toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Tytgat, T.; Hauchecorne, B.; Abakumov, A.M.; Smits, M.; Verbruggen, S.W.; Lenaerts, S. pdf  doi
openurl 
  Title Photocatalytic process optimisation for ethylene oxidation Type A1 Journal article
  Year 2012 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 209 Issue (up) Pages 494-500  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract When studying photocatalysis it is important to consider, beside the chemical approach, the engineering part related to process optimisation. To achieve this a fixed bed photocatalytic set-up consisting of different catalyst placings, in order to vary catalyst distribution, is studied. The use of a fixed quantity of catalyst placed packed or randomly distributed in the reactor, results in an almost double degradation for the distributed catalyst. Applying this knowledge leads to an improved performance with limited use of catalyst. A reactor only half filled with catalyst leads to higher degradation performance compared to a completely filled reactor. Taking into account this simple process optimisation by better distributing the catalyst a more sustainable photocatalytic air purification process is achieved. (C) 2012 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000311190500058 Publication Date 2012-08-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 12 Open Access  
  Notes ; We are grateful for the delivered photocatalyst by Evonik as well as for the PhD grant (T. Tytgat) given by the Institute of Innovation by Science and Technology in Flanders (IWT). ; Approved Most recent IF: 6.216; 2012 IF: 3.473  
  Call Number UA @ lucian @ c:irua:105185 Serial 2609  
Permanent link to this record
 

 
Author Verbruggen, S.W.; Keulemans, M.; Filippousi, M.; Flahaut, D.; Van Tendeloo, G.; Lacombe, S.; Martens, J.A.; Lenaerts, S. pdf  doi
openurl 
  Title Plasmonic goldsilver alloy on TiO2 photocatalysts with tunable visible light activity Type A1 Journal article
  Year 2014 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 156 Issue (up) Pages 116-121  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Adaptation of the photoresponse of anatase TiO2 to match the solar spectrum is an important scientific challenge. Modification of TiO2 with noble metal nanoparticles displaying surface plasmon resonance effects is one of the promising approaches. Surface plasmon resonance typically depends on chemical composition, size, shape and spatial organization of the metal nanoparticles in contact with TiO2. AuxAg(1 − x) alloy nanoparticles display strong composition-dependent surface plasmon resonance in the visible light region of the spectrum. In this work, a general strategy is presented to prepare plasmonic TiO2-based photocatalysts with a visible light response that can be accurately tuned over a broad range of the spectrum. The application as self-cleaning material toward the degradation of stearic acid is demonstrated for a plasmonic TiO2 photocatalyst displaying visible light photoactivity at the intensity maximum of solar light around 490 nm.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000336013200014 Publication Date 2014-03-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.446 Times cited 84 Open Access  
  Notes Flanders(FWO); Methusalem Approved Most recent IF: 9.446; 2014 IF: 7.435  
  Call Number UA @ lucian @ c:irua:115552 Serial 2646  
Permanent link to this record
 

 
Author Quaglia, G.; Joris, I.; Broekx, S.; Desmet, N.; Koopmans, K.; Vandaele, K.; Seuntjens, P. pdf  doi
openurl 
  Title A spatial approach to identify priority areas for pesticide pollution mitigation Type A1 Journal article
  Year 2019 Publication Journal of environmental management Abbreviated Journal  
  Volume 246 Issue (up) Pages 583-593  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Identifying priority areas is an essential step in developing management strategies to reduce pesticide loads in surface water. A spatially explicit model-based approach was developed to detect priority areas for diffuse pesticide pollution at catchment scale. The method uses available datasets and considers different pesticide pathways in the environment post-application. The approach was applied in a catchment area in SE Flanders (Belgium) as a case study. Calculated risk areas were obtained using detailed landscape data and combining pesticide emissions and hydrological connectivity. The risk areas obtained were further compared with an alternative observation-based method, developed specifically for this study site that includes long-term field observations and local expert knowledge. Both methods equally classified 50% of the areas. The impact of crop rotation on the calculated risk was analysed. High-risk areas were identified and added to a cumulative map over all five years to evaluate temporal variations. The model-based approach was used for the initial identification of risk areas at the study site. The tool helps to prioritise zones and detect particular fields to target landscape mitigation measures to reduce diffuse pesticide pollution reaching surface water bodies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000482246700058 Publication Date 2019-06-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0301-4797 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:162789 Serial 7398  
Permanent link to this record
 

 
Author Keulemans, M.; Verbruggen, S.W.; Hauchecorne, B.; Martens, J.A.; Lenaerts, S. pdf  url
doi  openurl
  Title Activity versus selectivity in photocatalysis : morphological or electronic properties tipping the scale Type A1 Journal article
  Year 2016 Publication Journal of catalysis Abbreviated Journal J Catal  
  Volume 344 Issue (up) Pages 221-228  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In this paper a structure-activity and structure-selectivity relation is established for three commercial TiO2 sources (P25, P90, and PC500). Morphological and electronic parameters of the photocatalysts are determined using widely applicable and inexpensive characterization procedures. More specifically, the electronic properties are rigorously characterized using an electron titration method yielding quantitative information on the amount of defect sites present in the catalyst. Surface photovoltage measurements on the other hand provide complementary information on the charge carrier recombination process. As model reaction, the degradation of a solid layer of stearic acid is studied using an in situ FTIR reaction cell that enables to investigate the catalyst surface and possible formation of reaction intermediates while the reactions are ongoing. We show that the order of photocatalytic conversion is PC500 > P90 > P25, matching the order of favorable morphological properties. In terms of selectivity to CO2 formation (complete mineralization), however, this trend is reversed: P25 > P90 > PC500, now matching the order of advantageous electronic properties, i.e. low charge carrier recombination and high charge carrier generation. With this we intend to provide new mechanistic insights using a wide variety of physical, (wet) chemical and operando analysis methods that aid the development of performant (self-cleaning) photocatalytic materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000390182800022 Publication Date 2016-10-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9517 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.844 Times cited 10 Open Access  
  Notes ; M.K. acknowledges Flemish Agency for Innovation & Entrepreneurship for the doctoral scholarship. S.W.V. acknowledges the Fonds Wetenschappelijk Onderzoek (FWO) for a post-doctoral fellowship. J.A.M. acknowledges the Flemish government for long-term structural funding (Methusalem). ; Approved Most recent IF: 6.844  
  Call Number UA @ admin @ c:irua:136339 Serial 5926  
Permanent link to this record
 

 
Author Verbruggen, S.W.; Lenaerts, S.; Denys, S. pdf  url
doi  openurl
  Title Analytic versus CFD approach for kinetic modeling of gas phase photocatalysis Type A1 Journal article
  Year 2015 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 262 Issue (up) Pages 1-8  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In this work two methods for determining the LangmuirHinshelwood kinetic parameters for a slit-shaped flat bed photocatalytic reactor are compared: an analytic mass transfer based model adapted from literature and a computational fluid dynamics (CFD) approach that was used in conjunction with a simplex optimization routine. Despite the differences between both approaches, similar values for the kinetic parameters and similar trends in terms of their UV intensity dependence were found. Using an effectiveness-NTU (number of transfer units) approach, the analytic mass transfer based method could quantify the relative contributions of the rate limiting steps through a reaction effectiveness parameter. The numeric CFD approach on the other hand could yield the two kinetic parameters that determine the photocatalytic reaction rate simultaneously. Furthermore, it proved to be more accurate as it accounts for the spatial variation of flow rate, reaction rate and concentrations at the surface of the photocatalyst. We elaborate this dual kinetic analysis with regard to the photocatalytic degradation of acetaldehyde in air over a silicon wafer coated with a layer of TiO2 P25 (Evonik) and study the usefulness and limitations of both strategies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000347577700001 Publication Date 2014-09-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 30 Open Access  
  Notes ; S.W.V. acknowledges the Research Foundation of Flanders (FWO) for financial support. ; Approved Most recent IF: 6.216; 2015 IF: 4.321  
  Call Number UA @ admin @ c:irua:119724 Serial 5927  
Permanent link to this record
 

 
Author van Walsem, J.; Verbruggen, S.W.; Modde, B.; Lenaerts, S.; Denys, S. pdf  url
doi  openurl
  Title CFD investigation of a multi-tube photocatalytic reactor in non-steady-state conditions Type A1 Journal article
  Year 2016 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 304 Issue (up) Pages 808-816  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract A novel multi-tube photoreactor is presented with a high efficiency (over 90% conversion) toward the degradation of acetaldehyde in air under UV conditions with an incident intensity of 2.1 mW cm−2. A CFD model was developed to simulate the transient adsorption and photocatalytic degradation processes of acetaldehyde in this reactor design and to estimate the corresponding kinetic parameters through an optimization routine using the experimentally determined outlet concentration profiles. The CFD model takes into account the entire reactor geometry and all relevant flow parameters, in contrast to analytical methods that often oversimplify the physical and chemical process characteristics. Using CFD, we show that both adsorption and desorption rate constants increase by respectively one and two orders of magnitude when the UV light is switched on, which clearly affects the transient behavior. The agreement of the experimental and modelled concentration profiles is excellent as evidenced by a coefficient of determination of at least 0.965. To demonstrate the reliability and accuracy of all parameters obtained from the modelling approach, an ultimate validation test was performed using other conditions than the ones used for estimating the kinetic parameters. The model was able to accurately simulate simultaneous adsorption, desorption and photocatalytic degradation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000384777200089 Publication Date 2016-07-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 10 Open Access  
  Notes ; J.V.W. acknowledges the Agentschap Innoveren & Ondernemen for a PhD fellowship. S.W.V. acknowledges the Research Foundation – Flanders (FWO) for a postdoctoral fellowship. ; Approved Most recent IF: 6.216  
  Call Number UA @ admin @ c:irua:139620 Serial 5933  
Permanent link to this record
 

 
Author Verbruggen, S.W.; Keulemans, M.; van Walsem, J.; Tytgat, T.; Lenaerts, S.; Denys, S. pdf  url
doi  openurl
  Title CFD modeling of transient adsorption/desorption behavior in a gas phase photocatalytic fiber reactor Type A1 Journal article
  Year 2016 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 292 Issue (up) Pages 42-50  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract We present the use of computational fluid dynamics (CFD) for accurately determining the adsorption parameters of acetaldehyde on photocatalytic fiber filter material, integrated in a continuous flow system. Unlike the traditional analytical analysis based on Langmuir adsorption, not only steady-state situations but also transient phenomena can be accounted for. Air displacement effects in the reactor and gas detection cell are investigated and inherently made part of the model. Incorporation of a surface aldol condensation reaction in the CFD analysis further improves the accuracy of the model which enables to extract precise, intrinsic adsorption parameters for situations in which analytical analysis would otherwise fail.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000373648000005 Publication Date 2016-02-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 12 Open Access  
  Notes ; S.W.V. acknowledges the Research Foundation – Flanders (FWO) for a postdoctoral fellowship. M.K. acknowledges the IWT for a Ph.D. fellowship. Konstantina Kalafata and Ioanna Fasaki are greatly thanked for providing the NanoPhos suspension. Bioscience Engineering bachelor students M. Gerritsma, J. Helsen and Y. Riahi Drif are thanked for their assistance in performing the adsorption experiments. ; Approved Most recent IF: 6.216  
  Call Number UA @ admin @ c:irua:130876 Serial 5934  
Permanent link to this record
 

 
Author Smits, M.; Tytgat, T.; Hauchecorne, B.; Lenaerts, S. isbn  openurl
  Title Development and validation of optical detection methods to screen photocatalytic materials for soot oxidation Type P3 Proceeding
  Year 2012 Publication Abbreviated Journal  
  Volume Issue (up) Pages  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-989-97667-4-7 Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:98814 Serial 5941  
Permanent link to this record
 

 
Author Van Eynde, E.; Lenaerts, S. isbn  openurl
  Title Diatom silica-titania materials for photocatalytic air purification Type H3 Book chapter
  Year 2012 Publication Abbreviated Journal  
  Volume Issue (up) Pages 240-241  
  Keywords H3 Book chapter; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-989-97667-4-7 Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:105335 Serial 5944  
Permanent link to this record
 

 
Author Van Eynde, E.; Lenaerts, B.; Tytgat, T.; Verbruggen, S.W.; Hauchecorne, B.; Blust, R.; Lenaerts, S. url  doi
openurl 
  Title Effect of pretreatment and temperature on the properties of Pinnularia biosilica frustules Type A1 Journal article
  Year 2014 Publication RSC advances Abbreviated Journal Rsc Adv  
  Volume 4 Issue (up) Pages 56200-56206  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Diatoms are unicellular microalgae that self-assemble an intricate porous silica cell wall, called frustule. Diatom frustules possess a unique combination of physical and chemical properties (chemical inertness, high mechanical strength, large surface area, low density, good porosity and highly ordered features on the nano-to-micro scale) making diatom frustules suited for many nanotechnological applications. For most proposed applications the organic material covering the frustules needs to be removed. In this paper we investigate the effect of different frustule cleaning methods (drying, autoclavation, SDS/EDTA treatment, H2O2 treatment and HNO3 treatment) and subsequent heat treatment at different temperatures (105 °C, 350 °C, 550 °C and 750 °C) on the material characteristics of the diatom Pinnularia sp. Material characteristics under study are morphology, surface area, pore size, elemental composition and organic content. The cleaned Pinnularia frustules are subsequently investigated as adsorbents to remove methylene blue (MB) from aqueous solution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000344997800060 Publication Date 2014-10-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.108 Times cited 10 Open Access  
  Notes ; ; Approved Most recent IF: 3.108; 2014 IF: 3.840  
  Call Number UA @ admin @ c:irua:121377 Serial 5945  
Permanent link to this record
 

 
Author Smits, M.; Huygh, D.; Craeye, B.; Lenaerts, S. pdf  doi
openurl 
  Title Effect of process parameters on the photocatalytic soot degradation on self-cleaning cementitious materials Type A1 Journal article
  Year 2014 Publication Catalysis today Abbreviated Journal Catal Today  
  Volume 230 Issue (up) Pages 250-255  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL); Energy and Materials in Infrastructure and Buildings (EMIB)  
  Abstract Soot deposition has the negative ability to devalue the aesthetic appearance of buildings. Titanium dioxide applied on the building material is one way to counteract this problem as it provides air-purifying and self-cleaning properties due to its photocatalytic activity. In literature, photocatalytic soot oxidation was described, but until now, little information was available about the influence of process parameters on the photocatalytic degradation efficiency. The influence of three process parameters was tested in this study, namely TiO2 concentration, soot concentration and water-to-cement ratio (WIC-ratio) of the mortar substrates. The results revealed 50 mu gTiO(2) cm(-2) is better to use on the cementitious materials than 250 mu gTiO(2) cm(-2). The soot concentrations occurring in real-world situations will not inhibit the photocatalyst to be activated by light. Furthermore, the photonic efficiency increases slightly for lower WIC-ratios. This can be of interest for structural building applications, since a lower WIC-ratio results in a lower porosity of the samples and consequently in an increase in mortar strength. (C) 2013 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000333800300039 Publication Date 2013-10-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0920-5861 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.636 Times cited 14 Open Access  
  Notes ; This work was supported by a PhD grant (M. Smits) from the University of Antwerp. We would like to thank T. Tytgat for the scientific discussion and Evonik for delivering the materials used in the experiments. ; Approved Most recent IF: 4.636; 2014 IF: 3.893  
  Call Number UA @ admin @ c:irua:117142 Serial 5946  
Permanent link to this record
 

 
Author Tytgat, T.; Lenaerts, S. isbn  openurl
  Title Immobilisation of TiO2 into self-supporting photocatalytic foam : influence of acidity on porosity and light penetration Type P3 Proceeding
  Year 2012 Publication Abbreviated Journal  
  Volume Issue (up) Pages  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-989-97667-4-7 Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:99066 Serial 5959  
Permanent link to this record
 

 
Author de Baere, K.; Verstraelen, H.; Lemmens, L.; Lenaerts, S.; Potters, G. openurl 
  Title In situ study of the parameters quantifying the corrosion in ballast tanks and an evaluation of improving alternative Type P3 Proceeding
  Year 2011 Publication Abbreviated Journal  
  Volume Issue (up) Pages  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract An in situ study of more than 100 ballast tanks of merchant marine vessels looks to the corrosion process in these tanks from another perspective. The developed corrosion model shows major similarities with earlier studies based on laboratory experiments. The field work exposes the influence of ship construction parameters such as land of construction, coating type and the presence of sacrificial anodes on the corrosion process in the ballast tanks. Possible alternatives for vessels constructed with ordinary grade A steel and coated according to IMO PSPC standards are presented, even though further research is required to come to final conclusions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:88937 Serial 5965  
Permanent link to this record
 

 
Author Liao, L.; Heylen, S.; Sree, S.P.; Vallaey, B.; Keulemans, M.; Lenaerts, S.; Roeffaers, M.B.J.; Martens, J.A. doi  openurl
  Title Photocatalysis assisted simultaneous carbon oxidation and NOx reduction Type A1 Journal article
  Year 2017 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 202 Issue (up) Pages 381-387  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Photocatalysis assisted oxidation of carbon black was performed using TiO2 photocatalyst under UV illumination in an atmosphere with NO, O-2 and water vapor at 150 degrees C. Carbon is oxidized mainly to CO2 while NO is selectively converted to N-2. Enhanced O-2 and NO concentrations have a positive effect on the carbon oxidation rate. At a concentration of 3000 ppm NO and 13.3% O-2 in the gas phase the carbon oxidation rate reaches 2.3 mu g(carbon)/mg(TiO2) h, at a formal electron/photon quantum efficiency of 0.019. HR SEM images reveal uniform gradual reduction of the carbon particle size irrespective of the distance to TiO2 photocatalyst particles in the presence of NO, O-2 and H2O. (C) 2016 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000388052100038 Publication Date 2016-09-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.446 Times cited 11 Open Access  
  Notes ; This work was supported by long-term structural funding by the Flemish government (Methusalem). M. Keulemans acknowledges the agency for Innovation by Science and Technology in Flanders (IWT) for financial support (PhD. Grant). M. Roeffaers thanks the ERC for financial support (ERC Starting Grant No. 307523). ; Approved Most recent IF: 9.446  
  Call Number UA @ admin @ c:irua:139156 Serial 5976  
Permanent link to this record
 

 
Author Liao, L.; Heylen, S.; Vallaey, B.; Keulemans, M.; Lenaerts, S.; Roeffaers, M.B.J.; Martens, J.A. pdf  doi
openurl 
  Title Photocatalytic carbon oxidation with nitric oxide Type A1 Journal article
  Year 2015 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 166 Issue (up) Pages 374-380  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The photocatalytic oxidation of carbon black on TiO2 using nitric oxide as an oxidizing agent was investigated. Layer-wise deposited carbon and TiO2 powder was illuminated with UVA light in the presence of NO at parts per million concentrations in dry and hydrated carrier gas at a temperature of 150 degrees C. Carbon was photocatalytically converted mainly into CO2, and NO mainly into N-2. Carbon oxidation rates of 7.2 mu g/h/mgTiO(2) were achieved in the presence of 3000 ppm NO. Under these experimental conditions in the absence of molecular oxygen, formation of surface nitrates causing TiO2 photocatalyst deactivation is suppressed. Addition of water enhances surface nitrate formation and catalyst deactivation. NO and carbon particulate matter are air pollutants emitted by diesel engines. Elimination of soot collected on a diesel particulate filter through oxidation is a demanding reaction requiring temperatures in excess of 250 degrees C. The present study opens perspectives for a low-temperature regeneration strategy for the diesel particulate filter that simultaneously performs DeNO(x) reactions. (C) 2014 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000348753400042 Publication Date 2014-12-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.446 Times cited 5 Open Access  
  Notes ; This work was supported by long-term structural funding by the Flemish government (Methusalem). ; Approved Most recent IF: 9.446; 2015 IF: 7.435  
  Call Number UA @ admin @ c:irua:123858 Serial 5977  
Permanent link to this record
 

 
Author Smits, M.; Chan, C. kit; Tytgat, T.; Craeye, B.; Costarramone, N.; Lacombe, S.; Lenaerts, S. pdf  doi
openurl 
  Title Photocatalytic degradation of soot deposition : self-cleaning effect on titanium dioxide coated cementitious materials Type A1 Journal article
  Year 2013 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 222 Issue (up) Pages 411-418  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Diesel soot emissions deteriorate the appearance of architectural building materials by soot fouling. This soot deposition devalue the aesthetic value of the building. A solution to counteract this problem is applying titanium dioxide on building materials. TiO2 can provide air-purifying and self-cleaning properties due to its photocatalytic activity. In literature, photocatalytic soot oxidation is observed on glass or silicon substrates. However, degradation of soot by photocatalysis was not yet investigated on cementitious samples (mortar, concrete) although it is one of the most frequently used building materials. In this study, photocatalytic soot oxidation by means of TiO2 coated cementitious samples is addressed. The soot removal capacity of four types of TiO2 layers, coated on mortar samples, is evaluated by means of two detection methods. The first method is based on colorimetric measurements, while the second method uses digital image processing to calculate the area of soot coverage. The experimental data revealed that cementitious materials coated with commercially available TiO2 exhibited self-cleaning properties as it was found that all coated samples were able to remove soot. The P25 coating gave the best soot degradation performance, while the Eoxolit product showed the slowest soot degradation rate. In addition, gas chromatography measurements in a closed chamber experiment with P25 confirmed that complete mineralization of about 60% of the soot was obtained within 24 hours since CO2 was the sole observed oxidation product. Due to its realistic approach, this study proves that photocatalytic soot removal on TiO2 coated cementitious surfaces is possible in practice, which is an important step towards the practical application of self-cleaning building materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000319528900046 Publication Date 2013-03-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 43 Open Access  
  Notes ; This work was supported by a PhD grant (M. Smits) from the University of Antwerp, a PhD grant (T. Tytgat) funded by the Institute of Innovation by Science and Technology in Flanders (IWT) and the exchange program Tournesol (Project T2012.05) financed by the Flemish government. ; Approved Most recent IF: 6.216; 2013 IF: 4.058  
  Call Number UA @ admin @ c:irua:106519 Serial 5979  
Permanent link to this record
 

 
Author Van Wesenbeeck, K.; Hauchecorne, B.; Lenaerts, S. openurl 
  Title Plasma assisted catalysis : an efficient and sustainable indoor air purification technology Type P3 Proceeding
  Year 2012 Publication Abbreviated Journal  
  Volume Issue (up) Pages  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:127490 Serial 5981  
Permanent link to this record
 

 
Author Van Wesenbeeck, K.; Hauchecorne, B.; Lenaerts, S. pdf  openurl
  Title Plasma catalysis : integration of a photocatalytic coating in a corona discharge unit Type P3 Proceeding
  Year 2013 Publication Abbreviated Journal  
  Volume Issue (up) Pages  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:127487 Serial 5982  
Permanent link to this record
 

 
Author Van Wesenbeeck, K.; Hauchecorne, B.; Lenaerts, S. pdf  openurl
  Title Plasmacatalysis : a sustainable and efficient indoor air treatment Type P3 Proceeding
  Year 2015 Publication Abbreviated Journal  
  Volume Issue (up) Pages  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:127488 Serial 5984  
Permanent link to this record
 

 
Author Potters, G.; Schoeters, G.; Tytgat, T.; Horvath, G.; Ludecke, C.; Cool, P.; Lenaerts, S.; Appels, L.; Dewil, R. openurl 
  Title Pyrolysis kinetics of bamboo material Type P3 Proceeding
  Year 2010 Publication Abbreviated Journal  
  Volume Issue (up) Pages  
  Keywords P3 Proceeding; Engineering sciences. Technology; Laboratory of adsorption and catalysis (LADCA); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:82445 Serial 5987  
Permanent link to this record
 

 
Author Hauchecorne, B.; Tytgat, T.; Terrens, D.; Vanpachtenbeke, F.; Lenaerts, S. openurl 
  Title Reaction chamber for studying a solid-gas interaction : PCT/EP2011/051075 Type Patent
  Year 2011 Publication Abbreviated Journal  
  Volume Issue (up) Pages  
  Keywords Patent; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:93411 Serial 5988  
Permanent link to this record
 

 
Author Huyskens, C.; De Wever, H.; Fovet, Y.; Wegmann, U.; Diels, L.; Lenaerts, S. pdf  doi
openurl 
  Title Screening of novel MBR fouling reducers : benchmarking with known fouling reducers and evaluation of their mechanism of action Type A1 Journal article
  Year 2012 Publication Separation and purification technology Abbreviated Journal Sep Purif Technol  
  Volume 95 Issue (up) Pages 49-57  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract A novel fouling characterization method was applied for a first screening of two novel synthetic flocculants developed by BASF (BASF-1 and BASF-2) and benchmarking with six well-known products. Results showed that this MBR-VITO Fouling Measurement (VFM) was able to identify beneficial and adverse effects of different additives on the mixed liquor's reversible and irreversible fouling and, in combination with supporting mixed liquor analyses, allowed to identify the additive's main working mechanism. The first screening tests indicated that BASF-1 and BASF-2 reduced reversible and irreversible fouling to a similar extent as the known synthetic flocculants due to a charge neutralization mechanism, resulting in enhanced flocculation and SMP removal. Further testing at different additive concentrations provided a first indication of the optimal dosage and revealed a considerable risk of overdosing for BASF-2, rendering it less suited for fouling control. In contrast, such adverse effects were not observed for BASF-1. BASF-1 induced similar beneficial effects as the known MPE50 polymer at lower dosage and was therefore considered promising for application in MBRs. (C) 2012 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000307032100008 Publication Date 2012-04-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1383-5866 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.359 Times cited 24 Open Access  
  Notes ; The authors would like to thank K. Luyckx, J. Fret, L. Heylen, R. Muyshondt, H. Sterckx, J. Verheyden and J. Vande-Velden for technical assistance and V. Iversen for kindly supplying some of the commercial additives. Celine Huyskens is indebted to the Research Foundation-Flanders (FWO). The European Commission is acknowledged for financial support to Aquafit4use (FP7, Grant 211534). ; Approved Most recent IF: 3.359; 2012 IF: 2.894  
  Call Number UA @ admin @ c:irua:101903 Serial 5990  
Permanent link to this record
 

 
Author Verbruggen, S.W.; Dirckx, J.J.J.; Martens, J.A.; Lenaerts, S. pdf  doi
openurl 
  Title Surface photovoltage measurements : a quick assessment of the photocatalytic activity? Type A1 Journal article
  Year 2013 Publication Catalysis today Abbreviated Journal Catal Today  
  Volume 209 Issue (up) Pages 215-220  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Surface photovoltage (SPV) measurements can contribute to a better understanding of electronic properties of photocatalysts under illumination. Direct linking of SPV data to the actual photocatalytic activity remains troublesome. This work aims to discuss SPV measurements from a photocatalytic point of view. By means of several application-based scenarios we illustrate that the trend between SPV and photocatalysis strongly depends on parameters such as the crystal structure, surface modifications, morphology and humidity. This makes the interpretation far from straightforward.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000319498800035 Publication Date 2013-01-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0920-5861 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.636 Times cited 8 Open Access  
  Notes ; ; Approved Most recent IF: 4.636; 2013 IF: 3.309  
  Call Number UA @ admin @ c:irua:106520 Serial 5995  
Permanent link to this record
 

 
Author Verbruggen, S.W. pdf  url
doi  openurl
  Title TiO2 photocatalysis for the degradation of pollutants in gas phase : from morphological design to plasmonic enhancement Type A1 Journal article
  Year 2015 Publication Journal of photochemistry and photobiology: C: photochemistry reviews Abbreviated Journal J Photoch Photobio C  
  Volume 24 Issue (up) Pages 64-82  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract TiO2-based photocatalysis has become a viable technology in various application fields such as (waste)water purification, photovoltaics/artificial photosynthesis, environmentally friendly organic synthesis and remediation of air pollution. Because of the increasing impact of bad air quality worldwide, this review focuses on the use and optimization of TiO2-based photocatalysts for gas phase applications. Over the past years various specific aspects of TiO2 photocatalysis have been reviewed individually. The intent of this review is to offer a broad tutorial on (recent) trends in TiO2 photocatalyst modification for the intensification of photocatalytic air treatment. After briefly introducing the fundamentals of photocatalysis, TiO2 photocatalyst modification is discussed both on a morphological and an electronic level from the perspective of gas phase applications. The main focus is laid on recent developments, but also possible opportunities to the field. This review is intended as a solid introduction for researchers new to the field, as well as a summarizing update for established investigators. (C) 2015 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000360420600004 Publication Date 2015-07-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1389-5567 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.317 Times cited 121 Open Access  
  Notes ; The author wishes to thank the Research Foundation Flanders (FWO) for the financial support and postdoctoral fellowship. ; Approved Most recent IF: 12.317; 2015 IF: 16.091  
  Call Number UA @ admin @ c:irua:127801 Serial 5997  
Permanent link to this record
 

 
Author Verbruggen, S. isbn  openurl
  Title TiO2 gas phase photocatalysis from morphological design to plasmonic enhancement Type Doctoral thesis
  Year 2014 Publication Abbreviated Journal  
  Volume Issue (up) Pages 173 p.  
  Keywords Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-90-5728-441-0 Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:116937 Serial 5998  
Permanent link to this record
 

 
Author Hauchecorne, B.; Lenaerts, S. pdf  doi
openurl 
  Title Unravelling the mysteries of gas phase photocatalytic reaction pathways by studying the catalyst surface : a literature review of different Fourier transform infrared spectroscopic reaction cells used in the field Type A1 Journal article
  Year 2013 Publication Journal of photochemistry and photobiology: C: photochemistry reviews Abbreviated Journal J Photoch Photobio C  
  Volume 14 Issue (up) Pages 72-85  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Unlike the profound knowledge of the reaction mechanisms occurring in water phase photocatalysis, still fairly little is known on the reaction mechanisms occurring on the catalyst surface when dealing with gaseous pollutants. Unfortunately, there are some differences between both reactions. For one, there are no abundant hydroxyl radicals present in the gas phase, so that possibly other species prove to be important in abating the pollutant. In order to unravel the mysteries of gas phase photocatalytic reaction pathways, in situ techniques must be used to allow the detection and identification of reaction intermediates on a working catalyst. Several techniques were already used in the past, of which Fourier transform infrared spectroscopy seems to be the most versatile. This review will therefore give a selective overview of different spectroscopic reaction cells constructed for the in situ study of photocatalytic gas phase reactions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000314669600005 Publication Date 2012-09-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1389-5567 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.317 Times cited 8 Open Access  
  Notes ; The University of Antwerp is greatly acknowledged for the fellowship granted to Birger Hauchecorne. The authors would also like to thank Sammy W. Verbruggen for his help in providing several papers of interest. ; Approved Most recent IF: 12.317; 2013 IF: 11.625  
  Call Number UA @ admin @ c:irua:106518 Serial 6001  
Permanent link to this record
 

 
Author De Baere, K.; Verstraelen, H.; Rigo, P.; Van Passel, S.; Lenaerts, S.; Potters, G. pdf  doi
openurl 
  Title Study on alternative approaches to corrosion protection of ballast tanks using an economic model Type A1 Journal article
  Year 2013 Publication Marine structures Abbreviated Journal Mar Struct  
  Volume 32 Issue (up) Pages 1-17  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract One of the most relevant problems in ship construction and maintenance nowadays is corrosion in ballast tanks of modern merchant vessels. On the one hand, there is a general consensus that the economic lifespan of such a vessel depends, to a large degree, upon the corrosion state of its ballast tanks, while on the other hand these ballast tanks, located between the outer hull and the cargo tanks, makes routine inspection and maintenance a difficult task. Today, ship's ballast tanks are usually constructed in steel and protected with an epoxy coating backed up by sacrificial zinc anodes. Such a construction has been applied without significant alterations for many years. The objective of this economic study is to compare this construction method with some potential alternatives. The considered alternatives are: (1) an increase in structural scantlings, eliminating the necessity to replace corroded at a cost of real cargo carrying capacity of the ship, (2) application of the novel and more durable TSCF25 coating (3), the use of corrosion resistant steel in ship construction and (4) a standard PSPC15 coating combined with lifetime lasting aluminum sacrificial anodes. A cost model was used to evaluate these alternative options together with sensitivity analysis. It is concluded that the durable coating and the use of lifetime lasting aluminum anodes are bound to improve the actual basic tank concept. Corrosion resistant steel becomes attractive when the steel price becomes competitive.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000319643500001 Publication Date 2013-03-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0951-8339 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.052 Times cited 15 Open Access  
  Notes ; ; Approved Most recent IF: 2.052; 2013 IF: 1.242  
  Call Number UA @ admin @ c:irua:109346 Serial 6253  
Permanent link to this record
 

 
Author De Baere, K.; Verstraelen, H.; Rigo, P.; Van Passel, S.; Lenaerts, S.; Potters, G. pdf  doi
openurl 
  Title Reducing the cost of ballast tank corrosion : an economic modeling approach Type A1 Journal article
  Year 2013 Publication Marine structures Abbreviated Journal Mar Struct  
  Volume 32 Issue (up) Pages 136-152  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract One of the most relevant problems in ship construction and maintenance nowadays concerns the corrosion in the double hull space ballast tanks of modern merchant vessels. On the one hand, there is a general consensus that the economic life span of such a vessel depends primarily upon the corrosion state of its ballast tanks, while on the other hand, the position of these tanks, squeezed between the outer hull and the loading tanks, makes routine inspection and maintenance almost impossible. Today, ship's ballast tanks are usually constructed in grade A steel and protected with a standard epoxy coating, backed up with sacrificial zinc anodes. Such a construction has been applied without significant alterations for many years. However, the objective of this economic study is to compare this construction method with some feasible alternatives. The considered alternatives are: (1) an increase of the scantlings, eliminating the necessity to replace corroded steel but diminishing the cargo carrying capacity of the ship, (2) application of the novel and more durable TSCF25 coating (3), the use of corrosion resistant steel in ship construction or (4) a standard PSPC15 coating combined with lifetime lasting aluminum sacrificial anodes. After running each alternative through a cost model including an extensive sensitivity analysis, it is concluded that the durable coating and the use of lifetime lasting aluminum anodes are bound to improve the actual basic tank concept. Corrosion resistant steel becomes attractive depending upon the evolution of the international steel market.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000319643500007 Publication Date 2013-05-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0951-8339 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.052 Times cited 9 Open Access  
  Notes ; ; Approved Most recent IF: 2.052; 2013 IF: 1.242  
  Call Number UA @ admin @ c:irua:109347 Serial 6240  
Permanent link to this record
 

 
Author Vandekerckhove, T.G.L.; Props, R.; Carvajal-Arroyo, J.M.; Boon, N.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Adaptation and characterization of thermophilic anammox in bioreactors Type A1 Journal article
  Year 2020 Publication Water Research Abbreviated Journal Water Res  
  Volume 172 Issue (up) Pages 115462  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Anammox, the oxidation of ammonium with nitrite, is a key microbial process in the nitrogen cycle. Under mesophilic conditions (below 40 °C), it is widely implemented to remove nitrogen from wastewaters lacking organic carbon. Despite evidence of the presence of anammox bacteria in high-temperature environments, reports on the cultivation of thermophilic anammox bacteria are limited to a short-term experiment of 2 weeks. This study showcases the adaptation of a mesophilic inoculum to thermophilic conditions, and its characterization. First, an attached growth technology was chosen to obtain the process. In an anoxic fixed-bed biofilm bioreactor (FBBR), a slow linear temperature increase from 38 to over 48 °C (0.05–0.07 °C d−1) was imposed to the community over 220 days, after which the reactor was operated at 48 °C for over 200 days. Maximum total nitrogen removal rates reached up to 0.62 g N L−1 d−1. Given this promising performance, a suspended growth system was tested. The obtained enrichment culture served as inoculum for membrane bioreactors (MBR) operated at 50 °C, reaching a maximum total nitrogen removal rate of 1.7 g N L−1 d−1 after 35 days. The biomass in the MBR had a maximum specific anammox activity of 1.1 ± 0.1 g NH4+-N g−1 VSS d−1, and the growth rate was estimated at 0.075–0.19 d−1. The thermophilic cultures displayed nitrogen stoichiometry ratios typical for mesophilic anammox: 0.93–1.42 g NO2--Nremoved g−1 NH4+-Nremoved and 0.16–0.35 g NO3--Nproduced g−1 NH4+-Nremoved. Amplicon and Sanger sequencing of the 16S rRNA genes revealed a disappearance of the original “Ca. Brocadia” and “Ca. Jettenia” taxa, yielding Planctomycetes members with only 94–95% similarity to “Ca. Brocadia anammoxidans” and “Ca. B. caroliniensis”, accounting for 45% of the bacterial FBBR community. The long-term operation of thermophilic anammox reactors and snapshot views on the nitrogen stoichiometry, kinetics and microbial community open up the development path of thermophilic partial nitritation/anammox. A first economic assessment highlighted that treatment of sludge reject water from thermophilic anaerobic digestion of sewage sludge may become attractive.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000517663600014 Publication Date 2020-01-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-1354 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.8 Times cited 5 Open Access  
  Notes ; The authors acknowledge (i) the Agency for Innovation by Science and Technology (IWT Flanders) [grant number SB-141205] for funding T.G.L.V., (ii) Ghent University (BOFDOC2015000601) and the Belgian Nuclear Research Centre (SCK.CEN) for funding R.P., (iii) Bart De Gusseme from Farys/UGent for providing the hollow fiber membranes, (iv) Tim Lacoere for performing the DNA extraction and data processing of the Sanger sequencing and 16S rRNA gene amplicon sequencing data, (v) Tim Hendrickx from Paques BV for providing the inoculum, (vi) Bert Bundervoet and Wim Groen in 't Woud from Colsen for the valuable input on the economic assessment and (vii) Joop Colsen, Stijn Van Hulle, Mark Van Loosdrecht, Erik Smolders and Leen De Gelder for their constructive discussions on this work. ; Approved Most recent IF: 12.8; 2020 IF: 6.942  
  Call Number UA @ admin @ c:irua:165392 Serial 6449  
Permanent link to this record
 

 
Author De Paepe, J.; De Paepe, K.; Gòdia, F.; Rabaey, K.; Vlaeminck, S.E.; Clauwaert, P. pdf  doi
openurl 
  Title Bio-electrochemical COD removal for energy-efficient, maximum and robust nitrogen recovery from urine through membrane aerated nitrification Type A1 Journal article
  Year 2020 Publication Water Research Abbreviated Journal Water Res  
  Volume 185 Issue (up) Pages 116223  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Resource recovery from source-separated urine can shorten nutrient cycles on Earth and is essential in regenerative life support systems for deep-space exploration. In this study, a robust two-stage, energy-efficient, gravity-independent urine treatment system was developed to transform fresh real human urine into a stable nutrient solution. In the first stage, up to 85% of the COD was removed in a microbial electrolysis cell (MEC), converting part of the energy in organic compounds (27-46%) into hydrogen gas and enabling full nitrogen recovery by preventing nitrogen losses through denitrification in the second stage. Besides COD removal, all urea was hydrolysed in the MEC, resulting in a stream rich in ammoniacal nitrogen and alkalinity, and low in COD. This stream was fed into a membrane-aerated biofilm reactor (MABR) in order to convert the volatile and toxic ammoniacal nitrogen to non-volatile nitrate by nitrification. Bio-electrochemical pre-treatment allowed to recover all nitrogen as nitrate in the MABR at a bulk-phase dissolved oxygen level below 0.1 mg O2 L-1. In contrast, feeding the MABR directly with raw urine (omitting the first stage), at the same nitrogen loading rate, resulted in nitrogen loss (18%) due to denitrification. The MEC and MABR were characterised by very distinct and diverse microbial communities. While (strictly) anaerobic genera, such as Geobacter (electroactive bacteria), Thiopseudomonas, a Lentimicrobiaceae member, Alcaligenes and Proteiniphilum prevailed in the MEC, the MABR was dominated by aerobic genera, including Nitrosomonas (a known ammonium oxidiser), Moheibacter and Gordonia. The two-stage approach yielded a stable nitrate-rich, COD-low nutrient solution, suitable for plant and microalgae cultivation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000580639800035 Publication Date 2020-07-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-1354 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.8 Times cited Open Access  
  Notes Approved Most recent IF: 12.8; 2020 IF: 6.942  
  Call Number UA @ admin @ c:irua:170524 Serial 6461  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: