toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Klimczuk, T.; Wang, C.H.; Lawrence, J.M.; Xu, Q.; Durakiewicz, T.; Ronning, F.; Llobet, A.; Trouw, F.; Kurita, N.; Tokiwa, Y.; Lee, H.o.; Booth, C.H.; Gardner, J.S.; Bauer, E.D.; Joyce, J.J.; Zandbergen, H.W.; Movshovich, R.; Cava, R.J.; Thompson, J.D.; url  doi
openurl 
  Title Crystal fields, disorder, and antiferromagnetic short-range order in Yb0.24Sn0.76Ru Type A1 Journal article
  Year (down) 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 84 Issue 7 Pages 075152-075152,8  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We report extensive measurements on a new compound (Yb0.24Sn0.76)Ru that crystallizes in the cubic CsCl structure. Valence-band photoemission (PES) and L3 x-ray absorption show no divalent component in the 4f configuration of Yb. Inelastic neutron scattering (INS) indicates that the eight-fold degenerate J-multiplet of Yb3+ is split by the crystalline electric field (CEF) into a Γ7-doublet ground state and a Γ8 quartet at an excitation energy 20 meV. The magnetic susceptibility can be fit very well by this CEF scheme under the assumption that a Γ6-excited state resides at 32 meV; however, the Γ8/Γ6 transition expected at 12 meV was not observed in the INS. The resistivity follows a Bloch-Grüneisen law shunted by a parallel resistor, as is typical of systems subject to phonon scattering with no apparent magnetic scattering. All of these properties can be understood as representing simple local moment behavior of the trivalent Yb ion. At 1 K there is a peak in specific heat that is too broad to represent a magnetic-phase transition, consistent with absence of magnetic reflections in neutron diffraction. On the other hand this peak also is too narrow to represent the Kondo effect in the Γ7-doublet ground state. On the basis of the field dependence of the specific heat, we argue that antiferromagnetic (AF) short-range order (SRO) (possibly coexisting with Kondo physics) occurs at low temperatures. The long-range magnetic order is suppressed because the Yb site occupancy is below the percolation threshold for this disordered compound.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000293830800003 Publication Date 2011-08-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 8 Open Access  
  Notes Esteem 026019 Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:92427 Serial 555  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: