toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Papp, G.; Borza, S.; Peeters, F.M. doi  openurl
  Title Spin transport through a ZnSe-based diluted magnetic semiconductor resonant tunneling structure in the presence of electric and magnetic fields Type A1 Journal article
  Year 2006 Publication Physica status solidi B: basic solid state physics Abbreviated Journal Phys Status Solidi B  
  Volume 243 Issue 8 Pages 1956-1962  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000239100800035 Publication Date 2006-06-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-1972;1521-3951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.674 Times cited 10 Open Access  
  Notes Approved (up) Most recent IF: 1.674; 2006 IF: 0.967  
  Call Number UA @ lucian @ c:irua:60563 Serial 3103  
Permanent link to this record
 

 
Author Verberck, B.; Michel, K.H. doi  openurl
  Title Anisotropic packing of C-70 molecules in carbon nanotubes Type A1 Journal article
  Year 2007 Publication Physica status solidi B-basic solid state physics Abbreviated Journal Phys Status Solidi B  
  Volume 244 Issue 11 Pages 4279-4282  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000251355800092 Publication Date 2007-10-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-1972;1521-3951; ISBN Additional Links UA library record; WoS full record  
  Impact Factor 1.674 Times cited Open Access  
  Notes Approved (up) Most recent IF: 1.674; 2007 IF: 1.071  
  Call Number UA @ lucian @ c:irua:67350 Serial 128  
Permanent link to this record
 

 
Author Michel, K.H.; Verberck, B. doi  openurl
  Title Theory of the elastic constants of graphite and graphene Type A1 Journal article
  Year 2008 Publication Physica status solidi: B: basic research Abbreviated Journal Phys Status Solidi B  
  Volume 245 Issue 10 Pages 2177-2180  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Born's long wave method is used to study the elastic properties of graphite and graphene. Starting from an empirical force constant model derived from full inplane phonon dispersions of graphite [Mohr et al., Phys. Rev. B 76, 035439 (2007)] we calculate the tension coefficients of graphene. Extending the model by interplanar interactions, we calculate the elastic constants of graphite. The agreement of our theoretical values with inelastic x-ray scattering results on elastic constants of graphite [Bosak et al., Phys. Rev. B 75, 153408 (2007)] is very satisfactory.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000260581800066 Publication Date 2008-08-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-1972; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.674 Times cited 47 Open Access  
  Notes Approved (up) Most recent IF: 1.674; 2008 IF: 1.166  
  Call Number UA @ lucian @ c:irua:75660 Serial 3621  
Permanent link to this record
 

 
Author Brosens, F.; Magnus, W. doi  openurl
  Title Carrier transport in nanodevices: revisiting the Boltzmann and Wigner distribution functions Type A1 Journal article
  Year 2009 Publication Physica status solidi: B: basic research Abbreviated Journal Phys Status Solidi B  
  Volume 246 Issue 7 Pages 1656-1661  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems  
  Abstract In principle, transport of charged carriers in nanometer sized solid-state devices can be fully characterized once the non-equilibrium distribution function describing the carrier ensemble is known. In this light, we have revisited the Boltzmann and the Wigner distribution functions and the framework in which they emerge from the classical respectively quantum mechanical Liouville equation. We have assessed the method of the characteristic curves as a potential workhorse to solve the time dependent Boltzmann equation for carriers propagating through spatially non-uniform systems, such as nanodevices. In order to validate the proposed solution strategy, we numerically solve the Boltzmann equation for a one-dimensional conductor mimicking the basic features of a biased low-dimensional transistor operating in the on-state. Finally, we propose a computational scheme capable of extending the benefits of the above mentioned solution strategy when it comes to solve the Wigner-Liouville equation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000268659100033 Publication Date 2009-04-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-1972;1521-3951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.674 Times cited 8 Open Access  
  Notes Approved (up) Most recent IF: 1.674; 2009 IF: 1.150  
  Call Number UA @ lucian @ c:irua:77953 Serial 284  
Permanent link to this record
 

 
Author Michel, K.H.; Verberck, B. doi  openurl
  Title Theoretical phonon dispersions in monolayers and multilayers of hexagonal boron-nitride Type A1 Journal article
  Year 2009 Publication Physica status solidi: B: basic research Abbreviated Journal Phys Status Solidi B  
  Volume 246 Issue 11/12 Pages 2802-2805  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Starting from an empirical force constant model of valence interactions and calculating by Ewald's method the electrostatic force constants, we derive the dynamical matrix for a monolayer and for multilayer systems of hexagonal boron nitride (h-BN). Solution of the secular problem leads to the corresponding phonon dispersion relations. The interplay between valence forces and Coulomb forces is discussed. A comparison with previous results on graphene and graphene multilayers is made. Our spectra on the h-BN monolayer are rather similar to previous ab initio theory results. Comparison is also made with Raman and infrared experimental results.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000272904100091 Publication Date 2009-11-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-1972; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.674 Times cited 10 Open Access  
  Notes Approved (up) Most recent IF: 1.674; 2009 IF: 1.150  
  Call Number UA @ lucian @ c:irua:80673 Serial 3609  
Permanent link to this record
 

 
Author Michel, K.H.; Verberck, B. pdf  doi
openurl 
  Title Theory of phonon dispersions and piezoelectricity in multilayers of hexagonal boron-nitride Type A1 Journal article
  Year 2011 Publication Physica status solidi: B: basic research Abbreviated Journal Phys Status Solidi B  
  Volume 248 Issue 11 Pages 2720-2723  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Taking into account covalent, Coulomb and van der Waals interactions, we construct the dynamical matrix and calculate the phonon dispersion relations for multilayer crystals of hexagonal boron-nitride. Coulomb interactions account for a strong overbending of optical phonons. Applying and extending Born's long-wave theory to the case of multilayer crystals, we calculate the piezoelectric stress constant equation image as a function of the number of layers equation image. In agreement with group theory, we find that equation image for equation image even; for an uneven number equation image of layers we obtain equation image, i.e. the piezoelectric constant decreases as equation image.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000297517100069 Publication Date 2011-10-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-1972; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.674 Times cited 13 Open Access  
  Notes ; Discussions with G. Heger, B. Partoens and F. M. Peeters are gratefully acknowledged. This work has been supported by the Flemish Science Foundation (FWO-Vl) and the Bijzonder Onderzoeksfonds, Universiteit Antwerpen (BOF-UA). ; Approved (up) Most recent IF: 1.674; 2011 IF: 1.316  
  Call Number UA @ lucian @ c:irua:94034 Serial 3618  
Permanent link to this record
 

 
Author Michel, K.H.; Verberck, B. pdf  doi
openurl 
  Title Rigid-plane phonons in layered crystals Type A1 Journal article
  Year 2012 Publication Physica status solidi: B: basic research Abbreviated Journal Phys Status Solidi B  
  Volume 249 Issue 12 Pages 2604-2607  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The determination of the layer number ${\cal N}$ in nanoscale thin layered crystals is a challenging problem of technological relevance. In addition to innovative experimental techniques, a thorough knowledge of the underlying lattice dynamics is required. Starting from phenomenological atomic interaction potentials we have carried out an analytical study of the low-frequency optical phonon dispersions in layered crystals. At the gamma point of the two-dimensional Brillouin zone the optical phonon frequencies correspond to rigid-plane shearing and compression modes. We have investigated graphene multilayers (GML) and hexagonal boron-nitride multilayers (BNML). The frequencies show a characteristic dependence on ${\cal N}$. The results which are represented in the form of fan diagrams are very similar for both materials. Due to charge neutrality within layers Coulomb forces play no role, only van der Waals forces between nearest neighbor layers are relevant. The theoretical results agree with recent low-frequency Raman results on rigid-layer modes [Tan et al., Nature Mater. 11, 294 (2012)] in GML and double-resonant Raman scattering data on rigid-layer compression modes [Herziger et al., Phys. Rev. B 85, 235447 (2012)] in GML. (C) 2012 WILEY-VCH Verlag GmbH Co. KGaA, Weinheim  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000312215300072 Publication Date 2012-11-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-1972; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.674 Times cited 1 Open Access  
  Notes ; This work has been supported by the Flemish Science Foundation (FWO-Vl) and the Bijzonder Onderzoeksfonds, Universiteit Antwerpen (BOF-UA). ; Approved (up) Most recent IF: 1.674; 2012 IF: 1.489  
  Call Number UA @ lucian @ c:irua:105992 Serial 2907  
Permanent link to this record
 

 
Author Xiao, Y.M.; Xu, W.; Zhang, Y.Y.; Peeters, F.M. url  doi
openurl 
  Title Optoelectronic properties of ABC-stacked trilayer graphene Type A1 Journal article
  Year 2013 Publication Physica status solidi: B: basic research Abbreviated Journal Phys Status Solidi B  
  Volume 250 Issue 1 Pages 86-94  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We present a theoretical study on the optoelectronic properties of ABC-stacked trilayer graphene (TLG). The optical conductance and light transmittance are evaluated through using the energy-balance equation derived from the Boltzmann equation for an air/graphene/dielectric-wafer system in the presence of linearly polarized radiation field. The results obtained from two band structure models are examined and compared. For short wavelength radiation, the universal optical conductance sigma(0) = 3e(2)/(4h) can be obtained. Importantly, there exists an optical absorption window in the radiation wavelength range 10-200 mu m, which is induced by different transition energies required for inter- and intra-band optical absorption channels. As a result, we find that the position and width of this window depend sensitively on temperature and carrier density of the system, especially the lower frequency edge. There is a small characteristic absorption peak at about 82 mu m where the largest interband transition states exist in the ABC-stacked TLG model, in contrast to the relatively smooth curves in a simplified model. These theoretical results indicate that TLG has some interesting and important physical properties which can be utilized to realize infrared or THz optoelectronic devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000313347500011 Publication Date 2012-08-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-1972; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.674 Times cited 6 Open Access  
  Notes ; This work was supported by the National Natural Science Foundation of China (grant no. 10974206), Department of Science and Technology of Yunnan Province, and by the Chinese Academy of Sciences. One of us (F.M.P.) was a Specially Appointed Foreign Professor of the Chinese Academy of Sciences. ; Approved (up) Most recent IF: 1.674; 2013 IF: 1.605  
  Call Number UA @ lucian @ c:irua:110109 Serial 2495  
Permanent link to this record
 

 
Author Michel, K.H.; Costamagna; Peeters, F.M. pdf  doi
openurl 
  Title Theory of thermal expansion in 2D crystals Type A1 Journal article
  Year 2015 Publication Physica status solidi: B: basic research Abbreviated Journal Phys Status Solidi B  
  Volume 252 Issue 252 Pages 2433-2437  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The thermal expansion alpha(T) in layered crystals is of fundamental and technological interest. As suggested by I. M. Lifshitz in 1952, in thin solid films (crystalline membranes) a negative contribution to alpha(T) is due to anharmonic couplings between in-plane stretching modes and out-of-plane bending (flexural modes). Genuine in-plane anharmonicities give a positive contribution to alpha(T). The competition between these two effects can lead to a change of sign (crossover) from a negative value of alpha(T) in a temperature (T) range T <= T-alpha to a positive value of alpha(T) for T > T-alpha in layered crystals. Here, we present an analytical lattice dynamical theory of these phenomena for a two-dimensional (2D) hexagonal crystal. We start from a Hamiltonian that comprises anharmonic terms of third and fourth order in the lattice displacements. The in-plane and out-of-plane contributions to the thermal expansion are studied as functions of T for crystals of different sizes. Besides, renormalization of the flexural mode frequencies plays a crucial role in determining the crossover temperature T-alpha. Numerical examples are given for graphene where the anharmonic couplings are determined from experiments. The theory is applicable to other layer crystals wherever the anharmonic couplings are known. (C) 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000364690400014 Publication Date 2015-08-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-1972 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.674 Times cited 21 Open Access  
  Notes ; We thank B. Verberck, D. Lamoen, and A. Dobry for useful comments. We acknowledge funding from the FWO (Belgium)-MINCyT (Argentina) collaborative research project. This work is supported by the Euro GRAPHENE project CONGRAN. ; Approved (up) Most recent IF: 1.674; 2015 IF: 1.489  
  Call Number UA @ lucian @ c:irua:130281 Serial 4264  
Permanent link to this record
 

 
Author Matulis, A.; Zarenia, M.; Peeters, F.M. pdf  doi
openurl 
  Title Wave fronts and packets in 1D models of different meta-materials : graphene, left-handed media and transmission line Type A1 Journal article
  Year 2015 Publication Physica status solidi: B: basic research Abbreviated Journal Phys Status Solidi B  
  Volume 252 Issue 252 Pages 2330-2338  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A comparative study is made of the propagation of wave packets and fronts in three different meta-media, i.e. graphene, left-handed media (LHM) and transmission lines, using one-dimensional models. It is shown that a potential step in graphene influences only the frequency of the electronic wave, i.e., the particular spectrum branch (electron or hole) to which the wave belongs to, while the envelop function (the wave front or packet form) remains unchanged. Although the model for a vacuum and LHM interface is similar to that of the potential step in graphene, the solutions are quite different due to differences in the chirality of the waves. Comparing the propagation of wave fronts and packets in a standard transmission line and its meta-analog we demonstrate that the propagating packets in the meta-line are much more deformed as compared to the standard one, including broadening, asymmetry and even the appearance of fast moving precursors. This influence is seen not only in the case of packets with steep fronts but in soft Gaussian packets as well.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000362722300025 Publication Date 2015-07-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-1972 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.674 Times cited 1 Open Access  
  Notes ; This work was financially supported by the Flemish Science Foundation (FWO-Vl), the Methusalem foundation of the Flemish government, and the European Social Fund under the Global Grant Measure (Grant No. VP1-3.1-SMM-07-K-02-046). ; Approved (up) Most recent IF: 1.674; 2015 IF: 1.489  
  Call Number UA @ lucian @ c:irua:128776 Serial 4277  
Permanent link to this record
 

 
Author Bafekry, A.; Stampfl, C.; Peeters, F.M. pdf  doi
openurl 
  Title The electronic, optical, and thermoelectric properties of monolayer PbTe and the tunability of the electronic structure by external fields and defects Type A1 Journal article
  Year 2020 Publication Physica Status Solidi B-Basic Solid State Physics Abbreviated Journal Phys Status Solidi B  
  Volume Issue Pages 2000182-12  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract First‐principles calculations, within the framework of density functional theory, are used to investigate the structural, electronic, optical, and thermoelectric properties of monolayer PbTe. The effect of layer thickness, electric field, strain, and vacancy defects on the electronic and magnetic properties is systematically studied. The results show that the bandgap decreases as the layer thickness increases from monolayer to bulk. With application of an electric field on bilayer PbTe, the bandgap decreases from 70 meV (0.2 V Å⁻¹) to 50 meV (1 V Å⁻¹) when including spin–orbit coupling (SOC). Application of uniaxial strain induces a direct‐to‐indirect bandgap transition for strain greater than +6%. In addition, the bandgap decreases under compressive biaxial strain (with SOC). The effect of vacancy defects on the electronic properties of PbTe is also investigated. Such vacancy defects turn PbTe into a ferromagnetic metal (single vacancy Pb) with a magnetic moment of 1.3 μB, and into an indirect semiconductor with bandgap of 1.2 eV (single Te vacancy) and 1.5 eV (double Pb + Te vacancy). In addition, with change of the Te vacancy concentration, a bandgap of 0.38 eV (5.55%), 0.43 eV (8.33%), and 0.46 eV (11.11%) is predicted.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000527679200001 Publication Date 2020-04-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-1972 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.6 Times cited 37 Open Access  
  Notes ; This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2017R1A2B2011989). In addition, this work was supported by the FLAG-ERA project 2DTRANS TMD and the Flemish Science Foundation (FWO-Vl). The authors are thankful for comments by Mohan Verma from the Computational Nanoionics Research Lab, Department of Applied Physics, Bhilai, India and to Francesco Buonocore from ENEA, Casaccia Research Centre, Rome, Italy. ; Approved (up) Most recent IF: 1.6; 2020 IF: 1.674  
  Call Number UA @ admin @ c:irua:168730 Serial 6502  
Permanent link to this record
 

 
Author Bafekry, A.; Van Nguyen, C.; Stampfl, C.; Akgenc, B.; Ghergherehchi, M. pdf  doi
openurl 
  Title Oxygen vacancies in the single layer of Ti₂CO₂ MXene: effects of gating voltage, mechanical strain, and atomic impurities Type A1 Journal article
  Year 2020 Publication Physica Status Solidi B-Basic Solid State Physics Abbreviated Journal Phys Status Solidi B  
  Volume Issue Pages 2000343-2000349  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Herein, using first-principles calculations the structural and electronic properties of the Ti(2)CO(2)MXene monolayer with and without oxygen vacancies are systematically investigated with different defect concentrations and patterns, including partial, linear, local, and hexagonal types. The Ti(2)CO(2)monolayer is found to be a semiconductor with a bandgap of 0.35 eV. The introduction of oxygen vacancies tends to increase the bandgap and leads to electronic phase transitions from nonmagnetic semiconductors to half-metals. Moreover, the semiconducting characteristic of O-vacancy Ti(2)CO(2)can be adjusted via electric fields, strain, and F-atom substitution. In particular, an electric field can be used to alter the nonmagnetic semiconductor of O-vacancy Ti(2)CO(2)into a magnetic one or into a half-metal, whereas the electronic phase transition from a semiconductor to metal can be achieved by applying strain and F-atom substitution. The results provide a useful guide for practical applications of O-vacancy Ti(2)CO(2)monolayers in nanoelectronic and spinstronic nanodevices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000571060800001 Publication Date 2020-09-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-1972 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.6 Times cited Open Access  
  Notes ; This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (NRF-2017R1A2B2011989). ; Approved (up) Most recent IF: 1.6; 2020 IF: 1.674  
  Call Number UA @ admin @ c:irua:171948 Serial 6576  
Permanent link to this record
 

 
Author Deylgat, E.; Chen, E.; Fischetti, M.V.; Sorée, B.; Vandenberghe, W.G. pdf  doi
openurl 
  Title Image-force barrier lowering in top- and side-contacted two-dimensional materials Type A1 Journal article
  Year 2022 Publication Solid state electronics Abbreviated Journal Solid State Electron  
  Volume 198 Issue Pages 108458-4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We compare the image-force barrier lowering (IFBL) and calculate the resulting contact resistance for four different metal-dielectric-two-dimensional (2D) material configurations. We analyze edge contacts in three different geometries (a homogeneous dielectric throughout, including the 2D layer; a homogeneous dielectric surrounding the 2D layer, both ungated and back gated) and also a top-contact assuming a homogeneous dielectric. The image potential energy of each configuration is determined and added to the Schottky energy barrier which is calculated assuming a textbook Schottky potential. For each configuration, the contact resistivity is calculated using the WKB approximation and the effective mass approximation using either SiO2 or HfO2 as the surrounding dielectric. We obtain the lowest contact resistance of 1 k Omega mu m by n-type doping an edge contacted transition metal-dichalcogenide (TMD) monolayer, sandwiched between SiO2 dielectric, with similar to 1012 cm-2 donor atoms. When this optimal configuration is used, the contact resistance is lowered by a factor of 50 compared to the situation when the IFBL is not considered.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000876289800003 Publication Date 2022-09-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0038-1101 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 1.7 Times cited Open Access Not_Open_Access  
  Notes Approved (up) Most recent IF: 1.7  
  Call Number UA @ admin @ c:irua:191556 Serial 7312  
Permanent link to this record
 

 
Author Van Holsbeke, C.S.; Leemans, G.; Vos, W.G.; de Backer, J.W.; Vinchurkar, S.C.; Geldof, M.; Verdonck, P.R.; Parizel, P.M.; van Schil, P.E.; de Backer, W.A. pdf  doi
openurl 
  Title Functional Respiratory Imaging as a tool to personalize respiratory treatment in subjects with unilateral diaphragmatic paralysis Type A1 Journal article
  Year 2013 Publication Respiratory care Abbreviated Journal Resp Care  
  Volume Issue Pages 1-20  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Antwerp Surgical Training, Anatomy and Research Centre (ASTARC); Laboratory Experimental Medicine and Pediatrics (LEMP)  
  Abstract In two subjects with a unilateral diaphragmatic paralysis and complaints of dyspnea, a completely different treatment approach was chosen despite similar anatomical and physiological abnormalities. These decisions were supported by the results generated by Functional Respiratory Imaging (FRI). FRI was able to generate functional information with respect to lobar ventilation and local drug deposition. In one subject, it was found that some lobes were poorly ventilated and drug deposition simulation showed that some regions were undertreated. This subject underwent a diaphragm plication to restore the ventilation. In the other subject, it was found that all lobes were still ventilated. A conservative approach with regular follow-up was chosen to wait for spontaneous recovery of the diaphragmatic function. Both subjects improved subjectively and objectively. These cases demonstrate how novel medical imaging techniques such as FRI can be used to personalize respiratory treatment in subjects with unilateral diaphragmatic paralysis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Dallas, Tex. Editor  
  Language Wos 000349200100024 Publication Date 2013-12-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1324;1943-3654; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.733 Times cited 5 Open Access  
  Notes ; ; Approved (up) Most recent IF: 1.733; 2013 IF: 1.840  
  Call Number UA @ lucian @ c:irua:112982 Serial 1303  
Permanent link to this record
 

 
Author Vinchurkar, S.; De Backer, L.; Vos, W.; Van Holsbeke, C.; de Backer, J.; de Backer, W. doi  openurl
  Title A case series on lung deposition analysis of inhaled medication using functional imaging based computational fluid dynamics in asthmatic patients : effect of upper airway morphology and comparison with in vivo data Type A1 Journal article
  Year 2012 Publication Inhalation Toxicology Abbreviated Journal Inhal Toxicol  
  Volume 24 Issue 2 Pages 81-88  
  Keywords A1 Journal article; Pharmacology. Therapy; Biophysics and Biomedical Physics; Condensed Matter Theory (CMT); Laboratory Experimental Medicine and Pediatrics (LEMP)  
  Abstract Context: Asthma affects 20 million Americans resulting in an economic burden of approximately $18 billion in the US alone (Allergies and Asthma Foundation 2000; National Center for Environmental Health (NCEH) 1999). Research studies based on differences in patient-specific airway morphology for asthma and the associated effect on deposition of inhaled aerosols are currently not available in the literature. Therefore, the role of morphological variations such as upper airway (extrathoracic) occlusion is not well documented. Objective: Functional imaging based computational fluid dynamics (CFD) of the respiratory airways for five asthmatic subjects is performed in this study using computed tomography (CT) based patient-specific airway models and boundary conditions. Methods: CT scans for 5 asthma patients were used to reconstruct 3D lung models using segmentation software. An averaged inhalation profile and patient-specific lobar flow distribution were used to perform the simulation. The simulations were used to obtain deposition for BDP/Formoterol (R) HFA pMDI in the patient-specific airway models. Results: The lung deposition obtained using CFD was in excellent agreement with available in vivo data using the same product. Specifically, CFD resulted in 30% lung deposition, whereas in vivo lung deposition was reported to be approximately 31%. Conclusion: It was concluded that a combination of patient-specific airway models and lobar boundary conditions can be used to obtain accurate lung deposition estimates. Lower lung deposition can be expected for patients with higher extrathoracic resistance. Novel respiratory drug delivery devices need to accommodate population subgroups based on these morphological and anatomical differences in addition to subject age.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000299744800001 Publication Date 2012-01-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0895-8378;1091-7691; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.751 Times cited 36 Open Access  
  Notes ; ; Approved (up) Most recent IF: 1.751; 2012 IF: 1.894  
  Call Number UA @ lucian @ c:irua:96238 Serial 286  
Permanent link to this record
 

 
Author Bafekry, A.; Ghergherehchi, M.; Shayesteh, S.F.; Peeters, F.M. pdf  doi
openurl 
  Title Adsorption of molecules on C3N nanosheet : a first-principles calculations Type A1 Journal article
  Year 2019 Publication Chemical physics Abbreviated Journal Chem Phys  
  Volume 526 Issue 526 Pages 110442  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using first-principles calculations we investigate the interaction of various molecules, including H-2, N-2, CO, CO2, H2O, H2S, NH3, CH4 with a C3N nanosheet. Due to the weaker interaction between H-2, N-2, CO, CO2, H2O, H2S, NH3, and CH4 molecules with C3N, the adsorption energy is small and does not yield any significant distortion of the C3N lattice and the molecules are physisorbed. Calculated charge transfer shows that these molecules act as weak donors. However, adsorption of O-2, NO, NO2 and SO2 molecules are chemisorbed, they receive electrons from C3N and act as a strong acceptor. They interact strongly through hybridizing its frontier orbitals with the p-orbital of C3N, modifying the electronic structure of C3N. Our theoretical studies indicate that C3N-based sensor has a high potential for O-2, NO, NO2 and SO2 molecules detection.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000481606000006 Publication Date 2019-07-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0301-0104 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.767 Times cited 46 Open Access  
  Notes ; This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2017R1A2B2011989). In addition, this work was supported by the FLAG-ERA project 2DTRANS and the Flemish Science Foundation (FWO-Vl). ; Approved (up) Most recent IF: 1.767  
  Call Number UA @ admin @ c:irua:161779 Serial 5405  
Permanent link to this record
 

 
Author Shanenko, A.A.; Ivanov, V.A. pdf  doi
openurl 
  Title Effects of confining interaction in meso-superconductors Type A1 Journal article
  Year 2004 Publication Physics letters : A Abbreviated Journal Phys Lett A  
  Volume 322 Issue 5-6 Pages 384-389  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract This Letter presents a generalized Ginzburg-Landau equation for the superconducting order parameter which includes the terms resulting from the confining interaction associated with the specimen boundary. While the original Ginzburg-Landau theory had been developed for a bulk superconductor, this generalization is meant for study of a meso-superconductor. (C) 2004 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000220123600018 Publication Date 2004-02-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0375-9601; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.772 Times cited 1 Open Access  
  Notes Approved (up) Most recent IF: 1.772; 2004 IF: 1.454  
  Call Number UA @ lucian @ c:irua:103244 Serial 859  
Permanent link to this record
 

 
Author Rouaiguia, L.; Djebli, M.; Peeters, F. doi  openurl
  Title Random charge fluctuation effect on strongly correlated dust particles confined in two dimensions Type A1 Journal article
  Year 2008 Publication Physics letters : A Abbreviated Journal Phys Lett A  
  Volume 372 Issue 24 Pages 4487-4492  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000257203700030 Publication Date 2008-04-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0375-9601; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.772 Times cited 4 Open Access  
  Notes Approved (up) Most recent IF: 1.772; 2008 IF: 2.174  
  Call Number UA @ lucian @ c:irua:69627 Serial 2809  
Permanent link to this record
 

 
Author Sels, D.; Brosens, F.; Magnus, W. pdf  doi
openurl 
  Title On the path integral representation of the Wigner function and the BarkerMurray ansatz Type A1 Journal article
  Year 2012 Publication Physics letters : A Abbreviated Journal Phys Lett A  
  Volume 376 Issue 6/7 Pages 809-812  
  Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)  
  Abstract The propagator of the Wigner function is constructed from the WignerLiouville equation as a phase space path integral over a new effective Lagrangian. In contrast to a paper by Barker and Murray (1983) [1], we show that the path integral can in general not be written as a linear superposition of classical phase space trajectories over a family of non-local forces. Instead, we adopt a saddle point expansion to show that the semiclassical Wigner function is a linear superposition of classical solutions for a different set of non-local time dependent forces. As shown by a simple example the specific form of the path integral makes the formulation ideal for Monte Carlo simulation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000301167300005 Publication Date 2012-01-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0375-9601; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.772 Times cited 7 Open Access  
  Notes ; ; Approved (up) Most recent IF: 1.772; 2012 IF: 1.766  
  Call Number UA @ lucian @ c:irua:94006 Serial 2445  
Permanent link to this record
 

 
Author Vansweevelt, R.; Mortet, V.; D' Haen, J.; Ruttens, bart; van Haesendonck, C.; Partoens, B.; Peeters, F.M.; Wagner, P. doi  openurl
  Title Study on the giant positive magnetoresistance and Hall effect in ultrathin graphite flakes Type A1 Journal article
  Year 2011 Publication Physica status solidi : A : applications and materials science Abbreviated Journal Phys Status Solidi A  
  Volume 208 Issue 6 Pages 1252-1258  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In this paper, we report on the electronic transport properties of mesoscopic, ultrathin graphite flakes with a thickness corresponding to a stack of 150 graphene layers. The graphite flakes show an unexpectedly strong positive magnetoresistance (PMR) already at room temperature, which scales in good approximation with the square of the magnetic field. Furthermore, we show that the resistivity is unaffected by magnetic fields oriented in plane with the graphene layers. Hall effect measurements indicate that the charge carriers are p-type and their concentration increases with increasing temperature while the mobility is decreasing. The Hall voltage is non-linear in higher magnetic fields. Possible origins of the observed effects are discussed. Ball and stick model of the two topmost carbon layers of the hexagonal graphite structure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000292945800008 Publication Date 2011-02-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1862-6300; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.775 Times cited 8 Open Access  
  Notes ; The authors gratefully acknowledge the support by FWO – Research Foundation Flanders (project G.0159.07 “Structural and electronic properties of biologically modified, graphene-based layers”), by the Federal Belgian Interuniversity Attraction Poles Programme BELSPO (project TAP VI P6/42 “Quantum effects in clusters and nanowires”) and by the Methusalem network “NANO – Antwerp-Hasselt,” funded by the Flemish Community. Technical assistance by Stoffel D. Janssens (magnet calibration and software development), Dr. Hong Yin (AFM-based thickness studies), Dr. Ronald Thoelen (data analysis), and Prof. Hans-Gerd Boyen (XPS spectroscopy) is greatly appreciated. ; Approved (up) Most recent IF: 1.775; 2011 IF: 1.463  
  Call Number UA @ lucian @ c:irua:91941 Serial 3343  
Permanent link to this record
 

 
Author Dabral, A.; Pourtois, G.; Sankaran, K.; Magnus, W.; Yu, H.; de de Meux, A.J.; Lu, A.K.A.; Clima, S.; Stokbro, K.; Schaekers, M.; Collaert, N.; Horiguchi, N.; Houssa, M. doi  openurl
  Title Study of the intrinsic limitations of the contact resistance of metal/semiconductor interfaces through atomistic simulations Type A1 Journal article
  Year 2018 Publication ECS journal of solid state science and technology Abbreviated Journal Ecs J Solid State Sc  
  Volume 7 Issue 6 Pages N73-N80  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this contribution, we report a fundamental study of the factors that set the contact resistivity between metals and highly doped n-type 2D and 3D semiconductors. We investigate the case of n-type doped Si contacted with amorphous TiSi combining first principles calculations with Non-Equilibrium Green functions transport simulations. The evolution of the intrinsic contact resistivity with the doping concentration is found to saturate at similar to 2 x 10(-10) Omega.cm(2) for the case of TiSi and imposes an intrinsic limit to the ultimate contact resistance achievable for n-doped Silamorphous-TiSi (aTiSi). The limit arises from the intrinsic properties of the semiconductors and of the metals such as their electron effective masses and Fermi energies. We illustrate that, in this regime, contacting heavy electron effective mass metals with semiconductor helps reducing the interface intrinsic contact resistivity. This observation seems to hold true regardless of the 3D character of the semiconductor, as illustrated for the case of three 2D semiconducting materials, namely MoS2, ZrS2 and HfS2. (C) The Author(s) 2018. Published by ECS.  
  Address  
  Corporate Author Thesis  
  Publisher Electrochemical society Place of Publication Pennington (N.J.) Editor  
  Language Wos 000440836000004 Publication Date 2018-05-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2162-8769; 2162-8777 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.787 Times cited 2 Open Access Not_Open_Access  
  Notes ; The authors thank the imec core CMOS program members, the European Commission, its TAKEMI5 ECSEL research project and the local authorities for their support. ; Approved (up) Most recent IF: 1.787  
  Call Number UA @ lucian @ c:irua:153205UA @ admin @ c:irua:153205 Serial 5130  
Permanent link to this record
 

 
Author Moors, K.; Sorée, B.; Magnus, W. doi  openurl
  Title Resistivity scaling in metallic thin films and nanowires due to grain boundary and surface roughness scattering Type A1 Journal article
  Year 2017 Publication Microelectronic engineering Abbreviated Journal Microelectron Eng  
  Volume 167 Issue 167 Pages 37-41  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract A modeling approach, based on an analytical solution of the semiclassical multi-subband Boltzmann transport equation, is presented to study resistivity scaling in metallic thin films and nanowires due to grain boundary and surface roughness scattering. While taking into account the detailed statistical properties of grains, roughness and barrier material as well as the metallic band structure and quantum mechanical aspects of scattering and confinement, the model does not rely on phenomenological fitting parameters. (C) 2016 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000390746000008 Publication Date 2016-10-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-9317 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.806 Times cited 6 Open Access  
  Notes ; ; Approved (up) Most recent IF: 1.806  
  Call Number UA @ lucian @ c:irua:140354 Serial 4460  
Permanent link to this record
 

 
Author Peeters, F.M.; Schweigert, V.A.; Deo, P.S. doi  openurl
  Title Mesoscopic superconducting disks: fluxoids in a box Type A1 Journal article
  Year 1999 Publication Microelectronic engineering Abbreviated Journal Microelectron Eng  
  Volume 47 Issue Pages 393-395  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000081403600093 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-9317; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.806 Times cited 1 Open Access  
  Notes Approved (up) Most recent IF: 1.806; 1999 IF: 0.815  
  Call Number UA @ lucian @ c:irua:27028 Serial 2002  
Permanent link to this record
 

 
Author Peeters, F.M.; Reijniers, J.; Badalian, S.M.; Vasilopoulos, P. doi  openurl
  Title Snake orbits in hybrid semiconductor/ferromagnetic devices Type A1 Journal article
  Year 1999 Publication Microelectronic engineering Abbreviated Journal Microelectron Eng  
  Volume 47 Issue Pages 405-407  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Engineering Management (ENM)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000081403600096 Publication Date 2002-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-9317; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.806 Times cited 6 Open Access  
  Notes Approved (up) Most recent IF: 1.806; 1999 IF: 0.815  
  Call Number UA @ lucian @ c:irua:27030 Serial 3046  
Permanent link to this record
 

 
Author Lujan, G.S.; Magnus, W.; Sorée, B.; Ragnarsson, L.A.; Trojman, L.; Kubicek, S.; De Gendt, S.; Heyns, A.; De Meyer, K. pdf  doi
openurl 
  Title Barrier permeation effects on the inversion layer subband structure and its applications to the electron mobility Type A1 Journal article
  Year 2005 Publication Microelectronic engineering Abbreviated Journal Microelectron Eng  
  Volume 80 Issue Pages 82-85  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The electron wave functions in the inversion layer are analyzed in the case where the dielectric barriers are not infinite. This forces the electron concentration closer to the interface silicon/oxide and reduces the subband energy. This treatment of the inversion layer is extended to the calculation of the electron mobility degradation due to remote Coulomb scattering on a high-k dielectric stacked transistor. The subband energy reduction leads to a decrease of the scattering charge needed to explain the experimental results. This model can also fit better the experimental data when compared with the case where no barrier permeation is considered.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000231517000021 Publication Date 2005-06-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-9317; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.806 Times cited 1 Open Access  
  Notes Approved (up) Most recent IF: 1.806; 2005 IF: 1.347  
  Call Number UA @ lucian @ c:irua:102729 Serial 222  
Permanent link to this record
 

 
Author Pourtois, G.; Lauwers, A.; Kittl, J.; Pantisano, L.; Sorée, B.; De Gendt, S.; Magnus, W.; Heyns, A.; Maex, K. pdf  doi
openurl 
  Title First-principle calculations on gate/dielectric interfaces : on the origin of work function shifts Type A1 Journal article
  Year 2005 Publication Microelectronic engineering Abbreviated Journal Microelectron Eng  
  Volume 80 Issue Pages 272-279  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The impact of interfacial chemistry occurring at dielectric/gate interface of P-MOS and N-MOS devices is reviewed through a quick literature survey. A specific emphasis is put on the way the bond polarization that occurs between a dielectric and a metal substrate impacts on the gate work function. First-principle simulations are then used to study the work function changes induced by dopant aggregation in nickel monosilicide metal gates. It is shown that the changes are a natural consequence of the variation of the interface polarization.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000231517000062 Publication Date 2005-06-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-9317; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.806 Times cited 31 Open Access  
  Notes Approved (up) Most recent IF: 1.806; 2005 IF: 1.347  
  Call Number UA @ lucian @ c:irua:95095 Serial 1199  
Permanent link to this record
 

 
Author Pathangi, H.; Cherman, V.; Khaled, A.; Sorée, B.; Groeseneken, G.; Witvrouw, A. doi  openurl
  Title Towards CMOS-compatible single-walled carbon nanotube resonators Type A1 Journal article
  Year 2013 Publication Microelectronic engineering Abbreviated Journal Microelectron Eng  
  Volume 107 Issue Pages 219-222  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract We report a totally CMOS-compatible fabrication technique to assemble horizontally suspended single-walled carbon nanotube (SWCNT) resonators. Individual SWCNTs are assembled in parallel at multiple sites by a technique called dielectrophoresis. The mechanical resonance frequencies of the suspended SWCNTs are in the range of 2035 MHz as determined from the piezoresistive response of the resonators during electrostatic actuation. The resistance of the suspended SWCNT either remains unchanged or increases or decreases significantly as a function of the actuation frequency. This can be explained by the effect the nanotube chirality has on the piezoresistive gauge factor.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000319855800040 Publication Date 2012-07-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-9317; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.806 Times cited 6 Open Access  
  Notes ; ; Approved (up) Most recent IF: 1.806; 2013 IF: 1.338  
  Call Number UA @ lucian @ c:irua:109260 Serial 3685  
Permanent link to this record
 

 
Author Dabaghmanesh, S.; Neek-Amal, M.; Partoens, B.; Neyts, E.C. pdf  url
doi  openurl
  Title The formation of Cr2O3 nanoclusters over graphene sheet and carbon nanotubes Type A1 Journal article
  Year 2017 Publication Chemical physics letters Abbreviated Journal Chem Phys Lett  
  Volume 687 Issue Pages 188-193  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000412453700030 Publication Date 2017-09-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0009-2614 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.815 Times cited 2 Open Access Not_Open_Access: Available from 01.11.2019  
  Notes ; This work was supported by SIM vzw, Technologiepark 935, BE-9052 Zwijnaarde, Belgium, within the InterPoCo project of the H-INT-S horizontal program. The computational resources and services used in this work were provided by the Vlaams Supercomputer Centrum (VSC) and the HPC infrastructure of the University of Antwerp. ; Approved (up) Most recent IF: 1.815  
  Call Number UA @ lucian @ c:irua:146646 Serial 4795  
Permanent link to this record
 

 
Author de Backer, J.W.; Vos, W.G.; Gorlé, C.D.; Germonpré, P.; Partoens, B.; Wuyts, F.L.; Parizel, P.M.; de Backer, W. doi  openurl
  Title Flow analyses in the lower airways: patient-specific model and boundary conditions Type A1 Journal article
  Year 2008 Publication Medical engineering and physics Abbreviated Journal Med Eng Phys  
  Volume 30 Issue 7 Pages 872-879  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Antwerp Surgical Training, Anatomy and Research Centre (ASTARC); Laboratory Experimental Medicine and Pediatrics (LEMP)  
  Abstract Computational fluid dynamics (CFD) is increasingly applied in the respiratory domain. The ability to simulate the flow through a bifurcating tubular system has increased the insight into the internal flow dynamics and the particular characteristics of respiratory flows such as secondary motions and inertial effects. The next step in the evolution is to apply the technique to patient-specific cases, in order to provide more information about pathological airways. This study presents a patient-specific approach where both the geometry and the boundary conditions (BC) are based on individual imaging methods using computed tomography (CT). The internal flow distribution of a 73-year-old female suffering from chronic obstructive pulmonary disease (COPD) is assessed. The validation is performed through the comparison of lung ventilation with gamma scintigraphy. The results show that in order to obtain agreement within the accuracy limits of the gamma scintigraphy scan, both the patient-specific geometry and the BC (driving pressure) play a crucial role. A minimal invasive test (CT scan) supplied enough information to perform an accurate CFD analysis. In the end it was possible to capture the pathological features of the respiratory system using the imaging and computational fluid dynamics techniques. This brings the introduction of this new technique in the clinical practice one step closer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000259768300009 Publication Date 2007-12-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1350-4533; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.819 Times cited 82 Open Access  
  Notes Approved (up) Most recent IF: 1.819; 2008 IF: 2.216  
  Call Number UA @ lucian @ c:irua:71693 Serial 1224  
Permanent link to this record
 

 
Author Schulenborg, J.; Di Marco, A.; Vanherck, J.; Wegewijs, M.R.; Splettstoesser, J. url  doi
openurl 
  Title Thermoelectrics of interacting nanosystems-exploiting superselection instead of time-reversal symmetry Type A1 Journal article
  Year 2017 Publication Entropy: an international and interdisciplinary journal of entropy and information studies Abbreviated Journal Entropy-Switz  
  Volume 19 Issue 12 Pages 668  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('Thermoelectric transport is traditionally analyzed using relations imposed by time-reversal symmetry, ranging from Onsager\u0027s results to fluctuation relations in counting statistics. In this paper, we show that a recently discovered duality relation for fermionic systems-deriving from the fundamental fermion-parity superselection principle of quantum many-particle systems-provides new insights into thermoelectric transport. Using a master equation, we analyze the stationary charge and heat currents through a weakly coupled, but strongly interacting single-level quantum dot subject to electrical and thermal bias. In linear transport, the fermion-parity duality shows that features of thermoelectric response coefficients are actually dominated by the average and fluctuations of the charge in a dual quantum dot system, governed by attractive instead of repulsive electron-electron interaction. In the nonlinear regime, the duality furthermore relates most transport coefficients to much better understood equilibrium quantities. Finally, we naturally identify the fermion-parity as the part of the Coulomb interaction relevant for both the linear and nonlinear Fourier heat. Altogether, our findings hence reveal that next to time-reversal, the duality imposes equally important symmetry restrictions on thermoelectric transport. As such, it is also expected to simplify computations and clarify the physical understanding for more complex systems than the simplest relevant interacting nanostructure model studied here.'));  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000419007900037 Publication Date 2017-12-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1099-4300 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.821 Times cited 3 Open Access  
  Notes ; We thank Rafael Sanchez for useful comments on the manuscript. We acknowledge funding from the Knut and Alice Wallenberg foundation through their Academy Fellows program (J.Sp. and A.D.M.), from the Swedish VR (J.Sp. and J.Sc.), from the Erasmus Mundus program (J.V.), and from the DFG project SCHO 641/7-1 (M.R.W.). ; Approved (up) Most recent IF: 1.821  
  Call Number UA @ lucian @ c:irua:148548 Serial 4900  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: