toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Vargas Paredes, A.A. url  openurl
  Title Emergent phenomena in superconductors in presence of intraband and cross-band pairing Type Doctoral thesis
  Year 2020 Publication Abbreviated Journal  
  Volume Issue Pages 142 p.  
  Keywords Doctoral thesis; Condensed Matter Theory (CMT)  
  Abstract (up) In this thesis we investigate the emergence of new phenomena in multigap superconductors and multicomponent Ginzburg-Landau theories in the presence of intraband and cross-band pairing. The first part contains a review of emergent phenomena in superconductors with only intraband pairing, in particular the mechanism behind gap resonances which are accompanied by Higgs and Leggett modes. Then we study the gap resonances induced by two-dimensional quantum confinement and describe its spatial profile using the Bogoliubov-de Gennes equations. In the second part we describe the conditions where the cross-band pair formation is feasible. Using the formalism of Green functions we obtain the equations governing the interplay between intraband and cross-band pairing. Also, we derived the Ginzburg-Landau equations considering both intraband and cross-band pairing. Finally, we describe the crossover between the intraband-dominated and crossband-dominated regimes. These two are delimited by a tendency towards a gapless state. When a magnetic field is applied close to the gapless state, we found new arrangements of vortices like square lattices, stripes, labyrinths or of vortex clusters. The experimental signatures and consequences of crosspairing are discussed for MgB2 and Ba0.6K0.4Fe2As2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:165865 Serial 7899  
Permanent link to this record
 

 
Author Gonzalez Garcia, A. url  openurl
  Title Tuning the properties of group III-As in the thinnest limit : a theoretical study of single layer and 2D-heterostructures Type Doctoral thesis
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages xvii, 175 p.  
  Keywords Doctoral thesis; Condensed Matter Theory (CMT)  
  Abstract (up) In this thesis, a first-principles research to tune the physical properties of group III-V materials in the thinnest limit is carried out. Among the different methods to tune the mechanical, electronic and magnetic properties of these graphene related materials, we use: two-dimensional (2D) multilayers, straintronics, hydrogen functionalization, and transition metal adsorption. The first part of this research is devoted to a complete characterization of the structural, electronic, mechanical and vibrational properties of 2D group III-As monolayers, obtained from density functional theory. Our findings are used to understand the contribution of the  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:182959 Serial 7040  
Permanent link to this record
 

 
Author Osca, J.; Sorée, B. doi  openurl
  Title Skyrmion spin transfer torque due to current confined in a nanowire Type A1 Journal article
  Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 102 Issue 12 Pages 125436  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) In this work we compute the torque field present in a ferromagnet in contact with a metallic nanowire when a skyrmion is present. If the nanowire is narrow enough, then the current is carried by a single conduction band. In this regime the classical torque model breaks down and we show that a skyrmion driven by spin transfer torque moves in a different direction than predicted by the classical model. However, the amount of charge current required to move a skyrmion with a certain velocity in the single-band regime is similar to a classical model of torque where it is implicitly assumed current transport by many conduction bands. The single-band regime is more efficient creating spin current from charge current because of the perfect polarization of the single band but is less efficient creating torque from spin current. Nevertheless, it is possible to take profit of the single-band regime to move skyrmions even with no net charge or spin current flowing between the device contacts. We have also been able to recover the classical limit considering an ensemble of only a few electronic states. In this limit we have discovered that electron diffusion needs to be considered even in ballistic nanowires due the effect of the skyrmion structure on the electron current.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000573775300004 Publication Date 2020-09-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access  
  Notes ; The authors thanks Llorenc Serra for useful discussion on the conduction electron quantum model. We also want to show gratitude to Dimitrios Andrikopoulos for sharing his knowledge about the available bibliography and to F. J. P. van Duijn for his comments on earlier versions of this manuscript. We acknowledge the Horizon 2020 project SKYTOP “Skyrmion-Topological Insulator and Weyl Semimetal Technology” (FETPROACT-2018-01, No. 824123). Finally, J.O. also acknowledges the postdoctoral fellowship provided by KU Leuven. ; Approved Most recent IF: 3.7; 2020 IF: 3.836  
  Call Number UA @ admin @ c:irua:172727 Serial 6604  
Permanent link to this record
 

 
Author Govaerts, K.; Saniz, R.; Partoens, B.; Lamoen, D. url  doi
openurl 
  Title van der Waals bonding and the quasiparticle band structure of SnO from first principles Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 23 Pages 235210-235217  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract (up) In this work we have investigated the structural and electronic properties of SnO, which is built up from layers kept together by van der Waals (vdW) forces. The combination of a vdW functional within density functional theory (DFT) and quasiparticle band structure calculations within the GW approximation provides accurate values for the lattice parameters, atomic positions, and the electronic band structure including the fundamental (indirect) and the optical (direct) band gap without the need of experimental or empirical input. A systematic comparison is made between different levels of self-consistency within the GW approach {following the scheme of Shishkin et al. [Phys. Rev. B 75, 235102 (2007)]} and the results are compared with DFT and hybrid functional results. Furthermore, the effect of the vdW-corrected functional as a starting point for the GW calculation of the band gap has been investigated. Finally, we studied the effect of the vdW functional on the electron charge density.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000321061000003 Publication Date 2013-07-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 50 Open Access  
  Notes IWT; FWO; Hercules Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:109596 Serial 3835  
Permanent link to this record
 

 
Author Sels, D.; Sorée, B.; Groeseneken, G. doi  openurl
  Title Quantum ballistic transport in the junctionless nanowire pinch-off field effect transistor Type A1 Journal article
  Year 2011 Publication Journal of computational electronics Abbreviated Journal J Comput Electron  
  Volume 10 Issue 1 Pages 216-221  
  Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)  
  Abstract (up) In this work we investigate quantum ballistic transport in ultrasmall junctionless and inversion mode semiconducting nanowire transistors within the framework of the self-consistent Schrödinger-Poisson problem. The quantum transmitting boundary method is used to generate open boundary conditions between the active region and the electron reservoirs. We adopt a subband decomposition approach to make the problem numerically tractable and make a comparison of four different numerical approaches to solve the self-consistent Schrödinger-Poisson problem. Finally we discuss the IV-characteristics for small (r≤5 nm) GaAs nanowire transistors. The novel junctionless pinch-off FET or junctionless nanowire transistor is extensively compared with the gate-all-around (GAA) nanowire MOSFET.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication S.l. Editor  
  Language Wos 000300735800021 Publication Date 2011-02-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1569-8025;1572-8137; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.526 Times cited 12 Open Access  
  Notes ; ; Approved Most recent IF: 1.526; 2011 IF: 1.211  
  Call Number UA @ lucian @ c:irua:89501 Serial 2772  
Permanent link to this record
 

 
Author Bafekry, A.; Nguyen, C., V; Goudarzi, A.; Ghergherehchi, M.; Shafieirad, M. url  doi
openurl 
  Title Investigation of strain and doping on the electronic properties of single layers of C₆N₆ and C₆N₈: a first principles study Type A1 Journal article
  Year 2020 Publication Rsc Advances Abbreviated Journal Rsc Adv  
  Volume 10 Issue 46 Pages 27743-27751  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) In this work, by performing first-principles calculations, we explore the effects of various atom impurities on the electronic and magnetic properties of single layers of C(6)N(6)and C6N8. Our results indicate that atom doping may significantly modify the electronic properties. Surprisingly, doping Cr into a holey site of C(6)N(6)monolayer was found to exhibit a narrow band gap of 125 meV upon compression strain, considering the spin-orbit coupling effect. Also, a C atom doped in C(6)N(8)monolayer shows semi-metal nature under compression strains larger than -2%. Our results propose that Mg or Ca doped into strained C(6)N(6)may exhibit small band gaps in the range of 10-30 meV. In addition, a magnetic-to-nonmagnetic phase transition can occur under large tensile strains in the Ca doped C(6)N(8)monolayer. Our results highlight the electronic properties and magnetism of C(6)N(6)and C(6)N(8)monolayers. Our results show that the electronic properties can be effectively modified by atom doping and mechanical strain, thereby offering new possibilities to tailor the electronic and magnetic properties of C(6)N(6)and C(6)N(8)carbon nitride monolayers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000553911800053 Publication Date 2020-07-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.9 Times cited 11 Open Access  
  Notes ; This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (NRF-2017R1A2B2011989). ; Approved Most recent IF: 3.9; 2020 IF: 3.108  
  Call Number UA @ admin @ c:irua:172111 Serial 6553  
Permanent link to this record
 

 
Author Bafekry, A.; Faraji, M.; Fadlallah, M.M.; Jappor, H.R.; Karbasizadeh, S.; Ghergherehchi, M.; Sarsari, I.A.; Ziabari, A.A. url  doi
openurl 
  Title Novel two-dimensional AlSb and InSb monolayers with a double-layer honeycomb structure : a first-principles study Type A1 Journal article
  Year 2021 Publication Physical Chemistry Chemical Physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 23 Issue 34 Pages 18752-18759  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) In this work, motivated by the fabrication of an AlSb monolayer, we have focused on the electronic, mechanical and optical properties of AlSb and InSb monolayers with double-layer honeycomb structures, employing the density functional theory approach. The phonon band structure and cohesive energy confirm the stability of the XSb (X = Al and In) monolayers. The mechanical properties reveal that the XSb monolayers have a brittle nature. Using the GGA + SOC (HSE + SOC) functionals, the bandgap of the AlSb monolayer is predicted to be direct, while InSb has a metallic character using both functionals. We find that XSb (X = Al, In) two-dimensional bodies can absorb ultraviolet light. The present findings suggest several applications of AlSb and InSb monolayers in novel optical and electronic usages.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000686236800001 Publication Date 2021-08-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.123  
  Call Number UA @ admin @ c:irua:181712 Serial 7005  
Permanent link to this record
 

 
Author Hoat, D.M.; Duy Khanh Nguyen; Bafekry, A.; Vo Van On; Ul Haq, B.; Hoang, D.-Q.; Cocoletzi, G.H.; Rivas-Silva, J.F. pdf  doi
openurl 
  Title Developing feature-rich electronic and magnetic properties in the beta-As monolayer for spintronic and optoelectronic applications by C and Si doping : a first-principles study Type A1 Journal article
  Year 2021 Publication Surfaces and interfaces Abbreviated Journal  
  Volume 27 Issue Pages 101534  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) In this work, the carbon (C) and silicon (Si) doping and codoping effects on beta-arsenene (As) monolayer structural, electronic, and magnetic properties have been comprehensively investigated using first-principles calculations. The studied two-dimensional (2D) materials exhibit good stability. Pristine beta-As single layer is an indirect gap semiconductor with a band gap of 1.867(2.441) eV as determined by PBE(HSE06) functional. Due to the difference in atomic size and electronic interactions, C and Si substitution induces a significant local structural distortion. Depending upon dopant concentration and doping sites, feature-rich electronic properties including non-magnetic semiconductor, magnetic semiconductor and half-metallicity may be obtained, which result from p-p interactions. High spin-polarization at the Fermi level vicinity and significant magnetism suggest As:1C, As:2C, As:1Si, As:2Si, and As:CSi systems as prospective spintronic 2D materials. While, the C-C, Si-Si, and C-Si dimer doping decreases electronic band gap, making the layer more suitable for applications in optoelectronic devices. Results presented herein may suggest an efficient approach to create novel multi-functional 2D materials from beta-As monolayer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000711791100002 Publication Date 2021-10-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2468-0230 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:184138 Serial 6979  
Permanent link to this record
 

 
Author Bafekry, A.; Yagmurcukardes, M.; Shahrokhi, M.; Ghergherehchi, M. pdf  doi
openurl 
  Title Electro-optical properties of monolayer and bilayer boron-doped C₃N: Tunable electronic structure via strain engineering and electric field Type A1 Journal article
  Year 2020 Publication Carbon Abbreviated Journal Carbon  
  Volume 168 Issue Pages 220-229  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) In this work, the structural, electronic and optical properties of monolayer and bilayer of boron doped C3N are investigated by means of density functional theory-based first-principles calculations. Our results show that with increasing the B dopant concentration from 3.1% to 12.5% in the hexagonal pattern, an indirect-to-direct band gap (0.8 eV) transition occurs. Furthermore, we study the effect of electric field and strain on the B doped C3N bilayer (B-C3N@2L). It is shown that by increasing E-field strength from 0.1 to 0.6V/angstrom, the band gap displays almost a linear decreasing trend, while for the > 0.6V/angstrom, we find dual narrow band gap with of 50 meV (in parallel E-field) and 0.4 eV (in antiparallel E-field). Our results reveal that in-plane and out-of-plane strains can modulate the band gap and band edge positions of the B-C3N@2L. Overall, we predict that B-C3N@2L is a new platform for the study of novel physical properties in layered two-dimensional materials (2DM) which may provide new opportunities to realize high-speed low-dissipation devices. (C) 2020 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000565900900008 Publication Date 2020-07-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 10.9 Times cited 21 Open Access  
  Notes ; This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government(MSIT) (NRF-2017R1A2B2011989). M. Yagmurcukardes acknowledges Flemish Science Foundation (FWO-VI) by a postdoctoral fellowship. ; Approved Most recent IF: 10.9; 2020 IF: 6.337  
  Call Number UA @ admin @ c:irua:171914 Serial 6500  
Permanent link to this record
 

 
Author Mortazavi, B.; Bafekry, A.; Shahrokhi, M.; Rabczuk, T.; Zhuang, X. pdf  doi
openurl 
  Title ZnN and ZnP as novel graphene-like materials with high Li-ion storage capacities Type A1 Journal article
  Year 2020 Publication Materials today energy Abbreviated Journal  
  Volume 16 Issue Pages Unsp 100392-8  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract (up) In this work, we employed first-principles density functional theory (DFT) calculations to investigate the dynamical and thermal stability of graphene-like ZnX (X = N, P, As) nanosheets. We moreover analyzed the electronic, mechanical and optical properties of these novel two-dimensional (2D) systems. Acquired phonon dispersion relations reveal the absence of imaginary frequencies and thus confirming the dynamical stability of predicted monolayers. According to ab-initio molecular dynamics results however only ZnN and ZnP exhibit the required thermally stability. The elastic modulus of ZnN, ZnP and ZnAs are estimated to be 31, 21 and 17 N/m, respectively, and the corresponding tensile strengths values are 6.0, 4.9 and 4.0 N/m, respectively. Electronic band structure analysis confirms the metallic electronic character for the predicted monolayers. Results for the optical characteristics also indicate a reflectivity of 100% at extremely low energy levels, which is desirable for photonic and optoelectronic applications. According to our results, graphene-like ZnN and ZnP nanosheets can yield high capacities of 675 and 556 mAh/g for Li-ion storage, respectively. Acquired results confirm the stability and acceptable strength of ZnN and ZnP nanosheets and highlight their attractive application prospects in optical and energy storage systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000539083500049 Publication Date 2020-02-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2468-6069 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.3 Times cited 13 Open Access  
  Notes ; B. M. and X. Z. appreciate the funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy within the Cluster of Excellence PhoenixD (EXC 2122, Project ID 390833453). ; Approved Most recent IF: 9.3; 2020 IF: NA  
  Call Number UA @ admin @ c:irua:169752 Serial 6655  
Permanent link to this record
 

 
Author Bafekry, A.; Yagmurcukardes, M.; Akgenc, B.; Ghergherehchi, M.; Nguyen, C. doi  openurl
  Title Van der Waals heterostructures of MoS₂ and Janus MoSSe monolayers on graphitic boron-carbon-nitride (BC₃, C₃N, C₃N₄ and C₄N₃) nanosheets: a first-principles study Type A1 Journal article
  Year 2020 Publication Journal Of Physics D-Applied Physics Abbreviated Journal J Phys D Appl Phys  
  Volume Issue Pages 1-10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) In this work, we extensively investigate the structural and electronic properties of van der Waals heterostructures (HTs) constructed by MoS${2}$/$BC3$, MoS${2}$/$C3N$, MoS${2}$/$C3N4$, MoS${2}$/$C4N3$ and those using Janus MoSSe instead of MoS$2$ by performing density functional theory calculations. The electronic band structure calculations and the corresponding partial density of states reveal that the significant changes are driven by quite strong layer-layer interaction between the constitutive layers. Our results show that although all monolayers are semiconductors as free-standing layers, the MoS${2}$/$C3N$ and MoS${2}$/$C4N3$ bilayer HTs display metallic behavior as a consequence of transfer of charge carriers between two constituent layers. In addition, it is found that in MoSSe/$C3N$ bilayer HT, the degree of metallicity is affected by the interface chalcogen atom type when Se atoms are facing to $C3N$ layer, the overlap of the bands around the Fermi level is smaller. Moreover, the half-metallic magnetic $C4N3$ is shown to form magnetic half-metallic trilayer HT with MoS$2$ independent of the stacking sequence, i.e. whether it is sandwiched or two $C4N3$ layer encapsulate MoS$2$ layer. We further analyze the trilayer HTs in which MoS$2$ is encapsulated by two different monolayers and it is revealed that at least with one magnetic monolayer, it is possible to construct a magnetic trilayer. While the trilayer of $C4N3$/MoS${2}$/$BC3$ and $C4N3$/MoS${2}$/$C3N4$ exhibit half-metallic characteristics, $C4N3$/MoS${_2}$/$C3$N possesses a magnetic metallic ground state. Overall, our results reveal that holly structures of BCN crystals are suitable for heterostructure formation even over van der Waals type interaction which significantly changes electronic nature of the constituent layers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000543344800001 Publication Date 2020-04-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.4 Times cited Open Access  
  Notes Approved Most recent IF: 3.4; 2020 IF: 2.588  
  Call Number UA @ admin @ c:irua:169754 Serial 6651  
Permanent link to this record
 

 
Author Pereira, J.R.V.; Tunes, T.M.; De Arruda, A.S.; Godoy, M. pdf  url
doi  openurl
  Title Thermal properties of the mixed spin-1 and spin-3/2 Ising ferrimagnetic system with two different random single-ion anisotropies Type A1 Journal article
  Year 2018 Publication Physica: A : theoretical and statistical physics Abbreviated Journal Physica A  
  Volume 500 Issue 500 Pages 265-272  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) In this work, we have performed Monte Carlo simulations to study a mixed spin-1 and spin-3/2 Ising ferrimagnetic system on a square lattice with two different random single-ion anisotropies. This lattice is divided in two interpenetrating sublattices with spins S-A = 1 in the sublattice A and S-B = 3/2 in the sublattice B. The exchange interaction between the spins on the sublattices is antiferromagnetic (J < 0). We used two random single-ion anisotropies, D-i(A) and D-j(B), on the sublattices A and B, respectively. We have determined the phase diagram of the model in the critical temperature T-c versus strength of the random single-ion anisotropy D plane and we shown that it exhibits only second-order phase transition lines. We also shown that this system displays compensation temperatures for some cases of the random single-ion distribution. (C) 2018 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000430027400025 Publication Date 2018-02-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-4371 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.243 Times cited 3 Open Access  
  Notes ; The authors acknowledge financial support by the Brazilian agencies CNPq, Brazil, CAPES, Brazil (Grant No. 88881.120851/2016-01) and FAPEMAT, Brazil. ; Approved Most recent IF: 2.243  
  Call Number UA @ lucian @ c:irua:150706UA @ admin @ c:irua:150706 Serial 4985  
Permanent link to this record
 

 
Author Bafekry, A.; Nguyen, C.; Obeid, M.M.; Ghergherehchi, M. url  doi
openurl 
  Title Modulating the electro-optical properties of doped C₃N monolayers and graphene bilayersviamechanical strain and pressure Type A1 Journal article
  Year 2020 Publication New Journal Of Chemistry Abbreviated Journal New J Chem  
  Volume 44 Issue 36 Pages 15785-15792  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) In this work, we investigated systematically the electronic and optical properties of B doped C3N monolayers as well as B and N doped graphene bilayers (BN-Gr@2L). We found that the doping of B atoms leads to an enlarged band gap of the C3N monolayer and when the dopant concentration reaches 12.5%, an indirect-to-direct band gap switching occurs. In addition, with co-doping of B and N atoms on the graphene monolayer in the hexagonal configuration, an electronic transition from semi-metal to semiconductor occurs. Our optical results for B-C3N show a broad absorption spectrum in a wide visible range starting from 400 nm to 1000 nm with strong absorption intensity, making it a suitable candidate for nanoelectronic and optoelectronic applications. Interestingly, a transition from semi-metal to semiconductor emerges in the graphene monolayer with doping of B and N atoms. Furthermore, our results demonstrate that the in-plane strain and out-of-plane strain (pressure) can modulate the band gap of the BN-Gr@2L. The controllable electronic properties and optical features of the doped graphene bilayer by strain engineering may facilitate their practical performance for various applications in future.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000571972400054 Publication Date 2020-08-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1144-0546 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.3 Times cited 7 Open Access  
  Notes ; This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (NRF-2017R1A2B2011989). ; Approved Most recent IF: 3.3; 2020 IF: 3.269  
  Call Number UA @ admin @ c:irua:171936 Serial 6561  
Permanent link to this record
 

 
Author Mohammed, M.; Verhulst, A.S.; Verreck, D.; Van de Put, M.L.; Magnus, W.; Sorée, B.; Groeseneken, G. pdf  doi
openurl 
  Title Phonon-assisted tunneling in direct-bandgap semiconductors Type A1 Journal article
  Year 2019 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 125 Issue 1 Pages 015701  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) In tunnel field-effect transistors, trap-assisted tunneling (TAT) is one of the probable causes for degraded subthreshold swing. The accurate quantum-mechanical (QM) assessment of TAT currents also requires a QM treatment of phonon-assisted tunneling (PAT) currents. Therefore, we present a multi-band PAT current formalism within the framework of the quantum transmitting boundary method. An envelope function approximation is used to construct the electron-phonon coupling terms corresponding to local Frohlich-based phonon-assisted inter-band tunneling in direct-bandgap III-V semiconductors. The PAT current density is studied in up to 100 nm long and 20 nm wide p-n diodes with the 2- and 15-band material description of our formalism. We observe an inefficient electron-phonon coupling across the tunneling junction. We further demonstrate the dependence of PAT currents on the device length, for our non-self-consistent formalism which neglects changes in the electron distribution function caused by the electron-phonon coupling. Finally, we discuss the differences in doping dependence between direct band-to-band tunneling and PAT current. Published under license by AIP Publishing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000455350200021 Publication Date 2019-01-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 2 Open Access  
  Notes ; This work was supported by Imec's Industrial Affiliation Program. ; Approved Most recent IF: 2.068  
  Call Number UA @ admin @ c:irua:156735 Serial 5224  
Permanent link to this record
 

 
Author Van Holsbeke, C.S.; Leemans, G.; Vos, W.G.; de Backer, J.W.; Vinchurkar, S.C.; Geldof, M.; Verdonck, P.R.; Parizel, P.M.; van Schil, P.E.; de Backer, W.A. pdf  doi
openurl 
  Title Functional Respiratory Imaging as a tool to personalize respiratory treatment in subjects with unilateral diaphragmatic paralysis Type A1 Journal article
  Year 2013 Publication Respiratory care Abbreviated Journal Resp Care  
  Volume Issue Pages 1-20  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Antwerp Surgical Training, Anatomy and Research Centre (ASTARC); Laboratory Experimental Medicine and Pediatrics (LEMP)  
  Abstract (up) In two subjects with a unilateral diaphragmatic paralysis and complaints of dyspnea, a completely different treatment approach was chosen despite similar anatomical and physiological abnormalities. These decisions were supported by the results generated by Functional Respiratory Imaging (FRI). FRI was able to generate functional information with respect to lobar ventilation and local drug deposition. In one subject, it was found that some lobes were poorly ventilated and drug deposition simulation showed that some regions were undertreated. This subject underwent a diaphragm plication to restore the ventilation. In the other subject, it was found that all lobes were still ventilated. A conservative approach with regular follow-up was chosen to wait for spontaneous recovery of the diaphragmatic function. Both subjects improved subjectively and objectively. These cases demonstrate how novel medical imaging techniques such as FRI can be used to personalize respiratory treatment in subjects with unilateral diaphragmatic paralysis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Dallas, Tex. Editor  
  Language Wos 000349200100024 Publication Date 2013-12-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1324;1943-3654; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.733 Times cited 5 Open Access  
  Notes ; ; Approved Most recent IF: 1.733; 2013 IF: 1.840  
  Call Number UA @ lucian @ c:irua:112982 Serial 1303  
Permanent link to this record
 

 
Author Kong, X.; Li, L.; Peeters, F.M. pdf  doi
openurl 
  Title Graphene-based heterostructures with moire superlattice that preserve the Dirac cone: a first-principles study Type A1 Journal article
  Year 2019 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 31 Issue 25 Pages 255302  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) In van der Waals heterostructures consisting of graphene and a substrate, lattice mismatch often leads to a moire pattern with a huge supercell, preventing its treatment within first- principles calculations. Previous theoretical works considered mostly simple stacking models such as AB, AA with straining the lattice of graphene to match that of the substrate. Here, we propose a moire superlattice build from graphene and porous graphene or graphyne like monolayers, having a lower interlayer binding energy, needing little strain in order to match the lattices. In contrast to the results from the simple stacking models, the present ab initio calculations for the moire superlattices show different properties in lattice structure, energy, and band structures. For example, the Dirac cone at the K point is preserved and a linear energy dispersion near the Fermi level is obtained.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000464184300001 Publication Date 2019-03-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 4 Open Access  
  Notes ; This work is supported by the Collaborative Innovation Center of Quantum Matter, the Fonds voor Wetenschappelijk Onderzoek (FWO-Vl) and the FLAG-ERA project TRANS-2D-TMD. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation-Flanders (FWO) and the Flemish Government-department EWI, and the National Supercomputing Center in Tianjin, funded by the Collaborative Innovation Center of Quantum Matter. ; Approved Most recent IF: 2.649  
  Call Number UA @ admin @ c:irua:159314 Serial 5215  
Permanent link to this record
 

 
Author Faraji, M.; Bafekry, A.; Fadlallah, M.M.; Molaei, F.; Hieu, N.N.; Qian, P.; Ghergherehchi, M.; Gogova, D. url  doi
openurl 
  Title Surface modification of titanium carbide MXene monolayers (Ti₂C and Ti₃C₂) via chalcogenide and halogenide atoms Type A1 Journal article
  Year 2021 Publication Physical Chemistry Chemical Physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 23 Issue 28 Pages 15319-15328  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) Inspired by the recent successful growth of Ti2C and Ti3C2 monolayers, here, we investigate the structural, electronic, and mechanical properties of functionalized Ti2C and Ti3C2 monolayers by means of density functional theory calculations. The results reveal that monolayers of Ti2C and Ti3C2 are dynamically stable metals. Phonon band dispersion calculations demonstrate that two-surface functionalization of Ti2C and Ti(3)C(2)via chalcogenides (S, Se, and Te), halides (F, Cl, Br, and I), and oxygen atoms results in dynamically stable novel functionalized monolayer materials. Electronic band dispersions and density of states calculations reveal that all functionalized monolayer structures preserve the metallic nature of both Ti2C and Ti3C2 except Ti2C-O-2, which possesses the behavior of an indirect semiconductor via full-surface oxygen passivation. In addition, it is shown that although halide passivated Ti3C2 structures are still metallic, there exist multiple Dirac-like cones around the Fermi energy level, which indicates that semi-metallic behavior can be obtained upon external effects by tuning the energy of the Dirac cones. In addition, the computed linear-elastic parameters prove that functionalization is a powerful tool in tuning the mechanical properties of stiff monolayers of bare Ti2C and Ti3C2. Our study discloses that the electronic and structural properties of Ti2C and Ti3C2 MXene monolayers are suitable for surface modification, which is highly desirable for material property engineering and device integration.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000672406800001 Publication Date 2021-06-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.123  
  Call Number UA @ admin @ c:irua:179809 Serial 7027  
Permanent link to this record
 

 
Author Bafekry, A.; Neek-Amal, M. url  doi
openurl 
  Title Tuning the electronic properties of graphene-graphitic carbon nitride heterostructures and heterojunctions by using an electric field Type A1 Journal article
  Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 101 Issue 8 Pages 085417-10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) Integration of graphene-based two-dimensional materials is essential for nanoelectronics applications. Using density-functional theory, we systematically investigate the electronic properties of vertically stacked graphene-graphitic carbon nitrides (GE/GCN). We also studied the covalently lateral stitched graphene-graphitic carbon nitrides (GE-GCN heterojunctions). The effects of perpendicular electric field on the electronic properties of six different heterostructures, i.e., (i) one layer of GE on top of a layer of CnNm with (n, m) = (3,1), (3,4), and (4,3) and (ii) three heterostructures CnNm/Cn'Nm', where (n, m) not equal (n', m') are elucidated. The most important calculated features are (i) the systems GE/C3N4, C3N/C3N4, GE-C3N, GE-C4N3, and C3N-C3N4 exhibit semiconducting characteristics having small band gaps of Delta(0)=20, 250, 100, 100, 80 meV, respectively while (ii) the systems GE/C4N3, C3N/C4N3, and C3N-C4N3 show ferromagnetic-metallic properties. In particular, we found that, in semiconducting heterostructures, the band gap increases nontrivially with increasing the absolute value of the applied perpendicular electric field. This work is useful for designing heterojunctions and heterostructures made of graphene and other two-dimensional materials such as those proposed in recent experiments [X. Liu and M. C. Hersam Sci. Adv. 5, 6444 (2019)].  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000515659700007 Publication Date 2020-02-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 24 Open Access  
  Notes ; ; Approved Most recent IF: 3.7; 2020 IF: 3.836  
  Call Number UA @ admin @ c:irua:167760 Serial 6640  
Permanent link to this record
 

 
Author de Barros, A.G.; Hasheminejad, N.; Kampen, J.K.; Vanlanduit, S.; Vuye, C. file  openurl
  Title Noise barriers as a road traffic noise intervention in an urban environment Type P1 Proceeding
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages 1-10  
  Keywords P1 Proceeding; Engineering sciences. Technology; Engineering Management (ENM); Condensed Matter Theory (CMT); Energy and Materials in Infrastructure and Buildings (EMIB); Social Epidemiology & Health Policy (SEHPO)  
  Abstract (up) Intending to tackle road traffic noise in urban environments, noise barriers have been proven to effectively reduce environmental noise levels, leading to positive effects on noise perception by the exposed population. This work assesses the impacts of replacing an obsolete noise barrier in a site near a highway. The effects of this change were monitored via a combination of field surveys, acoustic measurements and noise maps. The results have shown that even though the barrier replacement led to a 4.1 dB reduction in the LA,eq,(15 min.), the annoyance levels of the respondents increased. Possibly, the expectations regarding the improvement of the noise barrier were not met, after a history of complaints. Additionally, existing exposure-response relationships were not successful in predicting the annoyance levels in this particular case. In this dataset, noise annoyance presented a weak link with reported health problems, while a strong correlation was found with the comfort level to perform activities outdoors. Questions regarding the COVID-19 pandemic showed that even though the respondents were spending more time at home, they were less annoyed due to road traffic noise in the period when circulation restrictions were in place.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-989-53387-0-2 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:180105 Serial 7004  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Hernandez, A.D.; Peeters, F.M. url  doi
openurl 
  Title Confinement effects on intermediate-state flux patterns in mesoscopic type-I superconductors Type A1 Journal article
  Year 2009 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 103 Issue 26 Pages 267002,1-267002,4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) Intermediate-state flux structures in mesoscopic type-I superconductors are studied within the Ginzburg-Landau theory. In addition to well-established tubular and laminar structures, the strong confinement leads to the formation of (i) a phase of singly quantized vortices, which is typical for type-II superconductors and (ii) a ring of a normal domain at equilibrium. The stability region and the formation process of these intermediate-state structures are strongly influenced by the geometry of the sample.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000273232200042 Publication Date 2009-12-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 28 Open Access  
  Notes Approved Most recent IF: 8.462; 2009 IF: 7.328  
  Call Number UA @ lucian @ c:irua:80574 Serial 488  
Permanent link to this record
 

 
Author Nguten, N.T.T.; Peeters, F.M. url  doi
openurl 
  Title Many-body effects in the cyclotron resonance of a magnetic dot Type A1 Journal article
  Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 80 Issue 11 Pages 115335,1-115335,9  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) Intraband cyclotron resonance (CR) transitions of a two-electron quantum dot containing a single magnetic ion is investigated for different Coulomb interaction strengths and different positions of the magnetic ion. In contrast to the usual parabolic quantum dots where CR is independent of the number of electrons, we found here that due to the presence of the magnetic ion Kohn's theorem no longer holds and CR is different for systems with different number of electrons and different effective electron-electron Coulomb interaction strength. Many-body effects result in shifts in the transition energies and change the number of CR lines. The position of the magnetic ion inside the quantum dot affects the structure of the CR spectrum by changing the position and the number of crossings and anticrossings in the transition energies and oscillator strengths.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000270383200110 Publication Date 2009-09-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 6 Open Access  
  Notes Approved Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:79228 Serial 1941  
Permanent link to this record
 

 
Author Xu, P.; Neek-Amal, M.; Barber, S.D.; Schoelz, J.K.; Ackerman, M.L.; Thibado, P.M.; Sadeghi, A.; Peeters, F.M. doi  openurl
  Title Unusual ultra-low-frequency fluctuations in freestanding graphene Type A1 Journal article
  Year 2014 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 5 Issue Pages 3720  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract (up) Intrinsic ripples in freestanding graphene have been exceedingly difficult to study. Individual ripple geometry was recently imaged using scanning tunnelling microscopy, but these measurements are limited to static configurations. Thermally-activated flexural phonon modes should generate dynamic changes in curvature. Here we show how to track the vertical movement of a one-square-angstrom region of freestanding graphene using scanning tunnelling microscopy, thereby allowing measurement of the out-of-plane time trajectory and fluctuations over long time periods. We also present a model from elasticity theory to explain the very-low-frequency oscillations. Unexpectedly, we sometimes detect a sudden colossal jump, which we interpret as due to mirror buckling. This innovative technique provides a much needed atomic-scale probe for the time-dependent behaviours of intrinsic ripples. The discovery of this novel progenitor represents a fundamental advance in the use of scanning tunnelling microscopy, which together with the application of a thermal load provides a low-frequency nano-resonator.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000335223200007 Publication Date 2014-04-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 62 Open Access  
  Notes ; This work was financially supported, in part, by the Office of Naval Research under grant N00014-10-1-0181, the National Science Foundation under grant DMR-0855358, the EU-Marie Curie IIF postdoc Fellowship/299855 (for M.N.-A.), the ESF-Euro-GRAPHENE project CONGRAN, the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government. ; Approved Most recent IF: 12.124; 2014 IF: 11.470  
  Call Number UA @ lucian @ c:irua:117201 Serial 3819  
Permanent link to this record
 

 
Author Jelić, Ž.L.; Milošević, M.V.; Van de Vondel, J.; Silhanek, A.V. pdf  url
doi  openurl
  Title Stroboscopic phenomena in superconductors with dynamic pinning landscape Type A1 Journal article
  Year 2015 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 5 Issue 5 Pages 14604  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract (up) Introducing artificial pinning centers is a well established strategy to trap quantum vortices and increase the maximal magnetic field and applied electric current that a superconductor can sustain without dissipation. In case of spatially periodic pinning, a clear enhancement of the superconducting critical current arises when commensurability between the vortex configurations and the pinning landscape occurs. With recent achievements in (ultrafast) optics and nanoengineered plasmonics it has become possible to exploit the interaction of light with superconductivity, and create not only spatially periodic imprints on the superconducting condensate, but also temporally periodic ones. Here we show that in the latter case, temporal matching phenomena develop, caused by stroboscopic commensurability between the characteristic frequency of the vortex motion under applied current and the frequency of the dynamic pinning. The matching resonances persist in a broad parameter space, including magnetic field, driving current, or material purity, giving rise to unusual features such as externally variable resistance/impedance and Shapiro steps in current-voltage characteristics. All features are tunable by the frequency of the dynamic pinning landscape. These findings open further exploration avenues for using flashing, spatially engineered, and/or mobile excitations on superconductors, permitting us to achieve advanced functionalities.  
  Address Departement de Physique, Universite de Liege, Allee du 6-Aout 17, B-4000 Liege, Belgium  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000362082500001 Publication Date 2015-10-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 29 Open Access  
  Notes Acknowledgements: This work was supported by the Methusalem Funding of the Flemish Government, the Research Foundation-Flanders (FWO) and the COST Action MP1201. The work of Ž.L.J. and A.V.S. was partially supported by “Mandat d’Impulsion Scientifique” of the F.R.S.-FNRS. Approved Most recent IF: 4.259; 2015 IF: 5.578  
  Call Number c:irua:129807 c:irua:129807 Serial 3980  
Permanent link to this record
 

 
Author De Backer, L.; Vos, W.; Dieriks, B.; Daems, D.; Verhulst, S.; Vinchurkar, S.; Ides, K.; de Backer, J.; Germonpré, P.; de Backer, W. url  doi
openurl 
  Title The effects of long-term noninvasive ventilation in hypercapnic COPD patients : a randomized controlled pilot study Type A1 Journal article
  Year 2011 Publication International journal of chronic obstructive pulmonary disease Abbreviated Journal Int J Chronic Obstr  
  Volume 6 Issue Pages 615-624  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Laboratory Experimental Medicine and Pediatrics (LEMP)  
  Abstract (up) Introduction: Noninvasive ventilation (NIV) is a well-established treatment for acute-on-chronic respiratory failure in hypercapnic COPD patients. Less is known about the effects of a long-term treatment with NIV in hypercapnic COPD patients and about the factors that may predict response in terms of improved oxygenation and lowered CO2 retention.Methods: In this study, we randomized 15 patients to a routine pharmacological treatment (n = 5, age 66 [standard deviation ± 6] years, FEV1 30.5 [±5.1] %pred, PaO2 65 [±6] mmHg, PaCO2 52.4 [±6.0] mmHg) or to a routine treatment and NIV (using the Synchrony BiPAP device [Respironics, Inc, Murrsville, PA]) (n = 10, age 65 [±7] years, FEV1 29.5 [±9.0] %pred, PaO2 59 [±13] mmHg, PaCO2 55.4 [±7.7] mmHg) for 6 months. We looked at arterial blood gasses, lung function parameters and performed a low-dose computed tomography of the thorax, which was later used for segmentation (providing lobe and airway volumes, iVlobe and iVaw) and post-processing with computer methods (providing airway resistance, iRaw) giving overall a functional image of the separate airways and lobes.Results: In both groups there was a nonsignificant change in FEV1 (NIV group 29.5 [9.0] to 38.5 [14.6] %pred, control group 30.5 [5.1] to 36.8 [8.7] mmHg). PaCO2 dropped significantly only in the NIV group (NIV: 55.4 [7.7] → 44.5 [4.70], P = 0.0076; control: 52.4 [6.0] → 47.6 [8.2], NS). Patients actively treated with NIV developed a more inhomogeneous redistribution of mass flow than control patients. Subsequent analysis indicated that in NIV-treated patients that improve their blood gases, mass flow was also redistributed towards areas with higher vessel density and less emphysema, indicating that flow was redistributed towards areas with better perfusion. There was a highly significant correlation between the % increase in mass flow towards lobes with a blood vessel density of >9% and the increase in PaO2. Improved ventilation–perfusion match and recruitment of previously occluded small airways can explain the improvement in blood gases.Conclusion: We can conclude that in hypercapnic COPD patients treated with long-term NIV over 6 months, a mass flow redistribution occurs, providing a better ventilation–perfusion match and hence better blood gases and lung function. Control patients improve homogeneously in iVaw and iRaw, without improvement in gas exchange since there is no improved ventilation/perfusion ratio or increased alveolar ventilation. These differences in response can be detected through functional imaging, which gives a more detailed report on regional lung volumes and resistances than classical lung function tests do. Possibly only patients with localized small airway disease are good candidates for long-term NIV treatment. To confirm this and to see if better arterial blood gases also lead to better health related quality of life and longer survival, we have to study a larger population.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000208709800066 Publication Date 2011-11-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1178-2005; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.157 Times cited 28 Open Access  
  Notes ; ; Approved Most recent IF: 3.157; 2011 IF: NA  
  Call Number UA @ lucian @ c:irua:93164 Serial 866  
Permanent link to this record
 

 
Author Harrabi, K.; Gasmi, K.; Mekki, A.; Bahlouli, H.; Kunwar, S.; Milošević, M.V. pdf  url
doi  openurl
  Title Detection and measurement of picoseconds-pulsed laser energy using a NbTiN superconducting filament Type A1 Journal article
  Year 2023 Publication IEEE transactions on applied superconductivity Abbreviated Journal  
  Volume 33 Issue 5 Pages 2400205-5  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) investigate non-equilibrium states created by a laser beam incident on a superconducting NbTiN filament subject to an electrical pulse at 4 K. In absence of the laser excitation, when the amplitude of the current pulse applied to the filament exceeds the critical current value, we monitored the delay time td that marks the collapse of the superconducting phase which is then followed by a voltage rise. We linked the delay time to the applied current using the time-dependent Ginzburg-Landau (TDGL) theory, which enabled us to deduce the cooling (or heat-removal) time from the fit to the experimental data. Subsequently, we exposed the filament biased with a current pulse close to its critical value to a focused laser beam, inducing a normal state in the impact region of the laser beam. We showed that the energy of the incident beam and the incurred delay time are related to each other by a simple expression, that enables direct measurement of incident beam energy by temporal monitoring of the transport response. This method can be extended for usage in single-photon detection regime, and be used for accurate calibration of an arbitrary light source.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000946265900016 Publication Date 2023-02-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.8 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 1.8; 2023 IF: NA  
  Call Number UA @ admin @ c:irua:195110 Serial 7295  
Permanent link to this record
 

 
Author Fatima; Oguz, I.C.; Çakir, D.; Hossain, S.; Mohottige, R.; Gulseren, O.; Oncel, N. url  doi
openurl 
  Title On the structural and electronic properties of Ir-silicide nanowires on Si(001) surface Type A1 Journal article
  Year 2016 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 120 Issue 120 Pages 095303  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) Iridium (Ir) modified Silicon (Si) (001) surface is studied with Scanning Tunneling Microscopy/Spectroscopy (STM/STS) and Density Functional Theory (DFT). A model for Ir-silicide nanowires based on STM images and ab-initio calculations is proposed. According to our model, the Ir adatom is on the top of the substrate dimer row and directly binds to the dimer atoms. I-V curves measured at 77K shows that the nanowires are metallic. DFT calculations confirm strong metallic nature of the nanowires. Published by AIP Publishing.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000383978100030 Publication Date 2016-09-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 7 Open Access  
  Notes ; We gratefully acknowledge the NSF (Grant No. DMR-1306101) for financial support. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. ; Approved Most recent IF: 2.068  
  Call Number UA @ lucian @ c:irua:137132 Serial 4359  
Permanent link to this record
 

 
Author Partoens, B. doi  openurl
  Title Spinorbit interactions : hide and seek Type A1 Journal article
  Year 2014 Publication Nature physics Abbreviated Journal Nat Phys  
  Volume 10 Issue Pages 333-334  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) It is commonly believed that solids with spatial inversion symmetry do not display spinorbit effects. However, first-principles calculations now reveal unexpected spin structure for centrosymmetric crystals  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000335371200003 Publication Date 2014-04-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1745-2473; 1745-2481 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 22.806 Times cited 8 Open Access  
  Notes Approved Most recent IF: 22.806; 2014 IF: 20.147  
  Call Number UA @ lucian @ c:irua:141068 Serial 4608  
Permanent link to this record
 

 
Author De Clercq, M.; Moors, K.; Sankaran, K.; Pourtois, G.; Dutta, S.; Adelmann, C.; Magnus, W.; Sorée, B. url  doi
openurl 
  Title Resistivity scaling model for metals with conduction band anisotropy Type A1 Journal article
  Year 2018 Publication Physical review materials Abbreviated Journal  
  Volume 2 Issue 3 Pages 033801  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) It is generally understood that the resistivity of metal thin films scales with film thickness mainly due to grain boundary and boundary surface scattering. Recently, several experiments and ab initio simulations have demonstrated the impact of crystal orientation on resistivity scaling. The crystal orientation cannot be captured by the commonly used resistivity scaling models and a qualitative understanding of its impact is currently lacking. In this work, we derive a resistivity scaling model that captures grain boundary and boundary surface scattering as well as the anisotropy of the band structure. The model is applied to Cu and Ru thin films, whose conduction bands are (quasi-) isotropic and anisotropic, respectively. After calibrating the anisotropy with ab initio simulations, the resistivity scaling models are compared to experimental resistivity data and a renormalization of the fitted grain boundary reflection coefficient can be identified for textured Ru.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication College Park, Md Editor  
  Language Wos 000426787600001 Publication Date 2018-03-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes ; The authors acknowledge the support by the Fonds National de la Recherche Luxembourg (ATTRACT Grant No. 7556175). ; Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:149866UA @ admin @ c:irua:149866 Serial 4947  
Permanent link to this record
 

 
Author Avetisyan, A.A.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title Electric-field control of the band gap and Fermi energy in graphene multilayers by top and back gates Type A1 Journal article
  Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 80 Issue 19 Pages 195401,1-195401,11  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) It is known that a perpendicular electric field applied to multilayers of graphene modifies the electronic structure near the K point and may induce an energy gap in the electronic spectrum which is tunable by the gate voltage. Here we consider a system of graphene multilayers in the presence of a positively charged top and a negatively charged back gate to control independently the density of electrons on the graphene layers and the Fermi energy of the system. The band structure of three- and four-layer graphene systems in the presence of the top and back gates is obtained using a tight-binding approach. A self-consistent Hartree approximation is used to calculate the induced charges on the different graphene layers. We predict that for opposite and equal charges on the top and bottom layers an energy gap is opened at the Fermi level. For an even number of layers this gap is larger than in the case of an odd number of graphene layers. We find that the circular asymmetry of the spectrum, which is a consequence of the trigonal warping, changes the size of the induced electronic gap, even when the total density of the induced electrons on the graphene layers is low.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000272311000087 Publication Date 2009-11-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 106 Open Access  
  Notes Approved Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:80315 Serial 883  
Permanent link to this record
 

 
Author Reijniers, J.; Partoens, B.; Peremans, H. openurl 
  Title Noise-resistant correlation-based alignment of head-related transfer functions for high-fidelity spherical harmonics representation Type P3 Proceeding
  Year 2023 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords P3 Proceeding; Engineering sciences. Technology; Engineering Management (ENM); Condensed Matter Theory (CMT)  
  Abstract (up) It is standard practice in virtual reality applications to synthesize binaural audio based on a discrete set of directionally-dependent head-related impulse responses (HRIRs). This set of HRIRs is often time-aligned in a pre-processing step, to allow for high-fidelity interpolation between HRIRs corresponding with neighbouring directions. The fidelity of this operation depends on the similarity of neighbouring aligned HRIRs. The pairwise quality of similarity makes it a difficult criterion to optimize globally and consequently one often resorts to alignment methods based on a specific feature that can be extracted for each HRIR separately, e.g., the first-onset of the peak or the group delay. However, such proxies for similarity are very sensitive to noise and therefore require a high signal-to-noise ratio, which makes them less suitable for processing HRIRs acquired outside an anechoic room. In this paper, we advance a novel alignment method, which maximizes the similarity – defined as the correlation between the full-length HRIRs – between neighbouring aligned HRIRs for all directions at once. We show that this correlation-based alignment procedure outperforms the first-onset alignment with regards to the fidelity of the spherical harmonics representation of both the spectral and interaural time difference (ITD) information, when tested on the KEMAR HRIR and six human HRIRs. Finally, we show that the correlation-based alignment is more robust to noise.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:199714 Serial 9062  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: