toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Zhang, X.F.; Zhang, X.B.; Van Tendeloo, G.; Meijer, G. doi  openurl
  Title (up) “Harmless” carbon tubes around “dangerous” asbestos fibres Type A1 Journal article
  Year 1994 Publication Carbon Abbreviated Journal Carbon  
  Volume 32 Issue Pages 363-366  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos A1994NC96800026 Publication Date 2003-06-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.196 Times cited 2 Open Access  
  Notes Approved MATERIALS SCIENCE, MULTIDISCIPLINARY 135/271 Q2 # PHYSICS, APPLIED 70/145 Q2 # PHYSICS, CONDENSED MATTER 40/67 Q3 #  
  Call Number UA @ lucian @ c:irua:10029 Serial 1411  
Permanent link to this record
 

 
Author Veronesi, S.; Pfusterschmied, G.; Fabbri, F.; Leitgeb, M.; Arif, O.; Esteban, D.A.; Bals, S.; Schmid, U.; Heun, S. url  doi
openurl 
  Title (up) 3D arrangement of epitaxial graphene conformally grown on porousified crystalline SiC Type A1 Journal article
  Year 2022 Publication Carbon Abbreviated Journal Carbon  
  Volume 189 Issue Pages 210-218  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000760358800008 Publication Date 2021-12-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 10.9 Times cited 3 Open Access OpenAccess  
  Notes Horizon 2020; European Commission; Horizon 2020 Framework Programme; European Research Council, 128 731 019 ; European Research Council, REALNANO 815 128 ; sygmaSB Approved Most recent IF: 10.9  
  Call Number EMAT @ emat @c:irua:186583 Serial 6952  
Permanent link to this record
 

 
Author Neyts, E.; Maeyens, A.; Pourtois, G.; Bogaerts, A. doi  openurl
  Title (up) A density-functional theory simulation of the formation of Ni-doped fullerenes by ion implantation Type A1 Journal article
  Year 2011 Publication Carbon Abbreviated Journal Carbon  
  Volume 49 Issue 3 Pages 1013-1017  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Using self-consistent KohnSham density-functional theory molecular dynamics simulations, we demonstrate the theoretical possibility to synthesize NiC60, the incarfullerene Ni@C60 and the heterofullerene C59Ni in an ion implantation setup. The corresponding formation mechanisms of all three complexes are elucidated as a function of the ion implantation energy and impact location, suggesting possible routes for selectively synthesizing these complexes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000286683500032 Publication Date 2010-11-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 13 Open Access  
  Notes Approved Most recent IF: 6.337; 2011 IF: 5.378  
  Call Number UA @ lucian @ c:irua:85139 Serial 639  
Permanent link to this record
 

 
Author Bafekry, A.; Stampfl, C.; Ghergherehchi, M.; Shayesteh, S.F. pdf  url
doi  openurl
  Title (up) A first-principles study of the effects of atom impurities, defects, strain, electric field and layer thickness on the electronic and magnetic properties of the C2N nanosheet Type A1 Journal article
  Year 2020 Publication Carbon Abbreviated Journal Carbon  
  Volume 157 Issue 157 Pages 371-384  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using the first-principles calculations, we explore the structural and novel electronic/optical properties of the C2N nanosheet. To this goal, we systematically investigate the affect of layer thickness, electrical field and strain on the electronic properties of the C2N nanosheet. By increasing the thickness of C2N, we observed that the band gap decreases. Moreover, by applying an electrical field to bilayer C2N, the band gap decreases and a semiconductor-to-metal transition can occur. Our results also confirm that uniaxial and biaxial strain can effectively alter the band gap of C2N monolayer. Furthermore, we show that the electronic and magnetic properties of C2N can be modified by the adsorption and substitution of various atoms. Depending on the species of embedded atoms, they may induce semiconductor (O, C, Si and Be), metal (S, N, P, Na, K, Mg and Ca), dilute-magnetic semiconductor (H, F, B), or ferro-magnetic-metal (Cl, Li) character in C2N monolayer. It was also found that the inclusion of hydrogen or oxygen impurities and nitrogen vacancies, can induce magnetism in the C2N monolayer. These extensive calculations can be useful to guide future studies to modify the electronic/optical properties of two-dimensional materials. (C) 2019 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000502548500044 Publication Date 2019-10-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 10.9 Times cited 49 Open Access  
  Notes ; This work was supported by the National Research Foundation of Korea grant funded by the Korea government (MSIT) (NRF-2017R1A2B2011989). We are thankful for comments by Meysam Baghery Tagani from department of physics in University of Guilan and Bohayra Mortazavi from Gottfried Wilhelm Leibniz Universitat Hannover, Hannover, Germany. ; Approved Most recent IF: 10.9; 2020 IF: 6.337  
  Call Number UA @ admin @ c:irua:165024 Serial 6283  
Permanent link to this record
 

 
Author Verberck, B.; Cambedouzou, J.; Vliegenthart, G.A.; Gompper, G.; Launois, P. doi  openurl
  Title (up) A Monte Carlo study of C70 molecular motion in C70@SWCNT peapods Type A1 Journal article
  Year 2011 Publication Carbon Abbreviated Journal Carbon  
  Volume 49 Issue 6 Pages 2007-2021  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We present Monte Carlo simulations of chains of C70 molecules encapsulated in a single-walled carbon nanotube (SWCNT). For various tube radii R (6.5 Å less-than-or-equals, slant R less-than-or-equals, slant 7.5 Å), we analyze rotational and translational motion of the C70 molecules, as a function of temperature. Apart from reproducing the experimentally well-established lying and standing molecular orientations for small and large tube radii, respectively, we observe, depending on the tube diameter, a variety of molecular motions, orientational flipping of lying molecules, and the migration of molecules resulting in a continual rearrangement of the C70 molecules in clusters of varying lengths. With increasing temperature, the evolution of the pair correlation functions reveals a transition from linear harmonic chain behavior to a hard-sphere liquid, making C70@SWCNT peapods tunable physical realizations of two well-known one-dimensional model systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000288689900025 Publication Date 2011-01-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 10 Open Access  
  Notes ; Helpful discussions with K.H. Michel, P.-A. Albouy and C. Bousige are greatly acknowledged. This work was financially supported by the Research Foundation – Flanders (FWO-Vl). B.V. is a Postdoctoral Fellow of the Research Foundation Flanders (FWO-VI). ; Approved Most recent IF: 6.337; 2011 IF: 5.378  
  Call Number UA @ lucian @ c:irua:89660 Serial 2201  
Permanent link to this record
 

 
Author Cao, M.; Xiong, D.-B.; Tan, Z.; Ji, G.; Amin-Ahmadi, B.; Guo, Q.; Fan, G.; Guo, C.; Li, Z.; Zhang, D. pdf  url
doi  openurl
  Title (up) Aligning graphene in bulk copper : nacre-inspired nanolaminated architecture coupled with in-situ processing for enhanced mechanical properties and high electrical conductivity Type A1 Journal article
  Year 2017 Publication Carbon Abbreviated Journal  
  Volume 117 Issue Pages 65-74  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Methods used to strengthen metals generally also cause a pronounced decrease in ductility and electrical conductivity. In this work a bioinspired strategy is applied to surmount the dilemma. By assembling copper submicron flakes cladded with in-situ grown graphene, graphene/copper matrix composites with a nanolaminated architecture inspired by a natural nacre have been prepared. Owing to a combined effect-from the bioinspired nanolaminated architecture and improved interfacial bonding, a synergy has been achieved between mechanical strength and ductility as well as electrical conductivity in the graphene/copper matrix composites. With a low volume fraction of only 2.5% of graphene, the composite shows a yield strength and elastic modulus similar to 177% and similar to 25% higher than that of unreinforced copper matrix, respectively, while retains ductility and electrical conductivity comparable to that of pure copper. The bioinspired nanolaminated architecture enhances the efficiencies of two-dimensional (2D) graphene in mechanical strengthening and electrical conducting by aligning graphene to maximize performance for required loading and carrier transporting conditions, and toughens the composites by crack deflection. Meanwhile, in-situ growth of graphene is beneficial for improving interfacial bonding and structural quality of graphene. The strategy sheds light on the development of composites with good combined structural and functional properties. (C) 2017 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000400212100008 Publication Date 2017-02-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:152635 Serial 7435  
Permanent link to this record
 

 
Author da Costa, D.R.; Zarenia, M.; Chaves, A.; Farias, G.A.; Peeters, F.M. pdf  doi
openurl 
  Title (up) Analytical study of the energy levels in bilayer graphene quantum dots Type A1 Journal article
  Year 2014 Publication Carbon Abbreviated Journal Carbon  
  Volume 78 Issue Pages 392-400  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using the four-band continuum model we derive a general expression for the infinite-mass boundary condition in bilayer graphene. Applying this new boundary condition we analytically calculate the confined states and the corresponding wave functions in a bilayer graphene quantum dot in the absence and presence of a perpendicular magnetic field. Our results for the energy spectrum show an energy gap between the electron and hole states at small magnetic fields. Furthermore the electron (e) and hole (h) energy levels corresponding to the K and K' valleys exhibit the E-K(e(h)) (m) = E-K'(e(h)) (m) symmetry, where m is the angular momentum quantum number. (C) 2014 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000341463900042 Publication Date 2014-07-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 35 Open Access  
  Notes ; This work was financially supported by CNPq, under contract NanoBioEstruturas 555183/2005-0, PRONEX/FUNCAP, CAPES Foundation under the process number BEX 7178/13-1, the Flemish Science Foundation (FWO-Vl), the European Science Foundation (ESF) under the EUROCORES program Euro-GRAPHENE (project CONGRAN), the Bilateral programme between CNPq and FWO-Vl, and the Brazilian Program Science Without Borders (CsF). We thank M. Ramezani Masir and M. Grujic for helpful comments and discussions. ; Approved Most recent IF: 6.337; 2014 IF: 6.196  
  Call Number UA @ lucian @ c:irua:119280 Serial 109  
Permanent link to this record
 

 
Author Khalilov, U.; Bogaerts, A.; Neyts, E.C. pdf  url
doi  openurl
  Title (up) Atomic-scale mechanisms of plasma-assisted elimination of nascent base-grown carbon nanotubes Type A1 Journal article
  Year 2017 Publication Carbon Abbreviated Journal Carbon  
  Volume 118 Issue 118 Pages 452-457  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Selective etching allows for obtaining carbon nanotubes with a specific chirality. While plasma-assisted etching has already been used to separate metallic tubes from their semiconducting counterparts, little is known about the nanoscale mechanisms of the etching process. We combine (reactive) molecular dynamics (MD) and force-bias Monte Carlo (tfMC) simulations to study H-etching of CNTs. In particular, during the hydrogenation and subsequent etching of both the carbon cap and the tube, they sequentially transform to different carbon nanostructures, including carbon nanosheet, nanowall, and polyyne chains, before they are completely removed from the surface of a substrate-bound Ni-nanocluster.We also found that onset of the etching process is different in the cases of the cap and the tube, although the overall etching scenario is similar in both cases. The entire hydrogenation/etching process for both cases is analysed in detail, comparing with available theoretical and experimental evidences.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000401120800053 Publication Date 2017-03-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 2 Open Access OpenAccess  
  Notes U. K. gratefully acknowledges financial support from the Research Foundation – Flanders (FWO), Belgium (Grant No. 12M1315N). The work was carried out in part using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Centre VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the Universiteit Antwerpen. The authors also thank Prof. A. C. T. van Duin for sharing the ReaxFF code. Approved Most recent IF: 6.337  
  Call Number PLASMANT @ plasmant @ c:irua:141915 Serial 4531  
Permanent link to this record
 

 
Author Pierard, N.; Fonseca, A.; Colomer, J.-F.; Bossuot, C.; Benoit, J.-M.; Van Tendeloo, G.; Pirard, J.-P.; Nagy, J.B. pdf  doi
openurl 
  Title (up) Ball milling effect on the structure of single-wall carbon nanotubes Type A1 Journal article
  Year 2004 Publication Carbon Abbreviated Journal Carbon  
  Volume 42 Issue 8/9 Pages 1691-1697  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000221948000035 Publication Date 2004-04-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 133 Open Access  
  Notes Pai/Iuap P5/01 Approved Most recent IF: 6.337; 2004 IF: 3.331  
  Call Number UA @ lucian @ c:irua:54866 Serial 213  
Permanent link to this record
 

 
Author Lu, Y.-G.; Turner, S.; Ekimov, E.A.; Verbeeck, J.; Van Tendeloo, G. pdf  doi
openurl 
  Title (up) Boron-rich inclusions and boron distribution in HPHT polycrystalline superconducting diamond Type A1 Journal article
  Year 2015 Publication Carbon Abbreviated Journal Carbon  
  Volume 86 Issue 86 Pages 156-162  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Polycrystalline boron-doped superconducting diamond, synthesized at high pressure and high temperature (HPHT) via a reaction of a single piece of crystalline boron with monolithic graphite, has been investigated by analytical transmission electron microscopy. The local boron distribution and boron environment have been studied by a combination of (scanning) transmission electron microscopy ((S)TEM) and spatially resolved electron energy-loss spectroscopy (EELS). High resolution TEM imaging and EELS elemental mapping have established, for the first time, the presence of largely crystalline diamond-diamond grain boundaries within the material and have evidenced the presence of substitutional boron dopants within individual diamond grains. Confirmation of the presence of substitutional B dopants has been obtained through comparison of acquired boron K-edge EELS fine structures with known references. This confirmation is important to understand the origin of superconductivity in polycrystalline B-doped diamond. In addition to the substitutional boron doping, boron-rich inclusions and triple-points, both amorphous and crystalline, with chemical compositions close to boron carbide B4C, are evidenced. (C) 2015 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000352922700019 Publication Date 2015-01-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 20 Open Access  
  Notes FWO; 246791 COUNTATOMS; 278510 VORTEX; Hercules ECASJO_; Approved Most recent IF: 6.337; 2015 IF: 6.196  
  Call Number c:irua:125994UA @ admin @ c:irua:125994 Serial 250  
Permanent link to this record
 

 
Author Kleshch, V.I.; Porshyn, V.; Orekhov, A.S.; Orekhov, A.S.; Lützenkirchen-Hecht, D.; Obraztsov, A.N. pdf  url
doi  openurl
  Title (up) Carbon single-electron point source controlled by Coulomb blockade Type A1 Journal article
  Year 2021 Publication Carbon Abbreviated Journal Carbon  
  Volume 171 Issue Pages 154-160  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The Coulomb blockade effect is commonly used in solid state electronics for the control of electron flow

at the single-particle level. Potentially, it allows the creation of single-electron point sources demanded

for prospective electron microscopy instruments and other vacuum electronics devices. Here we realize

this potential via creation of a stable point electron source composed of a carbon nanowire electrically

coupled to a diamond nanotip by a tunnel junction. Using energy spectroscopy analysis, we characterize

the electrons liberated from the nanometer scale carbon heterostructures in time and energy domains.

Our experimental results demonstrate perfect agreement with theory prediction of Coulomb oscillations

of the Fermi level in the nanowire and allow to determine the mechanisms of their suppression.

Persistence of the oscillations at room temperature, high intensity field emission with currents up to

1 mA, and other characteristics of our emitters are very promising for practical realization of coherent

single-electron guns.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000598371500018 Publication Date 2020-09-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited Open Access OpenAccess  
  Notes The work was supported by Russian Science Foundation (Project No. 19-72-10067). Approved Most recent IF: 6.337  
  Call Number EMAT @ emat @c:irua:175013 Serial 6670  
Permanent link to this record
 

 
Author Li, L.; Kong, X.; Leenaerts, O.; Chen, X.; Sanyal, B.; Peeters, F.M. pdf  doi
openurl 
  Title (up) Carbon-rich carbon nitride monolayers with Dirac cones : Dumbbell C4N Type A1 Journal article
  Year 2017 Publication Carbon Abbreviated Journal Carbon  
  Volume 118 Issue 118 Pages 285-290  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Two-dimensional (2D) carbon nitride materials play an important role in energy-harvesting, energy-storage and environmental applications. Recently, a new carbon nitride, 2D polyaniline (C3N) was proposed [PNAS 113 (2016) 7414-7419]. Based on the structure model of this C3N monolayer, we propose two new carbon nitride monolayers, named dumbbell (DB) C4N-I and C4N-II. Using first-principles calculations, we systematically study the structure, stability, and band structure of these two materials. In contrast to other carbon nitride monolayers, the orbital hybridization of the C/N atoms in the DB C4N monolayers is sp(3). Remarkably, the band structures of the two DB C4N monolayers have a Dirac cone at the K point and their Fermi velocities (2.6/2.4 x 10(5) m/s) are comparable to that of graphene. This makes them promising materials for applications in high-speed electronic devices. Using a tight-binding model, we explain the origin of the Dirac cone. (C) 2017 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000401120800033 Publication Date 2017-03-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 36 Open Access  
  Notes Approved Most recent IF: 6.337  
  Call Number UA @ lucian @ c:irua:143726 Serial 4588  
Permanent link to this record
 

 
Author Khalilov, U.; Vets, C.; Neyts, E.C. pdf  doi
openurl 
  Title (up) Catalyzed growth of encapsulated carbyne Type A1 Journal article
  Year 2019 Publication Carbon Abbreviated Journal Carbon  
  Volume 153 Issue Pages 1-5  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Carbyne is a novel material of current interest in nanotechnology. As is typically the case for nanomaterials, the growth process determines the resulting properties. While endohedral carbyne has been successfully synthesized, its catalyst and feedstock-dependent growth mechanism is still elusive. We here study the nucleation and growth mechanism of different carbon chains in a Ni-containing double walled carbon nanotube using classical molecular dynamics simulations and first-principles calculations. We find that the understanding the competitive role of the metal catalyst and the hydrocarbon is important to control the growth of 1-dimensional carbon chains, including Ni or H-terminated carbyne. Also, we find that the electronic property of the Ni-terminated carbyne can be tuned by steering the H concentration along the chain. These results suggest catalyst-containing carbon nanotubes as a possible synthesis route for carbyne formation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000485054200001 Publication Date 2019-07-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited Open Access Not_Open_Access  
  Notes Fund of Scientific Research Flanders (FWO), Belgium, 12M1318N 1S22516N ; Flemish Supercomputer Centre VSC; Hercules Foundation; Flemish Government; University of Antwerp; The authors gratefully acknowledge the financial support from the Fund of Scientific Research Flanders (FWO), Belgium, Grant numbers 12M1318N and 1S22516N. The work was carried out in part using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Centre VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the University of Antwerp. Approved Most recent IF: 6.337  
  Call Number PLASMANT @ plasmant @c:irua:160695 Serial 5187  
Permanent link to this record
 

 
Author Titantah, J.T.; Lamoen, D.; Schowalter, M.; Rosenauer, A. pdf  doi
openurl 
  Title (up) Density-functional theory calculations of the electron energy-loss near-edge structure of Li-intercalated graphite Type A1 Journal article
  Year 2009 Publication Carbon Abbreviated Journal Carbon  
  Volume 47 Issue 10 Pages 2501-2510  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We have studied the structural and electronic properties of lithium-intercalated graphite (LIG) for various Li content. Atomic relaxation shows that Li above the center of the carbon hexagon in a AAAA stacked graphite is the only stable Li configuration in stage 1 intercalated graphite. Lithium and Carbon 1s energy-loss near-edge structure (ELNES) calculations are performed on the Li-intercalated graphite using the core-excited density-functional theory formulation. Several features of the Li 1s ELNES are correlated with reported experimental features. The ELNES spectra of Li is found to be electron beam orientation sensitive and this property is used to assign the origin of the various Li 1s ELNES features. Information about core-hole screening by the valence electrons and charge transfer in the LIG systems is obtained from the C 1s ELNES and valence charge density difference calculations, respectively.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000268429000025 Publication Date 2009-05-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 12 Open Access  
  Notes Fwo G.0425.05; Esteem 026019 Approved Most recent IF: 6.337; 2009 IF: 4.504  
  Call Number UA @ lucian @ c:irua:77973 Serial 638  
Permanent link to this record
 

 
Author Ribbens, S.; Meynen, V.; Van Tendeloo, G.; Ke, X.; Mertens, M.; Maes, B.U.W.; Cool, P.; Vansant, E.F. pdf  doi
openurl 
  Title (up) Development of photocatalytic efficient Ti-based nanotubes and nanoribbons by conventional and microwave assisted synthesis strategies Type A1 Journal article
  Year 2008 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat  
  Volume 114 Issue 1/3 Pages 401-409  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); Organic synthesis (ORSY)  
  Abstract Titanate nanotubes were prepared via a hydrothermal treatment of TiO2 powders (Riedel De Haen) in a basic solution. Morphology and structure of the prepared samples were characterized by high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), XRD, FT-Raman spectroscopy, nitrogen sorption and DSC. The photocatalytic activity was evaluated by photocatalytic oxidation of rhodamine 6G. Trititanate nanotubes (TTNT) with inner pore diameters between 4 and 4.2 nm and surface areas up till 360 m(2)/g could be synthesized. The synthesis route was modified by introduction of a calcination step, by applying a lower hydrothermal temperature and microwave irradiation in order to increase the photocatalytic activity of the porous photoactive nanotubular materials. Calcination and a softer hydrothermal treatment led to the formation of anatase without affecting the surface area and nanotubular shape of the samples. In this way, the photocatalytic activity of the original trititanate nanotubes could be significantly increased. By making use of microwave assisted synthesis, the photocatalytic activity call also be increased due to the presence of anatase. However, by applying microwave synthesis, a different structure was obtained, nanoribbons (NR) instead of nanotubcs, resulting in a decrease in surface area and porosity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000258432100040 Publication Date 2008-02-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.615 Times cited 47 Open Access  
  Notes Fwo; Crp (Ua) Approved Most recent IF: 3.615; 2008 IF: 2.555  
  Call Number UA @ lucian @ c:irua:69696 Serial 683  
Permanent link to this record
 

 
Author He, Z.; Ke, X.; Bals, S.; Van Tendeloo, G. pdf  doi
openurl 
  Title (up) Direct evidence for the existence of multi-walled carbon nanotubes with hexagonal cross-sections Type A1 Journal article
  Year 2012 Publication Carbon Abbreviated Journal Carbon  
  Volume 50 Issue 7 Pages 2524-2529  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Carbon nanotubes (CNTs) with a polygonal cross-section have been paid increasing attention since their three-dimensional structure is related to specific physical properties, which are found to be different in comparison to CNTs with a circular cross-section. Here, we report the existence of novel multi-walled CNTs yielding walls with a rounded-hexagonal configuration. This structure was directly confirmed for the first time by both cross-sectional transmission electron microscopy and electron tomography. The morphology of the Fe catalytic particle also exhibits hexagonal characteristics, and is proposed as the origin of the formation of the rounded-hexagonal walls of the CNT. This observation is of great importance with respect to the design of polygonal (such as pentagonal or hexagonal) cross-sectional CNTs. By controlling the morphology of the catalytic nanoparticles it will be possible to grow CNTs with desired electronic and mechanical properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000303038400015 Publication Date 2012-02-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 8 Open Access  
  Notes Fwo Approved Most recent IF: 6.337; 2012 IF: 5.868  
  Call Number UA @ lucian @ c:irua:96956 Serial 711  
Permanent link to this record
 

 
Author Filippousi, M.; Turner, S.; Katsikini, M.; Pinakidou, F.; Zamboulis, D.; Pavlidou, E.; Van Tendeloo, G. pdf  url
doi  openurl
  Title (up) Direct observation and structural characterization of natural and metal ion-exchanged HEU-type zeolites Type A1 Journal article
  Year 2015 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat  
  Volume 210 Issue 210 Pages 185-193  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The atomic structure of natural HEU-type zeolite and two ion-exchanged variants of the zeolite, Ag+ (Ag-HEU) and Zn2+ (Zn-HEU) ion exchanged HEU-type zeolites, are investigated using advanced transmission electron microscopy techniques in combination with X-ray powder diffraction and X-ray absorption fine structure measurements. In both ion-exchanged materials, loading of the natural HEU zeolite is confirmed. Using low-voltage, aberration-corrected transmission electron microscopy at low-dose conditions, the local crystal structure of natural HEU-type zeolite is determined and the interaction of the ion-exchanged natural zeolites with the Ag+ and Zn2+ ions is studied. In the case of Ag-HEU, the presence of Ag+ ions and clusters at extra-framework sites as well as Ag nanoparticles has been confirmed. The Ag nanoparticles are preferentially positioned at the zeolite surface. For Zn-HEU, no large Zn(O) nanopartides are present, instead, the HEU channels are evidenced to be decorated by small Zn(O) clusters. (c) 2015 Elsevier Inc. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000353733300024 Publication Date 2015-02-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.615 Times cited 5 Open Access  
  Notes 246791 Countatoms; Iap-Pai; Fwo Approved Most recent IF: 3.615; 2015 IF: 3.453  
  Call Number c:irua:126006 Serial 715  
Permanent link to this record
 

 
Author Bafekry, A.; Yagmurcukardes, M.; Shahrokhi, M.; Ghergherehchi, M. pdf  doi
openurl 
  Title (up) Electro-optical properties of monolayer and bilayer boron-doped C₃N: Tunable electronic structure via strain engineering and electric field Type A1 Journal article
  Year 2020 Publication Carbon Abbreviated Journal Carbon  
  Volume 168 Issue Pages 220-229  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In this work, the structural, electronic and optical properties of monolayer and bilayer of boron doped C3N are investigated by means of density functional theory-based first-principles calculations. Our results show that with increasing the B dopant concentration from 3.1% to 12.5% in the hexagonal pattern, an indirect-to-direct band gap (0.8 eV) transition occurs. Furthermore, we study the effect of electric field and strain on the B doped C3N bilayer (B-C3N@2L). It is shown that by increasing E-field strength from 0.1 to 0.6V/angstrom, the band gap displays almost a linear decreasing trend, while for the > 0.6V/angstrom, we find dual narrow band gap with of 50 meV (in parallel E-field) and 0.4 eV (in antiparallel E-field). Our results reveal that in-plane and out-of-plane strains can modulate the band gap and band edge positions of the B-C3N@2L. Overall, we predict that B-C3N@2L is a new platform for the study of novel physical properties in layered two-dimensional materials (2DM) which may provide new opportunities to realize high-speed low-dissipation devices. (C) 2020 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000565900900008 Publication Date 2020-07-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 10.9 Times cited 21 Open Access  
  Notes ; This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government(MSIT) (NRF-2017R1A2B2011989). M. Yagmurcukardes acknowledges Flemish Science Foundation (FWO-VI) by a postdoctoral fellowship. ; Approved Most recent IF: 10.9; 2020 IF: 6.337  
  Call Number UA @ admin @ c:irua:171914 Serial 6500  
Permanent link to this record
 

 
Author Mirzakhani, M.; Myoung, N.; Peeters, F.M.; Park, H.C. pdf  doi
openurl 
  Title (up) Electronic Mach-Zehnder interference in a bipolar hybrid monolayer-bilayer graphene junction Type A1 Journal article
  Year 2023 Publication Carbon Abbreviated Journal  
  Volume 201 Issue Pages 734-744  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Graphene matter in a strong magnetic field, realizing one-dimensional quantum Hall channels, provides a unique platform for studying electron interference. Here, using the Landauer-Buttiker formalism along with the tightbinding model, we investigate the quantum Hall (QH) effects in unipolar and bipolar monolayer-bilayer graphene (MLG-BLG) junctions. We find that a Hall bar made of an armchair MLG-BLG junction in the bipolar regime results in valley-polarized edgechannel interferences and can operate a fully tunable Mach-Zehnder (MZ) interferometer device. Investigation of the bar-width and magnetic-field dependence of the conductance oscillations shows that the MZ interference in such structures can be drastically affected by the type of (zigzag) edge termination of the second layer in the BLG region [composed of vertical dimer or non-dimer atoms]. Our findings reveal that both interfaces exhibit a double set of Aharonov-Bohm interferences, with the one between two oppositely valley-polarized edge channels dominating and causing a large amplitude conductance oscillation ranging from 0 to 2e2/h. We explain and analyze our findings by analytically solving the Dirac-Weyl equation for a gated semi-infinite MLG-BLG junction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000868911500004 Publication Date 2022-09-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 10.9 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 10.9; 2023 IF: 6.337  
  Call Number UA @ admin @ c:irua:191516 Serial 7302  
Permanent link to this record
 

 
Author Fukuhara, S.; Bal, K.M.; Neyts, E.C.; Shibuta, Y. pdf  url
doi  openurl
  Title (up) Entropic and enthalpic factors determining the thermodynamics and kinetics of carbon segregation from transition metal nanoparticles Type A1 Journal article
  Year 2021 Publication Carbon Abbreviated Journal Carbon  
  Volume 171 Issue Pages 806-813  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The free energy surface (FES) for carbon segregation from nickel nanoparticles is obtained from advanced molecular dynamics simulations. A suitable reaction coordinate is developed that can distinguish dissolved carbon atoms from segregated dimers, chains and junctions on the nanoparticle surface. Because of the typically long segregation time scale (up to ms), metadynamics simulations along the developed reaction coordinate are used to construct FES over a wide range of temperatures and carbon concentrations. The FES revealed the relative stability of different stages in the segregation process, and free energy barriers and rates of the individual steps could then be calculated and decomposed into enthalpic and entropic contributions. As the carbon concentration in the nickel nanoparticle increases, segregated carbon becomes more stable in terms of both enthalpy and entropy. The activation free energy of the reaction also decreases with the increase of carbon concentration, which can be mainly attributed to entropic effects. These insights and the methodology developed to obtain them improve our understanding of carbon segregation process across materials science in general, and the nucleation and growth of carbon nanotube in particular.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000598371500084 Publication Date 2020-09-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited Open Access OpenAccess  
  Notes Scientific Research, 19H02415 ; JSPS, 18J22727 ; Japan Society for the Promotion of Science; JSPS; JSPS; FWO; Research Foundation; Flanders, 12ZI420N ; This work was supported by Grant-in-Aid for Scientific Research (B) (No.19H02415) and Grant-in-Aid for JSPS Research Fellow (No.18J22727) from Japan Society for the Promotion of Science (JSPS), Japan. S.F. was supported by JSPS through the Program for 812 Approved Most recent IF: 6.337  
  Call Number PLASMANT @ plasmant @c:irua:172452 Serial 6421  
Permanent link to this record
 

 
Author Afanasov, I.M.; Shornikova, O.N.; Avdeev, V.V.; Lebedev, O.I.; Van Tendeloo, G.; Matveev, A.T. pdf  doi
openurl 
  Title (up) Expanded graphite as a support for Ni/carbon composites Type A1 Journal article
  Year 2009 Publication Carbon Abbreviated Journal Carbon  
  Volume 47 Issue 2 Pages 513-518  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Expanded graphite decorated with nickel oxide particles (EGNiO) has been synthesized through electrochemical oxidation of natural graphite in an aqueous nickel nitrate solution followed by a heat treatment. EGNiO was used to prepare nickel/carbon composites using two techniques: (a) hydrogen reduction of nickel oxide particles loaded on the expanded graphite surface and (b) pyrolysis of coal tar pitch-impregnated EGNiO blocks. The EGNiO as well as the nickel/carbon composites have been characterized by X-ray diffraction, scanning and transmission electron microscopy, energy dispersive X-ray spectroscopy and selected area electron diffraction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000262558300018 Publication Date 2008-11-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 45 Open Access  
  Notes Iap-Vi Approved Most recent IF: 6.337; 2009 IF: 4.504  
  Call Number UA @ lucian @ c:irua:76033 Serial 1132  
Permanent link to this record
 

 
Author van Oers, C.J.; Stevens, W.J.J.; Bruijn, E.; Mertens, M.; Lebedev, O.I.; Van Tendeloo, G.; Meynen, V.; Cool, P. pdf  doi
openurl 
  Title (up) Formation of a combined micro- and mesoporous material using zeolite Beta nanoparticles Type A1 Journal article
  Year 2009 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat  
  Volume 120 Issue 1/2 Pages 29-34  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract Composite micro- and mesoporous materials are synthesized using zeolite Beta nanoparticles without the need for a structure directing agent to form the mesopores. This leads to important ecological and economical advantages. The influence of the way of cooling the aged nanoparticles solution on the formation of the composite materials has been studied. The materials have been characterized towards porosity by N2-sorption, towards zeolitic properties by TGA, DRIFT, XRD and TEM, towards aluminium content by EPMA. All prepared structures possess zeolitic properties. However, the method of cooling down of the aged seeds leads to differences in the porosity and intensity of the zeolitic characteristics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000264619200006 Publication Date 2008-09-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.615 Times cited 42 Open Access  
  Notes Crp; Sfr Ua Approved Most recent IF: 3.615; 2009 IF: 2.652  
  Call Number UA @ lucian @ c:irua:74950 Serial 1254  
Permanent link to this record
 

 
Author Neyts, E.C.; Bogaerts, A. doi  openurl
  Title (up) Formation of endohedral Ni@C60 and exohedral NiC60 metallofullerene complexes by simulated ion implantation Type A1 Journal article
  Year 2009 Publication Carbon Abbreviated Journal Carbon  
  Volume 47 Issue 4 Pages 1028-1033  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The interaction of thermal and hyperthermal Ni ions with gas-phase C60 fullerene was investigated at two temperatures with classical molecular dynamics simulations using a recently developed interatomic many-body potential. The interaction between Ni and C60 is characterized in terms of the NiC60 binding sites, complex formation, and the collision and temperature induced deformation of the C60 cage structure. The simulations show how ion implantation theoretically allows the synthesis of both endohedral Ni@C60 and exohedral NiC60 metallofullerene complexes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000264252900012 Publication Date 2008-12-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 15 Open Access  
  Notes Approved Most recent IF: 6.337; 2009 IF: 4.504  
  Call Number UA @ lucian @ c:irua:76434 Serial 1260  
Permanent link to this record
 

 
Author Verberck, B.; Heresanu, V.; Rouziere, S.; Cambedouzou, J.; Launois, P.; Kovats, E.; Pekker, S.; Vliegenthart, G.A.; Michel, K.H.; Gompper, G. doi  openurl
  Title (up) Fullerene-cubane : X-ray scattering experiments and Monte Carlo simulations Type A1 Journal article
  Year 2008 Publication Fullerenes, nanotubes, and carbon nanostructures T2 – 8th Biennial International Workshop on Fullerenes and Atomic Clusters, (IWFAC 2007), JUL 02-06, 2007, St Petersburg, RUSSIA Abbreviated Journal Fuller Nanotub Car N  
  Volume 16 Issue 5-6 Pages 293-300  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract We report single-crystal X-ray diffuse scattering measurements on C-60.C8H8 fullerene-cubane showing that the C-60 molecules are orientationally disordered at 300 and 150K and get ordered at low temperatures. Monte Carlo simulations provide further insight in the orientational behavior of both C-60 and C8H8 molecules; low-temperature molecular orientations are predicted.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000259645200003 Publication Date 2008-09-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1536-383X;1536-4046; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.35 Times cited 6 Open Access  
  Notes Approved Most recent IF: 1.35; 2008 IF: 0.680  
  Call Number UA @ lucian @ c:irua:102640 Serial 1295  
Permanent link to this record
 

 
Author Afanasov, I.M.; Shornikova, O.N.; Kirilenko, D.A.; Vlasov, I.I.; Zhang, L.; Verbeeck, J.; Avdeev, V.V.; Van Tendeloo, G. pdf  doi
openurl 
  Title (up) Graphite structural transformations during intercalation by HNO3 and exfoliation Type L1 Letter to the editor
  Year 2010 Publication Carbon Abbreviated Journal Carbon  
  Volume 48 Issue 6 Pages 1862-1865  
  Keywords L1 Letter to the editor; Electron microscopy for materials research (EMAT)  
  Abstract Expandable graphite of two types was synthesized by (1) hydrolysis of graphite nitrate of II stage and (2) anodic polarization of graphite in 60% HNO3. Exfoliated graphite samples were produced by thermal shock of expandable graphite samples in air at 900 °C. A comparative study of microstructural distinctions of both expandable and exfoliated graphite samples was carried out using X-ray diffraction, Raman spectroscopy, electron energy loss spectroscopy and high resolution transmission electron microscopy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000276132800021 Publication Date 2010-02-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 43 Open Access  
  Notes Approved Most recent IF: 6.337; 2010 IF: 4.896  
  Call Number UA @ lucian @ c:irua:82315UA @ admin @ c:irua:82315 Serial 1379  
Permanent link to this record
 

 
Author de Clippel, F.; Harkiolakis, A.; Vosch, T.; Ke, X.; Giebeler, L.; Oswald, S.; Houthoofd, K.; Jammaer, J.; Van Tendeloo, G.; Martens, J.A.; Jacobs, P.A.; Baron, G.V.; Sels, B.F.; Denayer, J.F.M. pdf  doi
openurl 
  Title (up) Graphitic nanocrystals inside the pores of mesoporous silica : synthesis, characterization and an adsorption study Type A1 Journal article
  Year 2011 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat  
  Volume 144 Issue 1/3 Pages 120-133  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract This work presents a new carbonsilica hybrid material, denoted as CSM, with remarkable sorption properties. It consists of intraporous graphitic nanocrystals grown in the pores of mesoporous silica. CSM is obtained by a subtle incipient wetness impregnation of Al-containing mesoporous silica with furfuryl alcohol (FA)/hemelitol solutions. Both the volume match of the impregnation solution with that of the silica template pore volume, and the presence of Al3+ in the silica, are crucial to polymerize FA selectively inside the mesopores. Carbonization of the intraporous polymer was then performed by pyrolysis under He up to 1273 K. The resulting CSMs were examined by SEM, HRTEM, 27Al MAS NMR, N2 adsorption, XRD, TGA, TPD, XPS, pycnometry and Raman spectroscopy. Mildly oxidized graphitic-like carbon nanoblocks, consisting of a few graphene-like sheets, were thus identified inside the template mesopores. Random stacking of these carbon crystallites generates microporosity resulting in biporous materials at low carbon content and microporous materials at high carbon loadings. Very narrow pore distributions were obtained when pyrolysis was carried out under slow heating rate, viz. 1 K min−1. Adsorption and shape selective properties of the carbon filled mesoporous silica were studied by performing pulse chromatography and breakthrough experiments, and by measuring adsorption isotherms of linear and branched alkanes. Whereas the parent mesoporous silica shows unselective adsorption, their CSM analogues preferentially adsorb linear alkanes. The sorption capacity and selectivity can be adjusted by changing the pore size of the template or by varying the synthesis conditions. A relation between the carbon crystallites size and the shape selective behaviour of the corresponding CSM for instance is demonstrated. Most interestingly, CSM shows separation factors for linear and branched alkanes up to values comparable to those of zeolitic molecular sieves.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000293435400016 Publication Date 2011-04-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.615 Times cited 15 Open Access  
  Notes Approved Most recent IF: 3.615; 2011 IF: 3.285  
  Call Number UA @ lucian @ c:irua:92325 Serial 1380  
Permanent link to this record
 

 
Author Oh, H.; Gennett, T.; Atanassov, P.; Kurttepeli, M.; Bals, S.; Hurst, K.E.; Hirscher, M. pdf  doi
openurl 
  Title (up) Hydrogen adsorption properties of platinum decorated hierarchically structured templated carbons Type A1 Journal article
  Year 2013 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat  
  Volume 177 Issue Pages 66-74  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract In this report, the possibility of Pt catalytic activity for the dissociation of hydrogen molecules and subsequent hydrogen adsorption on sucrose templated carbon at ambient temperature has been studied. In order to investigate Pt catalytic effect for hydrogen storage solely, 6.8 wt.% Pt-doped (Pt/TC) and pure templated carbon (TC) possessing almost identical specific surface area (SSA) and pore volume (Vp) have been successfully synthesized. Since both Pt/TC and TC shares for their textural properties (e.g. SSA and Vp), any difference of hydrogen adsorption characteristic and storage capacity can be ascribed to the presence of Pt nanoparticles. Both samples are characterized by various techniques such as powder Xray diffraction, ICP-OES, Raman spectroscopy, transmission electron microscopy, cryogenic thermal desorption spectroscopy, low-pressure high-resolution hydrogen and nitrogen BET and high-pressure hydrogen adsorption isotherms in a Sieverts' apparatus. By applying hydrogen and deuterium isotope mixture, cryogenic thermal desorption spectroscopy point to a Pt catalytic activity for the dissociation of hydrogen molecules. Furthermore, the hydrogen adsorption isotherms at RT indicate an enhancement of the initial hydrogen adsorption kinetics in Pt-doped system. However, the hydrogen storage capacity of Pt/TC exhibits a negligible enhancement with a strong hysteresis, suggesting no connection between the spillover effect and a feasible hydrogen storage enhancement. (C) 2013 Elsevier Inc. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000322293000012 Publication Date 2013-04-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.615 Times cited 25 Open Access  
  Notes 262348 ESMI; COST Action MP1103 Approved Most recent IF: 3.615; 2013 IF: 3.209  
  Call Number UA @ lucian @ c:irua:109758 Serial 1532  
Permanent link to this record
 

 
Author Wiktor, C.; Turner, S.; Zacher, D.; Fischer, R.A.; Van Tendeloo, G. pdf  doi
openurl 
  Title (up) Imaging of intact MOF-5 nanocrystals by advanced TEM at liquid Type A1 Journal article
  Year 2012 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat  
  Volume 162 Issue Pages 131-135  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract First results on the imaging of intact metalorganic framework (MOF) pores in MOF-5 nanocrystals by aberration corrected transmission electron microscopy (TEM) under liquid nitrogen conditions are presented. The applied technique is certainly transferable to other MOF systems, permitting detailed studies of MOF interfaces, MOFnanoparticle interaction and MOF thin films.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000308284800018 Publication Date 2012-06-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.615 Times cited 30 Open Access  
  Notes Fwo Approved Most recent IF: 3.615; 2012 IF: 3.365  
  Call Number UA @ lucian @ c:irua:100467 Serial 1554  
Permanent link to this record
 

 
Author Savchenko, D.V.; Serdan, A.A.; Morozov, V.A.; Van Tendeloo, G.; Ionov, S.G. pdf  doi
openurl 
  Title (up) Improvement of the oxidation stability and the mechanical properties of flexible graphite foil by boron oxide impregnation Type A1 Journal article
  Year 2012 Publication New carbon materials Abbreviated Journal  
  Volume 27 Issue 1 Pages 12-18  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Flexible graphite foil produced by rolling expanded graphite impregnated with boron oxide was analyzed by laser mass spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy and thermogravimetry. It was shown that the modification of the graphite foil by boron oxide increases the onset temperature of oxidation by ∼ 150 °C. Impregnation of less than 2 mass% boron oxide also increased the tensile strength of the materials. The observed improvement was attributed to the blocking of active sites by boron oxide, which is probably chemically bonded to the edges of graphene sheets in expanded graphite particles.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000304742100002 Publication Date 2012-03-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1872-5805; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 5 Open Access  
  Notes Iap Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:96958 Serial 1569  
Permanent link to this record
 

 
Author de Witte, K.; Busuioc, A.M.; Meynen, V.; Mertens, M.; Bilba, N.; Van Tendeloo, G.; Cool, P.; Vansant, E.F. doi  openurl
  Title (up) Influence of the synthesis parameters of TiO2-SBA-15 materials on the adsorption and photodegradation of rhodamine-6G Type A1 Journal article
  Year 2008 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat  
  Volume 110 Issue 1 Pages 100-110  
  Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000254056200013 Publication Date 2007-10-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.615 Times cited 54 Open Access  
  Notes Approved Most recent IF: 3.615; 2008 IF: 2.555  
  Call Number UA @ lucian @ c:irua:68280 Serial 1654  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: