toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Yalcin, A.O.; Goris, B.; van Dijk-Moes, R.J.A.; Fan, Z.; Erdamar, A.K.; Tichelaar, F.D.; Vlugt, T.J.H.; Van Tendeloo, G.; Bals, S.; Vanmaekelbergh, D.; Zandbergen, H.W.; van Huis, M.A.; url  doi
openurl 
  Title Heat-induced transformation of CdSe-CdS-ZnS coremultishell quantum dots by Zn diffusion into inner layers Type A1 Journal article
  Year (down) 2015 Publication Chemical communications Abbreviated Journal Chem Commun  
  Volume 51 Issue 51 Pages 3320-3323  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In this work, we investigate the thermal evolution of CdSeCdSZnS coremultishell quantum dots (QDs) in situ using transmission electron microscopy (TEM). Starting at a temperature of approximately 250 °C, Zn diffusion into inner layers takes place together with simultaneous evaporation of particularly Cd and S. As a result of this transformation, CdxZn1−xSeCdyZn1−yS coreshell QDs are obtained.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000349325000004 Publication Date 2014-11-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-7345;1364-548X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.319 Times cited 21 Open Access OpenAccess  
  Notes 262348 Esmi; Fwo; 246791 Countatoms; 335078 Colouratom; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 6.319; 2015 IF: 6.834  
  Call Number c:irua:132582 Serial 1412  
Permanent link to this record
 

 
Author Yalcin, A.O.; Fan, Z.; Goris, B.; Li, W.F.; Koster, R.S.; Fang, C.M.; van Blaaderen, A.; Casavola, M.; Tichelaar, F.D.; Bals, S.; Van Tendeloo, G.; Vlugt, T.J.H.; Vanmaekelbergh, D.; Zandbergen, H.W.; van Huis, M.A.; pdf  url
doi  openurl
  Title Atomic resolution monitoring of cation exchange in CdSe-PbSe heteronanocrystals during epitaxial solid-solid-vapor growth Type A1 Journal article
  Year (down) 2014 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 14 Issue 6 Pages 3661-3667  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Here, we show a novel solidsolidvapor (SSV) growth mechanism whereby epitaxial growth of heterogeneous semiconductor nanowires takes place by evaporation-induced cation exchange. During heating of PbSe-CdSe nanodumbbells inside a transmission electron microscope (TEM), we observed that PbSe nanocrystals grew epitaxially at the expense of CdSe nanodomains driven by evaporation of Cd. Analysis of atomic-resolution TEM observations and detailed atomistic simulations reveals that the growth process is mediated by vacancies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington Editor  
  Language Wos 000337337100106 Publication Date 2014-05-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 42 Open Access OpenAccess  
  Notes 262348 Esmi; Fwo; 246791 Countatoms; 335078 Colouratom; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 12.712; 2014 IF: 13.592  
  Call Number UA @ lucian @ c:irua:117027 Serial 179  
Permanent link to this record
 

 
Author Malladi, S.K.; Xu, Q.; van Huis, M.A.; Tichelaar, F.D.; Batenburg, K.J.; Yucelen, E.; Dubiel, B.; Czyrska-Filemonowicz, A.; Zandbergen, H.W. pdf  doi
openurl 
  Title Real-time atomic scale imaging of nanostructural evolution in aluminum alloys Type A1 Journal article
  Year (down) 2014 Publication Nano Letters Abbreviated Journal Nano Lett  
  Volume 14 Issue 1 Pages 384-389  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract We present a new approach to study the three-dimensional compositional and structural evolution of metal alloys during heat treatments such as commonly used for improving overall material properties. It relies on in situ heating in a high-resolution scanning transmission electron microscope (STEM). The approach is demonstrated using a commercial Al alloy AA2024 at 100-240 degrees C, showing in unparalleled detail where and how precipitates nucleate, grow,or dissolve. The observed size evolution of individual precipitates enables a separation between nucleation and growth phenomena, necessary for the development of refined growth models. We conclude that the in situ heating STEM approach opens a route to a much faster determination of the interplay between local compositions, heat treatments, microstructure, and mechanical properties of new alloys.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington Editor  
  Language Wos 000329586700061 Publication Date 2013-12-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 12 Open Access  
  Notes Approved Most recent IF: 12.712; 2014 IF: 13.592  
  Call Number UA @ lucian @ c:irua:114789 Serial 2833  
Permanent link to this record
 

 
Author Fang, C.M.; van Huis, M.A.; Thijsse, B.J.; Zandbergen, H.W. url  doi
openurl 
  Title Stability and crystal structures of iron carbides : a comparison between the semi-empirical modified embedded atom method and quantum-mechanical DFT calculations Type A1 Journal article
  Year (down) 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 85 Issue 5 Pages 054116-054116,7  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Iron carbides play a crucial role in steel manufacturing and processing and to a large extent determine the physical properties of steel products. The modified embedded atom method (MEAM) in combination with Lee's Fe-C potential is a good candidate for molecular dynamics simulations on larger Fe-C systems. Here, we investigate the stability and crystal structures of pure iron and binary iron carbides using MEAM and compare them with the experimental data and quantum-mechanical density functional theory calculations. The analysis shows that the Fe-C potential gives reasonable results for the relative stability of iron and iron carbides. The performance of MEAM for the prediction of the potential energy and the calculated lattice parameters at elevated temperature for pure iron phases and cementite are investigated as well. The conclusion is that Lee's MEAM Fe-C potential provides a promising basis for further molecular dynamics simulations of Fe-C alloys and steels at lower temperatures (up to 800 K).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000300931900004 Publication Date 2012-02-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 18 Open Access  
  Notes Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:97201 Serial 3117  
Permanent link to this record
 

 
Author Goris, B.; van Huis, M.A.; Bals, S.; Zandbergen, H.W.; Manna, L.; Van Tendeloo, G. pdf  doi
openurl 
  Title Thermally induced structural and morphological changes of CdSe/CdS octapods Type A1 Journal article
  Year (down) 2012 Publication Small Abbreviated Journal Small  
  Volume 8 Issue 6 Pages 937-942  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Branched nanostructures are of great interest because of their promising optical and electronic properties. For successful and reliable integration in applications such as photovoltaic devices, the thermal stability of the nanostructures is of major importance. Here the different domains (CdSe cores, CdS pods) of the heterogeneous octapods are shown to have different thermal stabilities, and heating is shown to induce specific shape changes. The octapods are heated from room temperature to 700 °C, and investigated using (analytical and tomographic) transmission electron microscopy (TEM). At low annealing temperatures, pure Cd segregates in droplets at the outside of the octapods, indicating non-stochiometric composition of the octapods. Furthermore, the tips of the pods lose their faceting and become rounded. Further heating to temperatures just below the sublimation temperature induces growth of the zinc blende core at the expense of the wurtzite pods. At higher temperatures, (500700 °C), sublimation of the octapods is observed in real time in the TEM. Three-dimensional tomographic reconstructions reveal that the four pods pointing into the vacuum have a lower thermal stability than the four pods that are in contact with the support.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000301718800021 Publication Date 2012-01-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1613-6810; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.643 Times cited 20 Open Access  
  Notes Fwo; Esteem 026019 Approved Most recent IF: 8.643; 2012 IF: 7.823  
  Call Number UA @ lucian @ c:irua:95040 Serial 3633  
Permanent link to this record
 

 
Author Tirumalasetty, G.K.; van Huis, M.A.; Kwakernaak, C.; Sietsma, J.; Sloof, W.G.; Zandbergen, H.W. pdf  doi
openurl 
  Title Deformation-induced austenite grain rotation and transformation in TRIP-assisted steel Type A1 Journal article
  Year (down) 2012 Publication Acta materialia Abbreviated Journal Acta Mater  
  Volume 60 Issue 3 Pages 1311-1321  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Uniaxial straining experiments were performed on a rolled and annealed Si-alloyed TRIP (transformation-induced plasticity) steel sheet in order to assess the role of its microstructure on the mechanical stability of austenite grains with respect to martensitic transformation. The transformation behavior of individual metastable austenite grains was studied both at the surface and inside the bulk of the material using electron back-scattered diffraction (EBSD) and X-ray diffraction (XRD) by deforming the samples to different strain levels up to about 20%. A comparison of the XRD and EBSD results revealed that the retained austenite grains at the surface have a stronger tendency to transform than the austenite grains in the bulk of the material. The deformation-induced changes of individual austenite grains before and after straining were monitored with EBSD. Three different types of austenite grains can be distinguished that have different transformation behaviors: austenite grains at the grain boundaries between ferrite grains, twinned austenite grains, and embedded austenite grains that are completely surrounded by a single ferrite grain. It was found that twinned austenite grains and the austenite grains present at the grain boundaries between larger ferrite grains typically transform first, i.e. are less stable, in contrast to austenite grains that are completely embedded in a larger ferrite grain. In the latter case, straining leads to rotations of the harder austenite grain within the softer ferrite matrix before the austenite transforms into martensite. The analysis suggests that austenite grain rotation behavior is also a significant factor contributing to enhancement of the ductility. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000301157900054 Publication Date 2011-12-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.301 Times cited 80 Open Access  
  Notes Approved Most recent IF: 5.301; 2012 IF: 3.941  
  Call Number UA @ lucian @ c:irua:97210 Serial 630  
Permanent link to this record
 

 
Author Xu, Q.; Zandbergen, H.W.; van Dyck, D. pdf  doi
openurl 
  Title Imaging from atomic structure to electronic structure Type A1 Journal article
  Year (down) 2012 Publication Micron Abbreviated Journal Micron  
  Volume 43 Issue 4 Pages 524-531  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract This paper discusses the possibility of retrieving the electron distribution (with highlighted valence electron distribution information) of materials from recorded HREM images. This process can be achieved by solving two inverse problems: reconstruction of the exit wave and reconstruction of the electron distribution from exit waves. The first inverse problem can be solved using a focal series reconstruction method. We show that the second inverse problem can be solved by combining a series of exit waves recorded at different thickness conditions. This process is designed based on an improved understanding of the dynamical scattering process. It also explains the fundamental difficulty of obtaining the valence electron distribution information and the basis of our solution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000301702400005 Publication Date 2011-11-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0968-4328; ISBN Additional Links UA library record; WoS full record  
  Impact Factor 1.98 Times cited Open Access  
  Notes Fwo Approved Most recent IF: 1.98; 2012 IF: 1.876  
  Call Number UA @ lucian @ c:irua:93634 Serial 1553  
Permanent link to this record
 

 
Author Fang, C.M.; van Huis, M.A.; Zandbergen, H.W. pdf  doi
openurl 
  Title Stability and structures of the CFCC-TmC phases : a first-principles study Type A1 Journal article
  Year (down) 2012 Publication Computational materials science Abbreviated Journal Comp Mater Sci  
  Volume 51 Issue 1 Pages 146-150  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The η-M6C, γ-M23C6, and π-M11C2 phases (M = Cr, Mn and Fe) have complex cubic lattices with lattice parameters of approximately 1.0 nm. They belong to the CFCC-TmC family (complex face-centered cubic transition metal carbides), display a rich variety of crystal structures, and play in important role in iron alloys and steels. Here we show that first-principles calculations predict high stability for the γ-M23C6 and η-M6C phases, and instability for the π-M11C2 phases, taking into account various compositional and structural possibilities. The calculations also show a wide variety in magnetic properties. The Cr-containing phases were found to be non-magnetic and the Fe-phases to be ferromagnetic, while the Mn-containing phases were found to be either ferrimagnetic or non-magnetic. Details of the local atomic structures, and the formation and stability of these precipitates in alloys are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000296214300020 Publication Date 2011-08-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-0256; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.292 Times cited 18 Open Access  
  Notes Approved Most recent IF: 2.292; 2012 IF: 1.878  
  Call Number UA @ lucian @ c:irua:93277 Serial 3119  
Permanent link to this record
 

 
Author van Huis, M.A.; Figuerola, A.; Fang, C.; Béché, A.; Zandbergen, H.W.; Manna, L. doi  openurl
  Title Letter Chemical transformation of Au-tipped CdS nanorods into AuS/Cd core/shell particles by electron beam irradiation Type A1 Journal article
  Year (down) 2011 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 11 Issue 11 Pages 4555-4561  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We demonstrate that electron irradiation of colloidal CdS nanorods carrying Au domains causes their evolution into AuS/Cd core/shell nanoparticles as a result of a concurrent chemical and morphological transformation. The shrinkage of the CdS nanorods and the growth of the Cd shell around the Au tips are imaged in real time, while the displacement of S atoms from the CdS nanorod to the Au domains is evidenced by high-sensitivity energy-dispersive X-ray (EDX) spectroscopy. The various nanodomains display different susceptibility to the irradiation, which results in nanoconfigurations that are very different from those obtained after thermal annealing. Such physical manipulations of colloidal nanocrystals can be exploited as a tool to access novel nanocrystal heterostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington Editor  
  Language Wos 000296674700009 Publication Date 2011-10-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 25 Open Access  
  Notes Approved Most recent IF: 12.712; 2011 IF: 13.198  
  Call Number UA @ lucian @ c:irua:93710 Serial 1814  
Permanent link to this record
 

 
Author Tirumalasetty, G.K.; van Huis, M.A.; Fang, C.M.; Xu, Q.; Tichelaar, F.D.; Hanlon, D.N.; Sietsma, J.; Zandbergen, H.W. pdf  doi
openurl 
  Title Characterization of NbC and (Nb, Ti)N nanoprecipitates in TRIP assisted multiphase steels Type A1 Journal article
  Year (down) 2011 Publication Acta materialia Abbreviated Journal Acta Mater  
  Volume 59 Issue 19 Pages 7406-7415  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Multiphase steels utilising composite strengthening may be further strengthened via grain refinement or precipitation by the addition of microalloying elements. In this study a Nb microalloyed steel comprising martensite, bainite and retained austenite has been studied. By means of transmission electron microscopy (TEM) we have investigated the size distribution and the structural properties of (Nb, Ti)N and NbC precipitates, their occurrence in the various steel phases, and their relationship with the Fe matrix. (Nb, Ti)N precipitates were found in ferrite, martensite, and bainite, while NbC precipitates were found only in ferrite. All NbC precipitates were found to be small (520 nm in size) and to have a face centred cubic (fcc) crystal structure with lattice parameter a = 4.36 ± 0.05 Å. In contrast, the (Nb, Ti)N precipitates were found to have a broader size range (5150 nm) and to have a fcc crystal structure with lattice parameter a = 8.09 ± 0.05 Å. While the NbC precipitates were found to be randomly oriented, the (Nb, Ti)N precipitates have a well-defined NishiyamaWasserman orientation relationship with the ferrite matrix. An analysis of the lattice mismatch suggests that the latter precipitates have a high potential for effective strengthening. Density functional theory calculations were performed for various stoichiometries of NbCx and NbxTiyNz phases and the comparison with experimental data indicates that both the carbides and nitrides are deficient in C and N content.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000296405200026 Publication Date 2011-09-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.301 Times cited 58 Open Access  
  Notes Approved Most recent IF: 5.301; 2011 IF: 3.755  
  Call Number UA @ lucian @ c:irua:93297 Serial 328  
Permanent link to this record
 

 
Author Fang, C.M.; van Huis, M.A.; Jansen, J.; Zandbergen, H.W. url  doi
openurl 
  Title Role of carbon and nitrogen in Fe2C and Fe2N from first-principles calculations Type A1 Journal article
  Year (down) 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 84 Issue 9 Pages 094102-094102,10  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Although Fe2C and Fe2N are technologically important materials, the exact nature of the chemical bonding of C and N atoms and the related impact on the electronic properties are at present unclear. Here, results of first-principles electronic structure calculations for Fe2X (X = C, N) phases are presented. The electronic structure calculations show that the roles of N and C in iron nitrides and carbides are comparable, and that the X-X interactions have significant impact on electronic properties. Accurate analysis of the spatially resolved differences in electron densities reveals a subtle distinction between the chemical bonding and charge transfer of N and C ions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000294772800003 Publication Date 2011-09-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 24 Open Access  
  Notes Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:92327 Serial 2912  
Permanent link to this record
 

 
Author Klimczuk, T.; Wang, C.H.; Lawrence, J.M.; Xu, Q.; Durakiewicz, T.; Ronning, F.; Llobet, A.; Trouw, F.; Kurita, N.; Tokiwa, Y.; Lee, H.o.; Booth, C.H.; Gardner, J.S.; Bauer, E.D.; Joyce, J.J.; Zandbergen, H.W.; Movshovich, R.; Cava, R.J.; Thompson, J.D.; url  doi
openurl 
  Title Crystal fields, disorder, and antiferromagnetic short-range order in Yb0.24Sn0.76Ru Type A1 Journal article
  Year (down) 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 84 Issue 7 Pages 075152-075152,8  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We report extensive measurements on a new compound (Yb0.24Sn0.76)Ru that crystallizes in the cubic CsCl structure. Valence-band photoemission (PES) and L3 x-ray absorption show no divalent component in the 4f configuration of Yb. Inelastic neutron scattering (INS) indicates that the eight-fold degenerate J-multiplet of Yb3+ is split by the crystalline electric field (CEF) into a Γ7-doublet ground state and a Γ8 quartet at an excitation energy 20 meV. The magnetic susceptibility can be fit very well by this CEF scheme under the assumption that a Γ6-excited state resides at 32 meV; however, the Γ8/Γ6 transition expected at 12 meV was not observed in the INS. The resistivity follows a Bloch-Grüneisen law shunted by a parallel resistor, as is typical of systems subject to phonon scattering with no apparent magnetic scattering. All of these properties can be understood as representing simple local moment behavior of the trivalent Yb ion. At 1 K there is a peak in specific heat that is too broad to represent a magnetic-phase transition, consistent with absence of magnetic reflections in neutron diffraction. On the other hand this peak also is too narrow to represent the Kondo effect in the Γ7-doublet ground state. On the basis of the field dependence of the specific heat, we argue that antiferromagnetic (AF) short-range order (SRO) (possibly coexisting with Kondo physics) occurs at low temperatures. The long-range magnetic order is suppressed because the Yb site occupancy is below the percolation threshold for this disordered compound.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000293830800003 Publication Date 2011-08-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 8 Open Access  
  Notes Esteem 026019 Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:92427 Serial 555  
Permanent link to this record
 

 
Author Xu, Q.; Zandbergen, H.W.; van Dyck, D. pdf  doi
openurl 
  Title Applying an information transmission approach to extract valence electron information from reconstructed exit waves Type A1 Journal article
  Year (down) 2011 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 111 Issue 7 Pages 912-919  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract The knowledge of the valence electron distribution is essential for understanding the properties of materials. However this information is difficult to obtain from HREM images because it is easily obscured by the large scattering contribution of core electrons and by the strong dynamical scattering process. In order to develop a sensitive method to extract the information of valence electrons, we have used an information transmission approach to describe the electron interaction with the object. The scattered electron wave is decomposed in a set of basic functions, which are the eigen functions of the Hamiltonian of the projected electrostatic object potential. Each basic function behaves as a communication channel that transfers the information of the object with its own transmission characteristic. By properly combining the components of the different channels, it is possible to design a scheme to extract the information of valence electron distribution from a series of exit waves. The method is described theoretically and demonstrated by means of computer simulations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000300461000024 Publication Date 2011-02-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 1 Open Access  
  Notes Fwo Approved Most recent IF: 2.843; 2011 IF: 2.471  
  Call Number UA @ lucian @ c:irua:93623 Serial 146  
Permanent link to this record
 

 
Author Klimczuk, T.; Wang, C.H.; Xu, Q.; Lawrence, J.; Durakiewicz, T.; Ronning, F.; Llobet, A.; Bauer, E.D.; Griveau, J.-C.; Sadowski, W.; Zandbergen, H.W.; Thompson, J.D.; Cava, R.J. pdf  doi
openurl 
  Title Crystal growth of CsCl-type Yb0.24Sn0.76Ru Type A1 Journal article
  Year (down) 2011 Publication Journal of crystal growth Abbreviated Journal J Cryst Growth  
  Volume 318 Issue 1 Pages 1005-1008  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The YbRuSn ternary system was investigated and a new material, Yb0.24Sn0.76Ru, with a simple cubic crystal structure, was discovered. Yb0.24Sn0.76Ru has a smaller lattice parameter a=3.217(4) Å, than its isostructural YbRu analogue (a=3.360 Å). Both X-ray diffraction and electron microscopy techniques were used to refine the crystal structure of Yb0.24Sn0.76Ru. It was found that a new compound forms in the CsCl structure, with Ru on the 1a site and a (Yb, Sn) mixture on site 1b. The XRD Rietveld analysis provides the occupation of Yb equal to 0.24, in agreement with the single crystal nano-electron diffraction refinement, which gives the occupation 0.21.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000289653900220 Publication Date 2010-10-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0248; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.751 Times cited 1 Open Access  
  Notes Esteem 026019 Approved Most recent IF: 1.751; 2011 IF: 1.726  
  Call Number UA @ lucian @ c:irua:89966 Serial 556  
Permanent link to this record
 

 
Author Fang, C.M.; van Huis, M.A.; Zandbergen, H.W. doi  openurl
  Title Stability and structures of the \epsilon-phases of iron nitrides and iron carbides from first principles Type A1 Journal article
  Year (down) 2011 Publication Scripta materialia Abbreviated Journal Scripta Mater  
  Volume 64 Issue 3 Pages 296-299  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract First-principles calculations were performed for the ε-phases and other iron carbides/nitrides with hexagonal close-packed Fe sublattices. Although these nitrides/carbides have similar crystal structures, they exhibit different chemical and physical properties. Relative to α-Fe, graphite and N2, all the ε-type nitrides are stable, while all the carbides are metastable. The lattice parameters of the ε-iron nitrides vary differently from those of the ε-carbides, as a function of the concentration of X (Xdouble bond; length as m-dashN, C). The structural relationships of ε-Fe2X with η-Fe2X and ζ-Fe2X are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000285323300022 Publication Date 2010-09-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6462; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.747 Times cited 29 Open Access  
  Notes Approved Most recent IF: 3.747; 2011 IF: 2.699  
  Call Number UA @ lucian @ c:irua:86974 Serial 3120  
Permanent link to this record
 

 
Author Schapotschnikow, P.; van Huis, M.A.; Zandbergen, H.W.; Vanmaekelbergh, D.; Vlugt, T.J.H. doi  openurl
  Title Morphological transformations and fusion of PbSe nanocrystals studied using atomistic simulations Type A1 Journal article
  Year (down) 2010 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 10 Issue 10 Pages 3966-3971  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Molecular dynamics simulations are performed on capped and uncapped PbSe nanocrystals, employing newly developed classical interaction potentials. Here, we show that two uncapped nanocrystals fuse efficiently via direct surface attachment, even if they are initially misaligned. In sharp contrast to the general belief, interparticle dipole interactions do not play a significant role in this oriented attachment process. Furthermore, it is shown that presumably polar, capped PbSe{111} facets are never fully Pb- or Se-terminated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington Editor  
  Language Wos 000282727600028 Publication Date 2010-09-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 59 Open Access  
  Notes Approved Most recent IF: 12.712; 2010 IF: 12.219  
  Call Number UA @ lucian @ c:irua:84902 Serial 2205  
Permanent link to this record
 

 
Author Fang, C.M.; Sluiter, M.H.F.; van Huis, M.; Ande, C.K.; Zandbergen, H.W. url  doi
openurl 
  Title Origin of predominance of cementite among iron carbides in steel at elevated temperature Type A1 Journal article
  Year (down) 2010 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 105 Issue 5 Pages 4  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A long-standing challenge in physics is to understand why cementite is the predominant carbide in steel. Here we show that the prevalent formation of cementite can be explained only by considering its stability at elevated temperature. A systematic highly accurate quantum mechanical study was conducted on the stability of binary iron carbides. The calculations show that all the iron carbides are unstable relative to the elemental solids, -Fe and graphite. Apart from a cubic Fe23C6 phase, the energetically most favorable carbides exhibit hexagonal close-packed Fe sublattices. Finite-temperature analysis showed that contributions from lattice vibration and anomalous Curie-Weis magnetic ordering, rather than from the conventional lattice mismatch with the matrix, are the origin of the predominance of cementite during steel fabrication processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000280472900008 Publication Date 2010-07-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 65 Open Access  
  Notes Approved Most recent IF: 8.462; 2010 IF: 7.622  
  Call Number UA @ lucian @ c:irua:84064 Serial 2526  
Permanent link to this record
 

 
Author Figuerola, A.; van Huis, M.; Zanella, M.; Genovese, A.; Marras, S.; Falqui, A.; Zandbergen, H.W.; Cingolani, R.; Manna, L. doi  openurl
  Title Epitaxial CdSe-Au nanocrystal heterostructures by thermal annealing Type A1 Journal article
  Year (down) 2010 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 10 Issue 8 Pages 3028-3036  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington Editor  
  Language Wos 000280728900049 Publication Date 2010-07-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 112 Open Access  
  Notes Approved Most recent IF: 12.712; 2010 IF: 12.219  
  Call Number UA @ lucian @ c:irua:83995 Serial 1069  
Permanent link to this record
 

 
Author Fang, C.M.; van Huis, M.A.; Zandbergen, H.W. doi  openurl
  Title Structure and stability of Fe2 phases from density-functional theory calculations Type A1 Journal article
  Year (down) 2010 Publication Scripta materialia Abbreviated Journal Scripta Mater  
  Volume 63 Issue 4 Pages 418-421  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Fe(2)C plays a crucial role in the precipitation of iron carbides. Jack's structural models for epsilon-Fe(2)C, and non-stoichiometric epsilon-Fe(2.4)C, are analyzed using first-principles calculations. Several new configurations of epsilon-Fe(2)C with even higher stability are found. We show how epsilon-Fe(2)C transforms into eta-Fe(2)C, and address the structural relationships with the chi-Fe(5)C(2), theta-Fe(3)C and Fe(7)C(3) phases. The relative occurrence of these phases in steel, as well as their probable evolution during tempering of quenched steels, is discussed. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000279496000017 Publication Date 2010-05-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6462; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.747 Times cited 32 Open Access  
  Notes Approved Most recent IF: 3.747; 2010 IF: 2.820  
  Call Number UA @ lucian @ c:irua:95591 Serial 3299  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: