuration in the system
is prepared, the current is turned on, and we investigate
the vortex—antivortex (v—av) dynamics. To study the
dynamics of the v—av pairs, we employ the time-dependent
Ginzburg-Landau equation [44, 45]:

a
u (a_; + if/)) Y =&V —iA’Y + 1 —[yPy, (D)

& =

&1, in the bank SCs )
&, in the channel.

The default values are: & = 6 inside the diamond
channel and & = 1 in the bank. The equation is to be
solved self-consistently with the Poisson equation for the
electrostatic potential,

Agp = div (Im(y*(V —iA)y)). 3)

In equations (1) and (2), all the physical quantities are
expressed in dimensionless units: temperature 7 in units of
the critical temperature T, the vector potential A in units
Oo/2m&(T)) (where P is the quantum of magnetic flux),
the order parameter in units of Ay = 4kg T ul/ 2/71(1 —
T/T.)'/?, and the length in units of the coherence length
£(T) = (8kpT./mwhD)~/2/(1 — T/T.)'/%. Using these units,
the magnetic field is scaled by He, = $o/27& (T)? and the
current density by jo = onhi/2etgL(T)E(T). Time is scaled
in units of the Ginzburg-Landau relaxation time gL (T) =
wh/8kpT.u/(1—-T/T.), the electrostatic potential ¢ in units of
@o = h/2etgL(T), where oy is the normal-state conductivity,
and D is the diffusion constant. Parameter u governs the time
change of || and the length of penetration of the electric field
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into a superconductor [46]. Since we are interested mainly
in the dynamics of (anti-)vortex motion but not in the time
evolution of the v—av nucleation and annihilation, for our
problem the actual value of u does not play an essential role,
and we choose u = 5.79 (note that this value depends on the
specific superconductor).

We assume that the thickness of the superconducting film
dg is smaller than the effective magnetic field penetration
depth, A = )\(T)2 /ds, where ds is the thickness of the sample,
and therefore we can neglect the influence of the screening
and transport currents on A [47].

For convenience, we shift the diamond channel to the left
for a half of a diamond-cell length in the x-direction. In this
case, the first and the last cells are half-cells. This decreases
the energy for vortex entry into the film and exit out in case
of finite samples. It also stabilizes the vortex motion inside
the channel (jamming in the last cell does not appear and does
not force vortices to leave the channel). In the case of infinite
sample this cell shift does not play an essential role due to the
periodic boundary condition.

In the x-direction, we use periodic boundary conditions
for the magnitude and phase of the order parameter: | =
YIN, ¢lo = ¢IN, and in the y-direction we employ the
‘normal metal-superconductor’ boundary conditions: ¥ =
0,d¢/0n = —j,. The current is applied along the y-axis as
shown in figure 1. We define the critical ‘depinning’ current
Jc as the current resulting in non-zero vortex velocity in the
dynamic regime. The typical value of the critical voltage
corresponds to 1.0 x 10™* ¢y.

Numerical solution of the TDGL equations is obtained
using the finite-difference method, Fourier analysis and the
cyclic reduction method (FACR) [48-50].

3. Equilibrium vortex states

In this section we describe how the initial state of the system
is prepared. In our simulations, we mimic two experimental
regimes for initial state preparation: field-cooled (FC) regime
and zero-field-cooled (ZFC) regime [51]. In the former case,
we start the simulation from the normal state and let the
system relax in the presence of a homogeneous magnetic field.
The applied magnetic field generates vortices in the sample.
In the latter case, the system is cooled down without field, and
then the field penetrates the system through its boundary in
the form of vortices.

3.1. Finite samples

Here we analyze equilibrium vortex states in finite samples
obtained for various values of the external magnetic field.
These states were obtained using the ZFC regime. After the
cooling, vortices enter the sample through its boundaries. The
mechanism of the current-assisted vortex entry is as follows.
The total current (i.e., the geometric sum of the screening and
the transport currents) near one of the boundaries becomes
higher than the depairing current (see figure 2). This lowers
the surface barrier for vortex entry. An additional factor for
the barrier decrease is the fact that the coherence length in
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Jscr
©
<« <LI-> «—

(I

(b)

o

A
\_N i

S
(I

Figure 2. Current distribution in an infinite (a) and finite (b)
superconducting sample with a vortex inside. Solid black arrows
represent the surface screening current, j& ; solid red (dark gray) the
transport current, j.; solid green (light gray) the current of the
vortex, ji.,.. H shows the direction of the external magnetic field
(out-of-plane). The dashed-line vector shows the total current of the
above three contributions at a point near the boundary (marked with
a black dot).

¢@

the channel &; is larger than that outside &;. These two factors
provide a condition for vortex entry. Each new vortex which
enters the channel increases the barrier since its current lowers
the total sum of the transport and the screening currents near
the film edge (see figure 2(b)). Vortices will enter and occupy
the channel until the vortex currents rise the barrier high
enough, resulting in a balance between the flux outside and
inside the sample (figure 3(a)). Due to the condition & /& >
1, vortices will preferably occupy the channel rather than the
bank. Therefore, the diamond channel serves as a pinning
channel.

The excess of the flux which is not trapped by the
channel enters the bank (i.e., the superconductor with a
lower coherence length & < &;) in the form of additional
(i.e., not ‘pinned’) vortices. Figures 3(b) and (c) represent
equilibrium vortex states in the diamond channel for a larger
external magnetic field than in case (a). The figures show
that the vortices inside the channel impose the symmetry
on the interstitial vortices (the situation is opposite to the
one described in [37], where the interstitial vortices imposed
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Figure 3. Initial (static) vortex configurations (i.e., in the absence of driving) in the sample (w = 4&; and &, /&, = 6) for the external
magnetic field: (a) H = 0.022H;; (b) H = 0.04H,; (c) H = 0.055H;.

the symmetry on the channel vortices). This is a direct
consequence of the absence of the intrinsic pinning. At large
magnetic field H = 0.055H.; (figure 3(c)), the interstitial
vortices are tightly packed and the interaction between them
overcomes the interaction with the channel vortices. This
leads to the appearance of an Abrikosov-type lattice of
interstitial vortices.

In mesoscopic SCs close to the normal state, the boundary
conditions induce the order parameter to follow the symmetry
imposed by the sample geometry as demonstrated, e.g., for
mesoscopic disks [52-55], triangles [56, 57], and stars [58]. It
explains the absence of triangular vortex lattice outside of the
diamond channel.

In figure 4, we show equilibrium vortex states for varying
& /&1. The ratio & /& governs the surface barrier for vortex
entry into the diamond channel. The larger the ratio, the
lower the barrier and the stronger the pinning inside each cell.
For the same external magnetic field, a smaller & /&; value
(surface barrier) leads to a smaller total vortex number in the
film, and a weaker pinning leads to a smaller vortex number
in the channel itself.

These results show that, by varying &,/&;, one can
manipulate the ratio of the vortex number in the channel
and outside the channel. This manipulation is possible for
relatively high magnetic fields (H 2 0.03H;;) when the
channel cannot trap all the vortices, and they will penetrate
outside of the channel and will vary the ratio between the
channel and the interstitial vortices. For low magnetic fields
(H < 0.03H.,), vortices occupy the channel until it traps
them inside, and no interstitial vortex appears. Analyzing the
vortex dynamics in the diamond channel, we are interested in
regimes when vortices are mainly trapped in the channel.

3.2. Infinite sample

Infinite samples are modeled by employing periodic boundary
conditions in the x-direction of the simulation cell. Initial
vortex configurations are prepared by simulating the FC
regime. Equilibrium vortex states in the diamond channel for

80
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Figure 4. Initial (static) vortex configurations (i.e., in the absence
of driving) in the sample (w = 4&; and H = 0.055H,,) for the ratio
of the coherence lengths: (a) & /&1 = 1; (b) & /& = 3.

50

various values of the external magnetic field are presented in
figure 5. The corresponding current distribution is shown in
figure 2(a). Note that the periodic boundary condition results
in a more homogeneous vortex distribution in the x-direction
than in finite-size samples.

In our simulations the vortex number in a stationary state
does not depend on the ratio &/&; (as examined for H =
0.01 — 0.1H»). Despite this, & /& becomes significant in the
dynamical regime as it is included in the kinetic term of the
TDGL equations (1). Therefore, a variation in & /& governs
the ratio between the vortex number in the channel and out of
the channel in the dynamic regime.

4. Flux dynamics

In this section, we study the vortex dynamics driven by
external current. As we demonstrated in section 3, vortices
can occupy either the channel area only (see figure 3(a)) or
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80

X(E)

Figure 5. Initial (static) vortex configurations (i.e., in the absence
of driving) in the sample (w = 2&; and &, /&, = 6) for the external
magnetic field: (a) H = 0.01H; (b) H = 0.02H.;

(¢) H=0.04H,; (d) H = 0.06H;.

the channel and the bank area (figures 3(b) and (c)), depending
on the applied magnetic field. Correspondingly, the dynamical
behavior will differ for these two different cases.

For low magnetic fields, which correspond to the case
when vortices occupy only the diamond channel, the motion
of vortices occur in the form of a ‘single file’, i.e., along a
single straight-line trajectory inside the channel, following
one another, without permutations. This motion can be
controlled, as we show below, by the geometry of the channel.

For higher magnetic fields, which provide generation of
vortices both in the channel and in the banks, the dynamical
behavior is different. The contribution to the total vortex
current will be provided by vortices moving inside the channel
and interstitial vortices. Due to the difference in the material
parameters, i.e., &1 and &, the vortices in the channel move
faster then interstitial vortices. However, the velocity of the
vortices in the channel can be manipulated by changing the
channel geometry which results in a variety of dynamical
regimes. Examples of snapshots of moving vortices in the
system, for magnetic field H = 0.02H., and & /&) = 6, are
shown in figure 6. It is interesting to note that, while in the
initial state (without current) the vortex arrangement can be
less ordered (figure 6(a)), the system of vortices becomes
more ordered during the motion (figure 6(b)). This occurs due
to the fact that channel vortices move faster than interstitial

80
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20

0 25 50 0 50

25
X (®)

Figure 6. Snapshots of driven vortex matter in a diamond channel
in an infinite sample: (&,/&; = 6, w = 2&)) at times: (a) t = 2357GL;
(b) t = 15157gL. The external magnetic field is H = 0.02H,. The
solid black lines, forming triangles, show the dynamically ordered
‘lattice’ of moving interstitial vortices.

vortices, and after some time the system adjusts itself to
minimize its energy such that the interstitial vortices becomes
more ordered (i.e., the dynamical ordering).

4.1. The IV-curves of the system

The above difference in the dynamical behavior of the system
without (i.e., vortices are only in the channel) and with
interstitial vortices is illustrated by the IV-curves. In figure 7,
we plot IV-curves for the channel vortices (figure 7(a); for
convenience, we consider a narrow channel, i.e., with width
dy = 20&, in order to avoid the appearance of interstitial
vortices) and for channel and interstitial vortices (figure 7(b)).

To reveal the effect of the channel geometry on the
vortex dynamics, we calculate IV-curves for varying channel
gap w (see figure 1). In the case of channel vortices, they
are all confined to the channel, and a small gap results in
vortex pinning by the diamond cells. The limiting case w =
0 corresponds, obviously, to the maximum vortex pinning.
As a result, this situation is characterized by the maximum
critical current and extended region of flux-pinning regime
(figure 7(a)). The critical value corresponds to the ‘depinning’
current, when a vortex overcomes the potential barrier and
jumps from one diamond cell to the adjacent cell.

Opening the gap allows an easier vortex transfer between
the cells which in turn results in a lower critical current
(compare the IV-curves in figure 7(a) for w = 4 and w = 8£).
It is worth noting, however, that even for w > & vortices
remain pinned by the diamond cells, due to magnetic core
pinning [36]. Indeed, the magnetic core of a vortex extends
outside the channel, and the variation of the channel width
determines the profile of the vortex supercurrent which is
associated with a change in the energy of the vortex. This
‘soft-pinning’ regime considerably enhances the tunability
of the diamond-channel ‘pinning array’, in comparison with
usual pinning arrays (i.e., consisting of separate pinning sites).
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Figure 7. The IV-curves of the system (£,/&; = 6, tg(«) = 0.5) for
different sizes of the simulation cell (in an infinite sample):

(a) 50¢ x 20& with one vortex in the channel, which corresponds to
external magnetic field H = 0.035H., (for w = 0), H = 0.025H»
(forw = 4&), H = 0.025H, (for w = 8&). The critical current is:

Jje = 0.012jy, j. = 0.025jy, and j. = 0.049jy, correspondingly. The
insets show the distribution of the square modulus of the order
parameter in the sample for the above channel configurations,

w =0, 4, and 8%. (b) w = 50§ x 80& with one vortex in the channel
and one interstitial vortex. The inset shows the order parameter in
the cell with channel gap w = 0 at driving current j = 0.048jj, and
magnetic field H = 0.004H.,. (A contour plot for w = 4£ and

w = 4£ is similar.) The critical current j. (estimated using the
voltage threshold criterion, V. /¢ = 1074 is 0.027jp, 0.041jy, and
0.047jy, correspondingly.

As a result, by changing the gap, w, we can gradually change
the critical current of this system and thus manipulate the
transition from the flux-pinned to the flux-flow regime. As
shown above, for high enough fields vortices can enter the
banks (i.e., the area outside the diamond channel). Therefore,
it is interesting to analyze the effect of interstitial vortices on
the vortex dynamics in our system.

As expected, the presence of additional vortices will
strongly suppress the flux-pinning regime, since interstitial
vortices can flow freely for any low applied current. A
non-zero critical current may appear only as a result of
caging of interstitial vortices due to their interaction with

x 107
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0015 002 0025

i

0 0005 001 0.03

Figure 8. The /V-curves of the system (w = 4¢&, tg(a) = 0.5) for
different &, /& ratio (in an infinite sample): the inset shows the order
parameter distribution in the sample with channel for

w=4¢&,& /& = 6, atj = 0.032jy, and magnetic field

H = 0.025H,;.

pinned vortices. However, this value is much less than that
for the channel vortices. Indeed, figure 7(b) shows a smooth
change of the IV-curve, with practically no flux-pinned to
flux-flow threshold. Although still we can distinguish the
‘critical currents’ for various w, by defining a threshold
voltage, e.g., Vo = 10™*¢g. Thus in figure 7(b), the defined
critical currents are jo = 0.027jy for w = 0, j. = 0.041jy for
w =4, and j. = 0.047jy for w = 8&. Therefore, the effect of
‘soft pinning’ in this case still remains, although it is much
less pronounced than in the above case when all the vortices
are confined by the channel. However, even in the presence
of interstitial vortices, changing the geometry of the diamond
channel influences the vortex flow (see figure 7(b)).

The dynamics of the system strongly depends also on the
material parameters, i.e., it is determined by the ratio of the
coherence lengths in the channel and the bank, & /&;. This
dependence is illustrated by the /V-curves shown in figure 8
(here, we consider the situation when vortices are present only
in the channel; adding interstitial vortices would smoothen
the IV-curves similarly to the case shown in figure 7(b)).
The IV-curves are presented in figure 8 for & /& = 3 and
& /& = 6. As a reference, we also show the /V-curve for
& /& =1, i.e., for a sample without channel. Clearly, in this
case vortices are not pinned, and they can freely move when
driven by any value of the transport current. Therefore, the
curve for & /&) = 1 does not contain a part corresponding to
flux-pinned regime.

For &,/&; values other than one, the motion of vortices
occurs in the channel. Interestingly, this motion is influenced
by two factors. On the one hand, due to the difference in
the material parameters, the vortex mobility in the channel is
higher than outside the channel which favors larger velocity
and thus voltage as compared to the case without channel.
This trend can be seen in the flux-flow regime, i.e., for
Jj/jo > 0.025 (see figure 8). However, on the other hand, the
geometric constriction (i.e., the neck of the diamond channel)
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creates a pinning potential that traps a vortex resulting in
non-zero critical current. Strikingly, a channel characterized
by a larger value of & /& (i.e., §&/&1 = 6) demonstrates a
larger critical current than a channel with a lower & /£, in
spite of the fact that vortex mobility in this channel is larger
(which can be seen in the flux-flow regime for j/jo > 0.027).
This is explained by a stronger pinning effect for higher
‘contrast’ between the material parameters in the channel
and in the bank (i.e., the ratio & /&;). This indicates that
the geometric constriction appears to be more important for
controlling the transition from flux-pinned to flux-flow regime
than the material parameters while the latter factor determines
the motion for higher values of the current above the critical
value.

4.2. Effect of commensurability

We have demonstrated that the material parameters (i.e., the
ratio & /&) and the geometry of the channel (i.e., the
minimum channel width, w) have a pronounced effect on
the flux dynamics in a superconductor with a diamond-like
channel. In particular, we have shown that, by changing the
ratio & /&1 and the gap w, one can control the transition
from flux-pinned to flux-flow regimes and the slope of the
IV-curves (see figures 7 and 8). Further, we analyze the
critical current in the system as a function of the external
applied magnetic field, of j.(H). The results of simulations
of jo(H) for three values of the channel width, w = 0, 4£,
and 8¢ are shown in figure 9. Figure 9(a) represents the case
when vortices are confined in the diamond channel only. The
Jc(H)-curves have a very peculiar view, namely, they consist
of a set of plateaus. Each plateau corresponds to a fixed
number of vortices in the channel, Nsh. For example, for w =
0, the critical current, j./jo has a constant large value (j; /jo ~
0.28) for a range of fields H/H.; ~ 0-0.028. For this range
of fields, no vortex is generated in the system, and the high
value of j. corresponds to the depairing current (recall that the
critical current is defined as a current resulting in a jump of
voltage above some threshold value, e.g., V/¢g = 10™%). It is
worth noting that the value of j. slightly decreases when the
width of the channel increases. This is explained as follows.
The depairing critical current j; is inversely proportional to the
coherence length &: j. o< 1/&. Therefore, the critical depairing
current is lower in the channel than in the bank. Since a vortex
extends also to the region of the bank, its critical depairing
current is influenced by both the channel superconductor
(characterized by &, = 6) and by the bank material (with & =
1). Therefore, increasing the width of the channel reduces the
effect of the bank superconductor characterized by a higher
depairing current. As a result, the critical current decreases,
as can be seen in figure 9.

For larger fields, 0.028 < H/H., < 0.04, the value of
the critical current drops by almost an order of magnitude.
The analysis of the dynamical patterns shows that for
this range of fields the system encounters one vortex per
simulation cell, and the critical current corresponds to the
depinning transition. Further increasing applied magnetic
field up to H/H¢ = 0.06 results in a sequence of plateaus
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Figure 9. The critical current as a function of the magnetic field,
Jjc(H), for samples with & /& = 6 and tg(o) = 0.5, for varying
channel gap. The system dimensions are: (a) S0 x 20£ (an infinite
sample). Numbers near the plateaus in j. show the corresponding
number of vortices in the diamond channel; (b) 50¢ x 80 (an
infinite sample). Interstitial vortices lead to a strong suppression of
the critical current and disappearance of the plateaus; (c) 50& x 20&
(a finite-size sample). The function j.(H) shows a typical behavior
for finite samples, i.e., decreasing with field.

of decreasing values in the function j.(H) corresponding to
N¢M = 1-4. However, this tendency is violated for NM = 5,
i.e., when the vortex number matches to the cell number
in the diamond channel. The critical current increases,
which is a direct consequence of a commensurability effect.
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Figure 10. The critical current j.(H) of the system with the cell
dimensions 50¢ x 20£ (an infinite sample, w = 4£, tg(a) = 0.5) for
different ratios of the coherence lengths, &, /&;. Numbers near
Je-plateaus show the number of vortices in the diamond channel.

When the number of vortices in the channel becomes
larger than the cell number, the critical current rapidly
decreases. A similar behavior is observed for wider channels,
e.g., w =4t and 8% (see figure 9(a)), however, the
overall value of the critical current is considerably lower,
and the commensurability peak is much less pronounced.
Interstitial vortices easily destroy the observed structure of the
Jc(H)-curves: the critical current becomes much lower, and
no commensurability features are revealed (see figure 9(b)).
Note that the revealed commensurability peak (plateau) is also
sensitive to the material parameters of the system. Thus, the
commensurability peak found for &, /&1 = 6 disappears for a
smaller value of the ratio, &> /&1 = 3 (see figure 10).

The demonstrated commensurability effect in diamond
channels was also observed in the experiment [37]. Similarly,
the critical current showed peaks for commensurate numbers
of vortices in channels and channel cells. Note that in
the experiments the j.(H)-curves were smooth which can
be attributed to: (i) large channels containing tens of
diamond cells, and (ii) presence of multiple channels in the
sample (which leads to inhomogeneous broadening, due to a
dispersion of the number of vortices in different channels).
The effect of smoothing of the j.(H)-curves is also observed in
finite samples (note that the j. (H)-curves shown in figures 9(a)
and (b) were calculated for infinite channels, i.e., employing
periodic boundary conditions). However, in this case the
shape of j.(H)-curves is dominated by the barriers at the
boundaries of the channel leading to the typical decreasing
Jc(H) behavior [36].

The critical current can be controlled not only by the
width of the channel, i.e., the gap, w, and the ratio of the
coherence lengths inside and outside the channel, & /£,
but also by the shape of the diamond cells. To analyze
the dependence of the critical current j. on the shape of
the channel compartments, we calculated the critical current
for channels with fge = 0, 1, and 1.5 (angle « is defined
in figure 1, and channels with varying o are sketched in
figure 11(a)). The corresponding function j.(H) is shown in
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Figure 11. Schematic view of the channel with different . The
critical current j. (H) of the system with the cell dimensions

50¢& x 20& (an infinite sample, w = 4&, &, /&, = 6) for channel
shapes characterized by different g (o).

figure 11(b). One can expect that increasing « should lead
to a higher mobility of vortices in the channel, since larger
« means increase in the effective width of the channel. On
the other hand, increasing o means increasing steepness of
the diamond cells, which prevents the motion of the vortices
inside the channel. As aresult, the dependence of j. on g can
be non-monotonic which is observed for magnetic fields in
the range 0.03 < H/H < 0.04 and for the commensurability
peak values, H/H ~ 0.065 (see figure 11(b)).

Thus we have demonstrated that the critical current j. in a
diamond channel can be controlled by the material parameter
of the channel as well as by its geometry including the width
of the channel and the shape of the diamond compartments.

4.3. Negative w

Finally, let us consider the case when the channel gap
w becomes negative. In this case, a continuous channel
appears to be broken and turns to a chain of individual
rhombus-shaped pinning sites.

In figure 12(a), we show a set of IV-curves for positive
and negative w, changing from w = 8¢ to —4£. We found that
changing w to small negative values (w = —2§&), first results
in a slight increase of the critical depinning current since
the neck between adjacent compartments becomes thicker.
However, for larger negative w (w = —4£), the critical current
decreases.

This behavior is explained by the fact that vortices are
not point-like objects. The screening currents of the vortices
extend over distances of the order of A which are greater than
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Figure 12. (a) Comparison of the IV-curves of the system for
positive and negative values of the gap w. (b) The critical current as
a function of the magnetic field, j.(H), for positive and negative
values of the gap w.

the compartment size. Therefore, the vortices are ‘pinned’
due to deformations of those screening currents (as discussed
above), and the size of the neck appears to be less important
than the size of the compartment (which results just in a
slight increase of j;). For larger negative w, the compartments
themselves become smaller. Thus a smaller fraction of the
screening current appears to be inside the compartment, and,
therefore, the ‘pinning’ efficiency decreases. This leads to the
observed decrease in j.. The corresponding critical currents
Jc as a function of the applied magnetic field H are shown in
figure 12(b).

5. Conclusions

By means of the time-dependent Ginzburg—Landau equations,
we have investigated the dynamics of vortices driven in a
‘diamond channel’, i.e., a channel formed by superconducting
material characterized by the critical temperature 7, and the
coherence length & in shape of diamond-like cells inserted
in another superconductor (bank) characterized by 77 and &.
We analyzed the conditions when generated vortices occupy
only the channel and then they can also be generated in the
banks. Depending on this, the dynamics of driven vortices is

very different: the presence of interstitial vortices results in
the disappearance of flux-pinned regime and smoothing the
IV-characteristics of the device. The most interesting is thus
the situation when vortices are present only in the channel. In
this case, the diamond channel acts as a ‘soft-pinning’ device.
Unlike in a linear array of individual pinning centers, the
pinning potentials created by diamond-shaped compartments
overlap and create a periodically modulated pinning channel.
Thus this device is able to guide the flux and at the same
time control the dynamical properties such as the transition
from flux-pinned to flux-flow regime. The latter, as we show,
can be reached by changing either the material parameters of
the device (i.e., the ratio of the coherence lengths inside and
outside the channel, & /&) or by the geometry of the channel
(i.e., the degree of overlapping of the compartments defining
the minimum channel width, w, and the specific shape of the
diamond cells). We found that the critical current j. of this
device manifests striking commensurability features which
were also observed in recent experiments [37].

Therefore, we have demonstrated that a ‘diamond
channel’ can be a promising candidate for potential use in
devices controlling magnetic flux motion.
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