toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Li, S.; Sun, J.; Gorbanev, Y.; van’t Veer, K.; Loenders, B.; Yi, Y.; Kenis, T.; Chen, Q.; Bogaerts, A. pdf  url
doi  openurl
  Title Plasma-Assisted Dry Reforming of CH4: How Small Amounts of O2Addition Can Drastically Enhance the Oxygenate Production─Experiments and Insights from Plasma Chemical Kinetics Modeling Type A1 Journal Article
  Year (down) 2023 Publication ACS Sustainable Chemistry & Engineering Abbreviated Journal ACS Sustainable Chem. Eng.  
  Volume 11 Issue 42 Pages 15373-15384  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Plasma-based dry reforming of methane (DRM) into

high-value-added oxygenates is an appealing approach to enable

otherwise thermodynamically unfavorable chemical reactions at

ambient pressure and near room temperature. However, it suffers

from coke deposition due to the deep decomposition of CH4. In this

work, we assess the DRM performance upon O2 addition, as well as

varying temperature, CO2/CH4 ratio, discharge power, and gas

residence time, for optimizing oxygenate production. By adding O2,

the main products can be shifted from syngas (CO + H2) toward

oxygenates. Chemical kinetics modeling shows that the improved

oxygenate production is due to the increased concentration of

oxygen-containing radicals, e.g., O, OH, and HO2, formed by electron

impact dissociation [e + O2 → e + O + O/O(1D)] and subsequent

reactions with H atoms. Our study reveals the crucial role of oxygen-coupling in DRM aimed at oxygenates, providing practical

solutions to suppress carbon deposition and at the same time enhance the oxygenates production in plasma-assisted DRM.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001082603900001 Publication Date 2023-10-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2168-0485 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.4 Times cited Open Access Not_Open_Access  
  Notes Fonds Wetenschappelijk Onderzoek, S001619N ; China Scholarship Council, 202006060029 ; National Natural Science Foundation of China, 21975018 ; H2020 European Research Council, 810182 ; Approved Most recent IF: 8.4; 2023 IF: 5.951  
  Call Number PLASMANT @ plasmant @c:irua:201013 Serial 8966  
Permanent link to this record
 

 
Author Feng, X.; Jena, H.S.; Krishnaraj, C.; Arenas-Esteban, D.; Leus, K.; Wang, G.; Sun, J.; Rüscher, M.; Timoshenko, J.; Roldan Cuenya, B.; Bals, S.; Voort, P.V.D. pdf  url
doi  openurl
  Title Creation of Exclusive Artificial Cluster Defects by Selective Metal Removal in the (Zn, Zr) Mixed-Metal UiO-66 Type A1 Journal article
  Year (down) 2021 Publication Journal Of The American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume Issue Pages jacs.1c05357  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The differentiation between missing linker defects

and missing cluster defects in MOFs is difficult, thereby limiting the

ability to correlate materials properties to a specific type of defects.

Herein, we present a novel and easy synthesis strategy for the

creation of solely “missing cluster defects” by preparing mixed-metal

(Zn, Zr)-UiO-66 followed by a gentle acid wash to remove the Zn

nodes. The resulting material has the reo UiO-66 structure, typical

for well-defined missing cluster defects. The missing clusters are

thoroughly characterized, including low-pressure Ar-sorption, iDPCSTEM

at a low dose (1.5 pA), and XANES/EXAFS analysis. We

show that the missing cluster UiO-66 has a negligible number of missing linkers. We show the performance of the missing cluster

UiO-66 in CO2 sorption and heterogeneous catalysis.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000730569500001 Publication Date 2021-12-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 29 Open Access OpenAccess  
  Notes Agentschap Innoveren en Ondernemen, HBC.2019.0110 HBC.2021.0254 ; Universiteit Gent; Fonds Wetenschappelijk Onderzoek, 665501 ; Dalian University of Technology; China Scholarship Council, 201507565009 ; National Natural Science Foundation of China, 22101039 ; H2020 European Research Council, 815128 REALNANO ; sygmaSB Approved Most recent IF: 13.858  
  Call Number EMAT @ emat @c:irua:183951 Serial 6833  
Permanent link to this record
 

 
Author Sun, J.; Li, Y.; Karaaslan, Y.; Sevik, C.; Chen, Y. doi  openurl
  Title Misfit dislocation structure and thermal boundary conductance of GaN/AlN interfaces Type A1 Journal article
  Year (down) 2021 Publication Journal Of Applied Physics Abbreviated Journal J Appl Phys  
  Volume 130 Issue 3 Pages 035301  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The structure and thermal boundary conductance of the wurtzite GaN/AlN (0001) interface are investigated using molecular dynamics simulation. Simulation results with three different empirical interatomic potentials have produced similar misfit dislocation networks and dislocation core structures. Specifically, the misfit dislocation network at the GaN/AlN interface is found to consist of pure edge dislocations with a Burgers vector of 1/3(1 (2) over bar 10) and the misfit dislocation core has an eight-atom ring structure. Although different interatomic potentials lead to different dislocation properties and thermal conductance values, all have demonstrated a significant effect of misfit dislocations on the thermal boundary conductance of the GaN/AlN (0001) interface. Published under an exclusive license by AIP Publishing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000694725800001 Publication Date 2021-07-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 2.068  
  Call Number UA @ admin @ c:irua:181623 Serial 8254  
Permanent link to this record
 

 
Author Sun, J.-Y.; Wen, D.-Q.; Zhang, Q.-Z.; Liu, Y.-X.; Wang, Y.-N. url  doi
openurl 
  Title The effects of electron surface interactions in geometrically symmetric capacitive RF plasmas in the presence of different electrode surface materials Type A1 Journal article
  Year (down) 2019 Publication Physics of plasmas Abbreviated Journal Phys Plasmas  
  Volume 26 Issue 6 Pages 063505  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Particle-in-cell/Monte Carlo collision (PIC/MCC) simulations are performed to investigate the asymmetric secondary electron emission (SEE) effects when electrons strike two different material electrodes in low pressure capacitively coupled plasmas (CCPs). To describe the electron-surface interactions, a realistic model, considering the primary electron impact energy and angle, as well as the corresponding surface property-dependent secondary electron yields, is employed in PIC/MCC simulations. In this model, three kinds of electrons emitted from the surface are considered: (i) elastically reflected electrons, (ii) inelastically backscattered electrons, and (iii) electron induced secondary electrons (SEs, i.e., delta-electrons). Here, we examined the effects of electron-surface interactions on the ionization dynamics and plasma characteristics of an argon discharge. The discharge is driven by a voltage source of 13.56MHz with amplitudes in the range of 200-2000V. The grounded electrode material is copper (Cu) for all cases, while the powered electrode material is either Cu or silicon dioxide (SiO2). The simulations reveal that the electron impact-induced SEE is an essential process at low pressures, especially at high voltages. Different electrode materials result in an asymmetric response of SEE. Depending on the instantaneous local sheath potential and the phase of the SEE, these SEs either are reflected by the opposite sheath or strike the electrode surface, where they can induce delta-electrons upon their residual energies. It is shown that highly energetic delta-electrons contribute significantly to the ionization rate and a self-bias forms when the powered electrode material is assumed to be made of SiO2. Complex dynamics is observed due to the multiple electron-surface interaction processes and asymmetric yields of SEs in CCPs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000474440600043 Publication Date 2019-06-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1070-664x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.115 Times cited 1 Open Access  
  Notes Approved Most recent IF: 2.115  
  Call Number UA @ admin @ c:irua:161353 Serial 6327  
Permanent link to this record
 

 
Author Gan, Y.; Christensen, D.V.; Zhang, Y.; Zhang, H.; Krishnan, D.; Zhong, Z.; Niu, W.; Carrad, D.J.; Norrman, K.; von Soosten, M.; Jespersen, T.S.; Shen, B.; Gauquelin, N.; Verbeeck, J.; Sun, J.; Pryds, N.; Chen, Y. pdf  url
doi  openurl
  Title Diluted oxide interfaces with tunable ground states Type A1 Journal article
  Year (down) 2019 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 31 Issue 10 Pages 1805970  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The metallic interface between two oxide insulators, such as LaAlO3/SrTiO3 (LAO/STO), provides new opportunities for electronics and spintronics. However, due to the presence of multiple orbital populations, tailoring the interfacial properties such as the ground state and metal-insulator transitions remains challenging. Here, an unforeseen tunability of the phase diagram of LAO/STO is reported by alloying LAO with a ferromagnetic LaMnO3 insulator without forming lattice disorder and at the same time without changing the polarity of the system. By increasing the Mn-doping level, x, of LaAl1-xMnxO3/STO (0 <= x <= 1), the interface undergoes a Lifshitz transition at x = 0.225 across a critical carrier density of n(c) = 2.8 x 10(13) cm(-2), where a peak T-SC approximate to 255 mK of superconducting transition temperature is observed. Moreover, the LaAl1-xMnxO3 turns ferromagnetic at x >= 0.25. Remarkably, at x = 0.3, where the metallic interface is populated by only d(xy) electrons and just before it becomes insulating, a same device with both signatures of superconductivity and clear anomalous Hall effect (7.6 x 10(12) cm(-2) < n(s) <= 1.1 x 10(13) cm(-2)) is achieved reproducibly. This provides a unique and effective way to tailor oxide interfaces for designing on-demand electronic and spintronic devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000460329300004 Publication Date 2019-01-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 31 Open Access Not_Open_Access  
  Notes ; The authors thank the technical help from J. Geyti. J.R.S. acknowledges the support of the National Basic Research of China (2016YFA0300701, 2018YFA0305704), the National Natural Science Foundation of China (11520101002), and the Key Program of the Chinese Academy of Sciences. N.G., D.K., and J.V. acknowledge funding from the Geconcentreerde Onderzoekacties (GOA) project “Solarpaint” of the University of Antwerp, Belgium. ; Approved Most recent IF: 19.791  
  Call Number UA @ admin @ c:irua:158553 Serial 5245  
Permanent link to this record
 

 
Author Peng, L.; Dai, X.; Liu, Y.; Sun, J.; Song, S.; Ni, B.-J. pdf  url
doi  openurl
  Title Model-based assessment of estrogen removal by nitrifying activated sludge Type A1 Journal article
  Year (down) 2018 Publication Chemosphere Abbreviated Journal  
  Volume 197 Issue Pages 430-437  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Complete removal of estrogens such as estrone (E1), estradiol (E2), estriol (E3) and ethinylestradiol (EE2) in wastewater treatment is essential since their release and accumulation in natural water bodies are giving rise to environment and health issues. To improve our understanding towards the estrogen bioremediation process, a mathematical model was proposed for describing estrogen removal by nitrifying activated sludge. Four pathways were involved in the developed model: i) biosorption by activated sludge flocs; ii) cometabolic biodegradation linked to ammonia oxidizing bacteria (AOB) growth; iii) non growth biodegradation by AOB; and iv) biodegradation by heterotrophic bacteria (HB). The degradation kinetics was implemented into activated sludge model (ASM) framework with consideration of interactions between substrate update and microorganism growth as well as endogenous respiration. The model was calibrated and validated by fitting model predictions against two sets of batch experimental data under different conditions. The model could satisfactorily capture all the dynamics of nitrogen, organic matters (COD), and estrogens. Modeling results suggest that for El, E2 and EE2, AOB-linked biodegradation is dominant over biodegradation by HB at all investigated COD dosing levels. However, for E3, the increase of COD dosage triggers a shift of dominant pathway from AOB biodegradation to HB biodegradation. Adsorption becomes the main contributor to estrogen removal at high biomass concentrations. (C) 2018 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000426231900049 Publication Date 2018-01-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0045-6535; 1879-1298 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:149842 Serial 8259  
Permanent link to this record
 

 
Author Peng, L.; Kassotaki, E.; Liu, Y.; Sun, J.; Dai, X.; Pijuan, M.; Rodriguez-Roda, I.; Buttiglieri, G.; Ni, B.-J. pdf  url
doi  openurl
  Title Modelling cometabolic biotransformation of sulfamethoxazole by an enriched ammonia oxidizing bacteria culture Type A1 Journal article
  Year (down) 2017 Publication Chemical engineering science Abbreviated Journal  
  Volume 173 Issue Pages 465-473  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Antibiotics such as sulfamethoxazole (SFX) are environmentally hazardous after being released into the aquatic environment and challenges remain in the development of engineered prevention strategies. In this work, a mathematical model was developed to describe and evaluate cometabolic biotransformation of SFX and its transformation products (TPs) in an enriched ammonia oxidizing bacteria (AOB) culture. The growth-linked cometabolic biodegradation by AOB, non-growth transformation by AOB and nongrowth transformation by heterotrophs were considered in the model framework. The production of major TPs comprising 4-Nitro-SFX, Desamino-SFX and N-4-Acetyl-SFX was also specifically modelled. The validity of the model was demonstrated through testing against literature reported data from extensive batch tests, as well as from long-term experiments in a partial nitritation sequencing batch reactor (SBR) and in a combined SBR + membrane aerated biofilm reactor performing nitrification/denitrification. Modelling results revealed that the removal efficiency of SFX increased with the increase of influent ammonium concentration, whereas the influent organic matter, hydraulic retention time and solid retention time exerted a limited effect on SFX biodegradation with the removal efficiencies varying in a narrow range. The variation of influent SFX concentration had no impact on SFX removal efficiency. The established model framework enables interpretation of a range of experimental observations on SFX biodegradation and helps to identify the optimal conditions for efficient removal. (C) 2017 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000411764200039 Publication Date 2017-08-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0009-2509 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:146629 Serial 8267  
Permanent link to this record
 

 
Author Peng, L.; Liu, Y.; Sun, J.; Wang, D.; Dai, X.; Ni, B.-J. doi  openurl
  Title Enhancing immobilization of arsenic in groundwater: A model-based evaluation Type A1 Journal article
  Year (down) 2017 Publication Journal of cleaner production Abbreviated Journal  
  Volume 166 Issue Pages 449-457  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The mobilization of arsenic (As) in aquatic environment (groundwater) can cause severe environmental and healthy issues. To develop remediation strategies, we proposed a comprehensive mathematical model to describe the As removal in a arsenite (As (III)) oxidizing and ferrous iron (Fe (II)) oxidizing denitrifying granular biofilm system. In the model framework, the growth-linked microbial oxidation of As (III) and Fe (II) was coupled to chemolithotrophic denitrification of one-step reduction of nitrate to nitrogen gas. Meanwhile, the precipitation of ferric iron (Fe (III)) and adsorption of arsenate (As (V)) onto the biogenic Fe (III) (hydr)oxides were also considered. The model was calibrated by comparing the model predictions against experimental data from batch experiments. The validity of the model was further demonstrated through testing against long-term experimental results from five independent bioreactors with different reactor configurations and operational conditions. Modeling results revealed that the granule size would exert a limited impact on arsenic and iron removal. Nevertheless, their removal efficiencies increased rapidly with the increase of hydraulic retention time (HRT) from 1 h to 12 h, but became independent of HRT as it further increased. The established model framework enables interpretation of a range of experimental observations on As and Fe removal and helps to identify the optimal conditions for enhanced arsenic remediation. (C) 2017 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000412607100046 Publication Date 2017-08-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-6526 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:146635 Serial 7919  
Permanent link to this record
 

 
Author Liu, Y.; Ngo, H.H.; Guo, W.; Zhou, J.; Peng, L.; Wang, D.; Chen, X.; Sun, J.; Ni, B.-J. pdf  doi
openurl 
  Title Optimizing sulfur-driven mixotrophic denitrification process : system performance and nitrous oxide emission Type A1 Journal article
  Year (down) 2017 Publication Chemical engineering science Abbreviated Journal  
  Volume 172 Issue Pages 414-422  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Nitrate contamination of groundwater has been recognized as a significant environmental problem world widely. Sulfur-driven mixotrophic denitrification has been demonstrated as a promising groundwater treatment process, which though plays an important role in nitrous oxide (N2O) emissions, significantly contributing to the overall carbon footprint of the system. However, the current process optimizations only focus on nitrate removal and excess sulfate control, with the N2O emission being ignored. In this work, an integrated mathematical model was proposed to evaluate the N2O emission as well as the excess sulfate production and carbon source utilization in sulfur-driven mixotrophic denitrification process. In this model, autotrophic and heterotrophic denitrifiers use their corresponding electron donors (sulfur and organic matter, respectively) to reduce nitrate to nitrogen gas, with each modeled as three-step denitrification (NO3 to N-2 via NO2 and N2O) driven by sulfur or organic matter to describe all potential N2O accumulation steps. The developed model, employing model parameters previously reported in literature, was successfully validated using N2O and sulfate data from two mixotrophic denitrification systems with different initial conditions. Modeling results revealed substantial N2O accumulation due to the relatively low autotrophic N2O reduction activity as compared to heterotrophic N2O reduction activity, explaining the observation that higher carbon source addition resulted in lower N2O accumulation in sulfur-driven mixotrophic denitrifying system. Based on the validated model, optimizations of the overall system performance were carried out. Application of the model to simulate long-term operations of sulfur-driven mixotrophic denitrification process indicates that longer sludge retention time reduces N2O emission due to better retention of active biomass. High-level total nitrogen removal with significant N2O emission mitigation, appropriate excess sulfate control and maximized COD utilization can be achieved simultaneously through controlling the influent nitrate and COD concentrations. (C) 2017 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000410833900034 Publication Date 2017-07-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0009-2509 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:146634 Serial 8344  
Permanent link to this record
 

 
Author Peng, L.; Sun, J.; Liu, Y.; Dai, X.; Ni, B.-J. url  doi
openurl 
  Title Nitrous oxide production in a granule-based partial nitritation reactor : a model-based evaluation Type A1 Journal article
  Year (down) 2017 Publication Scientific reports Abbreviated Journal  
  Volume 7 Issue Pages 45609  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Sustainable wastewater treatment has been attracting increasing attentions over the past decades. However, the production of nitrous oxide (N2O), a potent GHG, from the energy-efficient granule-based autotrophic nitrogen removal is largely unknown. This study applied a previously established N2O model, which incorporated two N2O production pathways by ammonia-oxidizing bacteria (AOB) (AOB denitrification and the hydroxylamine (NH2OH) oxidation). The two-pathway model was used to describe N2O production from a granule-based partial nitritation (PN) reactor and provide insights into the N2O distribution inside granules. The model was evaluated by comparing simulation results with N2O monitoring profiles as well as isotopic measurement data from the PN reactor. The model demonstrated its good predictive ability against N2O dynamics and provided useful information about the shift of N2O production pathways inside granules for the first time. The simulation results indicated that the increase of oxygen concentration and granule size would significantly enhance N2O production. The results further revealed a linear relationship between N2O production and ammonia oxidation rate (AOR) (R-2 = 0.99) under the conditions of varying oxygen levels and granule diameters, suggesting that bulk oxygen and granule size may exert an indirect effect on N2O production by causing a change in AOR.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000398238200001 Publication Date 2017-04-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:142397 Serial 8311  
Permanent link to this record
 

 
Author Yang, T.; Abakumov, A.M.; Hadermann, J.; Van Tendeloo, G.; Nowik, I.; Stephens, P.W.; Hamberger, J.; Tsirlin, A.A.; Ramanujachary, K.V.; Lofland, S.; Croft, M.; Ignatov, A.; Sun, J.; Greenblatt, M. pdf  doi
openurl 
  Title _BiMnFe2O6, a polysynthetically twinned hcp MO structure Type A1 Journal article
  Year (down) 2010 Publication Chemical science Abbreviated Journal Chem Sci  
  Volume 1 Issue 6 Pages 751-762  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The most efficient use of spatial volume and the lowest potential energies in the metal oxide structures are based on cubic close packing (ccp) or hexagonal close packing (hcp) of anions with cations occupying the interstices. A promising way to tune the composition of close packed oxides and design new compounds is related to fragmenting the parent structure into modules by periodically spaced planar interfaces, such as twin planes at the unit cell scale. The unique crystal chemistry properties of cations with a lone electron pair, such as Bi3+ or Pb2+, when located at interfaces, enables them to act as chemical scissors, to help relieve configurational strain. With this approach, we synthesized a new oxide, BiMnFe2O6, where fragments of the hypothetical hcp oxygen-based MO structure (the NiAs structure type), for the first time, serve as the building modules in a complex transition metal oxide. Mn3+ and Fe3+ ions are randomly distributed in two crystallographically independent sites (M1 and M2). The structure consists of quasi two-dimensional blocks of the 2H hexagonal close packed MO structure cut along the (114) crystal plane of the hcp lattice and stacked along the c axis. The blocks are related by a mirror operation that allows BiMnFe2O6 to be considered as a polysynthetically twinned 2H hcp MO structure. The transition to an AFM state with an incommensurate spin configuration at [similar] 212 K is established by 57Fe Mössbauer spectroscopy, magnetic susceptibility, specific heat and low temperature powder neutron diffraction.  
  Address  
  Corporate Author Thesis  
  Publisher Royal Society of Chemistry Place of Publication Cambridge Editor  
  Language Wos 000283939200013 Publication Date 2010-10-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-6520;2041-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.668 Times cited 12 Open Access  
  Notes Approved Most recent IF: 8.668; 2010 IF: NA  
  Call Number UA @ lucian @ c:irua:85823 Serial 3517  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: