toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Földi, P.; Benedict, M.G.; Kalman, O.; Peeters, F.M. url  doi
openurl 
  Title Quantum rings with time-dependent spin-orbit coupling: Spintronic Rabi oscillations and conductance properties Type A1 Journal article
  Year (down) 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 80 Issue 16 Pages 165303,1-165303,10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The strength of the (Rashba-type) spin-orbit coupling in mesoscopic semiconductor rings can be tuned with external gate voltages. Here we consider the case of a periodically changing spin-orbit interaction strength in time as induced by sinusoidal voltages. In a closed one dimensional quantum ring with weak spin-orbit coupling, Rabi oscillations are shown to appear. We find that the time evolution of initially localized wave packets exhibits a series of collapse and revival phenomena. Partial revivalsthat are typical in nonlinear systemsare shown to correspond to superpositions of states localized at different spatial positions along the ring. These spintronic Schrödinger-cat states appear periodically, and similarly to their counterparts in other physical systems, they are found to be sensitive to disturbances caused by the environment. The time-dependent spin transport problem, when leads are attached to the ring, is also solved. We show that the sideband currents induced by the oscillating spin-orbit interaction strength can become the dominant output channel, even in the presence of moderate thermal fluctuations and random scattering events.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000271352100078 Publication Date 2009-10-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 26 Open Access  
  Notes Approved Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:80002 Serial 2784  
Permanent link to this record
 

 
Author Masir, M.R.; Matulis, A.; Peeters, F.M. url  doi
openurl 
  Title Quasibound states of Schrödinger and Dirac electrons in a magnetic quantum dot Type A1 Journal article
  Year (down) 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 79 Issue 15 Pages 155451,1-155451,8  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The properties of a two-dimensional electron are investigated in the presence of a circular step magnetic-field profile. Both electrons with parabolic dispersion as well as Dirac electrons with linear dispersion are studied. We found that in such a magnetic quantum dot no electrons can be confined. Nevertheless close to the Landau levels quasibound states can exist with a rather long lifetime.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000265944200140 Publication Date 2009-04-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 55 Open Access  
  Notes Approved Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:77026 Serial 2800  
Permanent link to this record
 

 
Author Zhang, Z.Z.; Wu, Z.H.; Chang, K.; Peeters, F.M. doi  openurl
  Title Resonant tunneling through S- and U-shaped graphene nanoribbons Type A1 Journal article
  Year (down) 2009 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 20 Issue 41 Pages 415203,1-415203,7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We theoretically investigate resonant tunneling through S- and U-shaped nanostructured graphene nanoribbons. A rich structure of resonant tunneling peaks is found emanating from different quasi-bound states in the middle region. The tunneling current can be turned on and off by varying the Fermi energy. Tunability of resonant tunneling is realized by changing the width of the left and/or right leads and without the use of any external gates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000269930100007 Publication Date 2009-09-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484;1361-6528; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 32 Open Access  
  Notes Approved Most recent IF: 3.44; 2009 IF: 3.137  
  Call Number UA @ lucian @ c:irua:79311 Serial 2893  
Permanent link to this record
 

 
Author Austing, D.G.; Payette, C.; Nair, S.V.; Yu, G.; Gupta, J.A.; Partoens, B.; Amaha, S.; Tarucha, S. doi  openurl
  Title Scheme for coherently quenching resonant current in a three-level quantum dot energy level mixer Type A1 Journal article
  Year (down) 2009 Publication Physica status solidi: C: conferences and critical reviews Abbreviated Journal  
  Volume 6 Issue 4 Pages 940-943  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We outline a scheme to create a dark state by three-level mixing that is potentially a useful tool for quantum coherent transport. Magnetic-field-induced intra-dot level mixing can lead to rich quantum superposition phenomena between three approaching single-particle states in a quantum dot when probed by the ground state of an adjacent weakly coupled quantum dot in the single-electron resonant tunnelling regime. The mixing relies on non-negligible anharmonicity and anisotropy in confining potentials of realistic quantum dots. Anti-crossing and transfer of strengths between resonances can be understood with a simple coherent level mixing model. Superposition can lead to the formation of a dark state by complete cancellation of an otherwise strong resonance. This is an all-electrical analogue of coherent population trapping seen in three-level-systems from quantum and atom optics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000266597600040 Publication Date 2008-12-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1862-6351;1610-1642; ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:86927 Serial 2953  
Permanent link to this record
 

 
Author Geurts, R.; Milošević, M.V.; Peeters, F.M. url  doi
openurl 
  Title Second generation of vortex-antivortex states in mesoscopic superconductors: stabilization by artificial pinning Type A1 Journal article
  Year (down) 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 79 Issue 17 Pages 174508,1-174508,5  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Antagonistic symmetries of superconducting polygons and their induced multivortex states in a homogeneous magnetic field may lead to the appearance of antivortices in the vicinity of the superconducting/normal-state boundary (where mesoscopic confinement is particularly strong). Resulting vortex-antivortex (V-Av) molecules match the sample symmetry but are extremely sensitive to defects and fluctuations and remain undetected experimentally. Here we show that V-Av states can reappear deep in the superconducting state due to an array of perforations in a polygonal setting, surrounding a central hole. Such states are no longer caused by the symmetry of the sample but rather by pinning itself, which prevents the vortex-antivortex annihilation. As a result, even micron size, clearly spaced V-Av molecules can be stabilized in large mesoscopic samples.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000266501100098 Publication Date 2009-05-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 17 Open Access  
  Notes Approved Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:77399 Serial 2956  
Permanent link to this record
 

 
Author Szafran, B.; Nowak, M.P.; Bednarek, S.; Chwiej, T.; Peeters, F.M. url  doi
openurl 
  Title Selective suppression of Dresselhaus or Rashba spin-orbit coupling effects by the Zeeman interaction in quantum dots Type A1 Journal article
  Year (down) 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 79 Issue 23 Pages 235303,1-235303,13  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We study single- and two-electron parabolic quantum dots in the presence of linear Dresselhaus and Rashba spin-orbit interactions. Contributions of both types of spin-orbit coupling are investigated in the context of the spin polarization of the system at high magnetic fields. We demonstrate that for negative Landé factors the effect of the Dresselhaus coupling is suppressed at high magnetic field, which for structures without inversion asymmetry leads to a completely spin-polarized system and a strict antisymmetry of the wave functions with respect to the interchange of spatial-electron coordinates. For negative Landé factor the Rashba coupling is preserved at high field and consequently the spin polarization of the systems as well as the spatial antisymmetry of the two-electron wave function remain approximate.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000267699500073 Publication Date 2009-06-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 13 Open Access  
  Notes Approved Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:77691 Serial 2969  
Permanent link to this record
 

 
Author Hao, Y.L.; Djotyan, A.P.; Avetisyan, A.A.; Peeters, F.M. url  doi
openurl 
  Title Shallow donor states near a semiconductor-insulator-metal interface Type A1 Journal article
  Year (down) 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 80 Issue 3 Pages 035329,1-035329,10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The lowest energy electronic states of a donor located near a semiconductor-insulator-metal interface are investigated within the effective mass approach. The effect of the finite thickness of the insulator between the semiconductor and the metallic gate on the energy levels is studied. The lowest energy states are obtained through a variational approach, which takes into account the influence of all image charges that arise due to the presence of the metallic and the dielectric interfaces. We compare our results with a numerical exact calculation using the finite element technique.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000268617800101 Publication Date 2009-07-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 22 Open Access  
  Notes Approved Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:77950 Serial 2989  
Permanent link to this record
 

 
Author Földi, P.; Kálmán, O.; Peeters, F.M. url  doi
openurl 
  Title Stability of spintronic devices based on quantum ring networks Type A1 Journal article
  Year (down) 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 80 Issue 12 Pages 125324,1-125324,9  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Transport properties in mesoscopic networks are investigated, where the strength of the (Rashba-type) spin-orbit coupling is tuned with external gate voltages. We analyze in detail to what extent the ideal behavior and functionality of some promising network-based devices are modified by random (spin-dependent) scattering events and by thermal fluctuations. It is found that although the functionality of these devices is obviously based on the quantum coherence of the transmitted electrons, there is a certain stability: moderate level of errors can be tolerated. For mesoscopic networks made of typical semiconductor materials, we found that when the energy distribution of the input carriers is narrow enough, the devices can operate close to their ideal limits even at relatively high temperature. As an example, we present results for two different networks: one that realizes a Stern-Gerlach device and another that simulates a spin quantum walker. Finally we propose a simple network that can act as a narrow band energy filter even in the presence of random scatterers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000270383300091 Publication Date 2009-09-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 41 Open Access  
  Notes Approved Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:79230 Serial 3131  
Permanent link to this record
 

 
Author Yang, W.; Nelissen, K.; Kong, M.; Zeng, Z.; Peeters, F.M. url  doi
openurl 
  Title Structure of binary colloidal systems confined in a quasi-one-dimensional channel Type A1 Journal article
  Year (down) 2009 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E  
  Volume 79 Issue 4 Pages 041406,1-041406,6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The structural properties of a binary colloidal quasi-one-dimensional system confined in a narrow channel are investigated through modified Monte Carlo simulations. Two species of particles with different magnetic moment interact through a repulsive dipole-dipole force are confined in a quasi-one-dimensional channel. The impact of three decisive parameters (the density of particles, the magnetic-moment ratio, and the fraction between the two species) on the transition from disordered phase to crystal-like phases and the transitions among the different mixed phases are summarized in a phase diagram.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000265941300077 Publication Date 2009-04-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 11 Open Access  
  Notes Approved Most recent IF: 2.366; 2009 IF: 2.400  
  Call Number UA @ lucian @ c:irua:77021 Serial 3308  
Permanent link to this record
 

 
Author de Backer, J.W.; Vos, W.G.; Burnell, P.; Verhulst, S.L.; Salmon, P.; de Clerck, N.; de Backer, W. doi  openurl
  Title Study of the variability in upper and lower airway morphology in Sprague-Dawley rats using modern micro-CT scan-based segmentation techniques Type A1 Journal article
  Year (down) 2009 Publication The anatomical record: advances in integrative anatomy and evolutionary biology Abbreviated Journal Anat Rec  
  Volume 292 Issue 5 Pages 720-727  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Laboratory Experimental Medicine and Pediatrics (LEMP)  
  Abstract Animal models are being used extensively in pre-clinical and safety assessment studies to assess the effectiveness and safety of new chemical entities and delivery systems. Although never entirely replacing the need for animal testing, the use of computer simulations could eventually reduce the amount of animals needed for research purposes and refine the data acquired from the animal studies. Computational fluid dynamics is a powerful tool that makes it possible to simulate flow and particle behavior in animal or patient-specific respiratory models, for purposes of inhaled delivery. This tool requires an accurate representation of the respiratory system, respiration and dose delivery attributes. The aim of this study is to develop a representative airway model of the Sprague-Dawley rat using static and dynamic micro-CT scans. The entire respiratory tract was modeled, from the snout and nares down to the central airways at the point where no distinction could be made between intraluminal air and the surrounding tissue. For the selection of the representative model, variables such as upper airway movement, segmentation length, airway volume and size are taken into account. Dynamic scans of the nostril region were used to illustrate the characteristic morphology of this region in anaesthetized animals. It could be concluded from this study that it was possible to construct a highly detailed representative model of a Sprague-Dawley rat based on imaging modalities such as micro-CT scans  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000265766000010 Publication Date 2009-03-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-8486;1932-8494; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.431 Times cited 16 Open Access  
  Notes Approved Most recent IF: 1.431; 2009 IF: 1.490  
  Call Number UA @ lucian @ c:irua:76455 Serial 3342  
Permanent link to this record
 

 
Author Croitoru, M.D.; Shanenko, A.A.; Kaun, C.C.; Peeters, F.M. url  doi
openurl 
  Title Superconducting nanowires: interplay of discrete transverse modes with supercurrent Type A1 Journal article
  Year (down) 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 80 Issue 2 Pages 024513,1-024513,11  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract From a numerical solution of the Bogoliubov-de Gennes equations, we investigate an interplay of the transverse discrete modes with a longitudinal supercurrent in a metallic cylindrical superconducting nanowire. The superconductor-to-normal transition induced by a longitudinal superflow of electrons is found to occur as a cascade of jumps in the order parameter (supercurrent and superfluid density) as a function of the superfluid velocity for diameters d<1015 nm (for Al parameters) and sufficiently low temperatures T<0.30.4Tc, with Tc the critical temperature. When approaching Tc, the jumps are smoothed into steplike but continuous drops. A similar picture occurs for d>1520 nm. Only when the diameter exceeds 5070 nm the quantum-size cascades are fully washed out, and we arrive at the mesoscopic regime. Below this regime the critical current density jc exhibits the quantum-size oscillations with pronounced resonant enhancements: the smaller the diameter, the more significant is the enhancement. Thickness fluctuations of real samples will smooth out such oscillations into an overall growth of jc with decreasing nanowire diameter.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000268617500092 Publication Date 2009-07-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 21 Open Access  
  Notes Approved Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:77949 Serial 3358  
Permanent link to this record
 

 
Author Chen, Y.; Croitoru, M.D.; Shanenko, A.A.; Peeters, F.M. pdf  doi
openurl 
  Title Superconducting nanowires: quantum confinement and spatially dependent Hartree-Fock potential Type A1 Journal article
  Year (down) 2009 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 21 Issue 43 Pages 435701,1-435701,7  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract It is well known that, in bulk, the solution of the Bogoliubovde Gennes equations is the same whether or not the HartreeFock term is included. Here the HartreeFock potential is position independent and so gives the same contribution to both the single-electron energies and the Fermi level (the chemical potential). Thus, the single-electron energies measured from the Fermi level (they control the solution) stay the same. This is not the case for nanostructured superconductors, where quantum confinement breaks the translational symmetry and results in a position-dependent HartreeFock potential. In this case its contribution to the single-electron energies depends on the relevant quantum numbers. We numerically solved the Bogoliubovde Gennes equations with the HartreeFock term for a clean superconducting nanocylinder and found a shift of the curve representing the thickness-dependent oscillations of the critical superconducting temperature to larger diameters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000270642700012 Publication Date 2009-10-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 12 Open Access  
  Notes Approved Most recent IF: 2.649; 2009 IF: 1.964  
  Call Number UA @ lucian @ c:irua:79162 Serial 3360  
Permanent link to this record
 

 
Author Croitoru, M.D.; Shanenko, A.A.; Peeters, F.M. doi  openurl
  Title Superconducting nanowires: quantum-confinement effect on the critical magnetic field and supercurrent Type A1 Journal article
  Year (down) 2009 Publication International journal of modern physics: B: condensed matter physics, statistical physics, applied physics T2 – 32nd International Workshop on Condensed Matter Theories, Aug 12-19, 2008, Loughborough Univ, Loughborough, England Abbreviated Journal Int J Mod Phys B  
  Volume 23 Issue 20-21 Pages 4257-4268  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)  
  Abstract We study the effect of electron confinement on the superconducting-to-normal phase transition driven by a magnetic field and/or on the current-carrying state of the superconducting condensate in nanowires. Our investigation is based on a self-consistent numerical solution of the Bogoliubov-de Gennes equations. We show that in a parallel magnetic field and/or in the presence of supercurrent the transition from superconducting to normal phase occurs as a cascade of discontinuous jumps in the superconducting order parameter for diameters D < 10 divided by 15 nm at T = 0. The critical magnetic field exhibits quantum-size oscillations with pronounced resonant enhancements.  
  Address  
  Corporate Author Thesis  
  Publisher World scientific Place of Publication Singapore Editor  
  Language Wos 000274525500026 Publication Date 2009-09-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0217-9792;1793-6578; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.736 Times cited 1 Open Access  
  Notes Approved Most recent IF: 0.736; 2009 IF: 0.408  
  Call Number UA @ lucian @ c:irua:95673 Serial 3362  
Permanent link to this record
 

 
Author Dong, H.M.; Qin, H.; Zhang, J.; Peeters, F.M.; Xu, W. pdf  isbn
openurl 
  Title Terahertz absorption window in bilayer graphene Type H1 Book chapter
  Year (down) 2009 Publication Abbreviated Journal  
  Volume Issue Pages 247-248  
  Keywords H1 Book chapter; Condensed Matter Theory (CMT)  
  Abstract We present a detailed theoretical study of terahertz (THz) optical absorption in bilayer graphene. Considering an air/graphene/dielectric-wafer system, we find that there is an absorption window in the range 3 similar to 30 THz. Such an absorption window is induced by different transition energies required for inter- and intra-band optical absorption in the presence of the Pauli blockade effect. As a result, the position and width of this THz absorption window depend sensitively on temperature and carrier density of the system. These results are pertinent to the applications of recently developed graphene systems as novel optoelectronic devices such as THz photo-detectors.  
  Address  
  Corporate Author Thesis  
  Publisher Ieee Place of Publication New York, N.Y. Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-4244-5416-7 Additional Links UA library record; WoS full record;  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:99225 Serial 3506  
Permanent link to this record
 

 
Author Michel, K.H.; Verberck, B. doi  openurl
  Title Theoretical phonon dispersions in monolayers and multilayers of hexagonal boron-nitride Type A1 Journal article
  Year (down) 2009 Publication Physica status solidi: B: basic research Abbreviated Journal Phys Status Solidi B  
  Volume 246 Issue 11/12 Pages 2802-2805  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Starting from an empirical force constant model of valence interactions and calculating by Ewald's method the electrostatic force constants, we derive the dynamical matrix for a monolayer and for multilayer systems of hexagonal boron nitride (h-BN). Solution of the secular problem leads to the corresponding phonon dispersion relations. The interplay between valence forces and Coulomb forces is discussed. A comparison with previous results on graphene and graphene multilayers is made. Our spectra on the h-BN monolayer are rather similar to previous ab initio theory results. Comparison is also made with Raman and infrared experimental results.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000272904100091 Publication Date 2009-11-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-1972; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.674 Times cited 10 Open Access  
  Notes Approved Most recent IF: 1.674; 2009 IF: 1.150  
  Call Number UA @ lucian @ c:irua:80673 Serial 3609  
Permanent link to this record
 

 
Author Michel, K.H.; Verberck, B. url  doi
openurl 
  Title Theory of elastic and piezoelectric effects in two-dimensional hexagonal boron nitride Type A1 Journal article
  Year (down) 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 80 Issue 22 Pages 224301,1-224301,10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Starting from an empirical force constant model of valence interactions and calculating by Ewalds method the ion-ion force constants, we derive the dynamical matrix for a monolayer crystal of hexagonal boron nitride (h-BN). The phonon dispersion relations are calculated. The interplay between valence and Coulomb forces is discussed. It is shown by analytical methods that the longitudinal and the transverse optical (LO and TO) phonon branches for in-plane motion are degenerate at the Γ point of the Brillouin zone. Away from Γ, the LO branch exhibits pronounced overbending. It is found that the nonanalytic Coulomb contribution to the dynamical matrix causes a linear increase of the LO branch with increasing wave vector starting at Γ. This effect is general for two-dimensional (2D) ionic crystals. Performing a long-wavelength expansion of the dynamical matrix, we use Borns perturbation method to calculate the elastic constants (tension coefficients). Since the crystal is noncentrosymmetric, internal displacements due to relative shifts between the two sublattices (B and N) contribute to the elastic constants. These internal displacements are responsible for piezoelectric and dielectric phenomena. The piezoelectric stress constant and the dielectric susceptibility of 2D h-BN are calculated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000273228500045 Publication Date 2009-12-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 96 Open Access  
  Notes Approved Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:80576 Serial 3616  
Permanent link to this record
 

 
Author Magnus, W.; Brosens, F.; Sorée, B. url  doi
openurl 
  Title Time dependent transport in 1D micro- and nanostructures: solving the Boltzmann and Wigner-Boltzmann equations Type A1 Journal article
  Year (down) 2009 Publication Journal of physics : conference series Abbreviated Journal  
  Volume 193 Issue 1 Pages 012004,1-012004,4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems  
  Abstract For many decades the Boltzmann distribution function has been used to calculate the non-equilibrium properties of mobile particles undergoing the combined action of various scattering mechanisms and externally applied force fields. When the latter give rise to the occurrence of inhomogeneous potential profiles across the region through which the particles are moving, the numerical solution of the Boltzmann equation becomes a highly complicated task. In this work we highlight a particular algorithm that can be used to solve the time dependent Boltzmann equation as well as its quantum mechanical extension, the WignerBoltzmann equation. As an illustration, we show the calculated distribution function describing electrons propagating under the action of both a uniform and a pronouncedly non-uniform electric field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000277100400004 Publication Date 2009-11-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6596; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 2 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:82861 Serial 3667  
Permanent link to this record
 

 
Author Karapetrov, G.; Milošević, M.V.; Iavarone, M.; Fedor, J.; Belkin, A.; Novosad, V.; Peeters, F.M. url  doi
openurl 
  Title Transverse instabilities of multiple vortex chains in magnetically coupled NbSe2/permalloy superconductor/ferromagnet bilayers Type A1 Journal article
  Year (down) 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 80 Issue 18 Pages 180506,1-180506,4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using scanning tunneling microscopy and Ginzburg-Landau simulations, we explore vortex configurations in magnetically coupled NbSe2/permalloy superconductor/ferromagnet bilayer. The permalloy film with stripe domain structure induces periodic local magnetic induction in the superconductor, creating a series of pinning-antipinning channels for externally added magnetic flux quanta. Such laterally confined Abrikosov vortices form quasi-one-dimensional arrays (chains). The transitions between multichain states occur through propagation of kinks at the intermediate fields. At high fields we show that the system becomes nonlinear due to a change in both the number of vortices and the confining potential. The longitudinal instabilities of the resulting vortex structures lead to vortices levitating in the antipinning channels.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000272310900031 Publication Date 2009-11-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 38 Open Access  
  Notes Approved Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:80314 Serial 3729  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Milošević, M.V.; Peeters, F.M. url  doi
openurl 
  Title Tunable kinematics of phase-slip lines in a superconducting stripe with magnetic dots Type A1 Journal article
  Year (down) 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 80 Issue 21 Pages 214509,1-214509,7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using numerical simulations, we study the dynamic properties of a superconducting stripe with a perpendicular magnetized ferromagnet on top in the presence of an applied dc current. In the resistive state conventional phase-slip lines are transformed into kinematic vortex-antivortex pairs with special dynamic behavior. In addition, the location of phase slippage in the sample is predetermined by the position of the magnetic dot. Both these effects directly influence the dynamics of the superconducting condensate and lead to periodic oscillations of the voltage across the sample with a frequency tunable both by the applied current and by the magnetization of the magnet. We found that the frequency of the voltage oscillations increases with increasing number of magnetic dots.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000273228200084 Publication Date 2009-12-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 33 Open Access  
  Notes Approved Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:80575 Serial 3743  
Permanent link to this record
 

 
Author Croitoru, M.D.; Shanenko, A.A.; Peeters, F.M. doi  isbn
openurl 
  Title Tuning the superconducting properties of nanomaterials Type H1 Book chapter
  Year (down) 2009 Publication Abbreviated Journal  
  Volume Issue Pages 1-14  
  Keywords H1 Book chapter; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)  
  Abstract Electron continement and its effect on the superconducting-to-normal phase transition driven by a magentic field and/or a current is studied in nanowires. Our investigation is based on a self-consistent numerical solution of the Bogoliubov-de Gennes equations. We find that in a parallel magneitc field and/or in the presence of a supercurrent the transition from the superconducting to the normal phase occurs as a cascade of discontinuous jumps in the superconducting order parameter for diameters D < 10 divided by 15 nm at T = 0. The critical magentic field exhibits quantum-size oscillations with pronounced resonant enhancements as a function of the wire radius.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Dordrecht Editor  
  Language Wos 000274282900001 Publication Date 2009-07-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1874-6500; ISBN 978-90-481-3118-1 Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:99226 Serial 3761  
Permanent link to this record
 

 
Author Masir, M.R.; Vasilopoulos, P.; Peeters, F.M. url  doi
openurl 
  Title Tunneling, conductance, and wavevector filtering through magnetic barriers in bilayer graphene Type A1 Journal article
  Year (down) 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 79 Issue 3 Pages 035409,1-035409,8  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We evaluate the transmission and conductance through magnetic barrier structures in bilayer graphene. In particular we consider a magnetic step, single and double barriers, -function barriers, as well as barrier structures that have average magnetic field equal to zero. The transmission depends strongly on the direction of the incident electron or hole wavevector and gives the possibility to construct a direction-dependent wavevector filter. The results contrast sharply with previous results on single-layer graphene. In general, the angular range of perfect transmission becomes drastically wider and the gaps narrower. This perfect transmission range decreases with the number of barriers, the barrier width, and the magnetic field. Depending on the structure, a variety of transmission resonances occur that are reflected in the conductance through the structure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000262978200107 Publication Date 2009-01-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 80 Open Access  
  Notes Approved Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:75983 Serial 3762  
Permanent link to this record
 

 
Author Pourghaderi, M.A.; Magnus, W.; Sorée, B.; Meuris, M.; de Meyer, K.; Heyns, M. url  doi
openurl 
  Title Tunneling-lifetime model for metal-oxide-semiconductor structures Type A1 Journal article
  Year (down) 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 80 Issue 8 Pages 085315,1-085315,10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In this paper we investigate the basic physics of charge carriers (electrons) leaking out of the inversion layer of a metal-oxide-semiconductor capacitor with a biased gate. In particular, we treat the gate leakage current as resulting from two combined processes: (1) the time-dependent decay of electron wave packets representing the inversion-layer charge and (2) the local generation of new electrons replacing those that have leaked away. As a result, the gate current simply emerges as the ratio of the total charge in the inversion layer to the tunneling lifetime. The latter is extracted from the quantum dynamics of the decaying wave packets, while the generation rate is incorporated as a phenomenological source term in the continuity equation. Not only do the gate currents calculated with this model agree very well with experiment, the model also provides an onset to solve the paradox of the current-free bound states representing the resonances of the Schrödinger equation that governs the fully coupled metal-oxide-semiconductor system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000269639300076 Publication Date 2009-08-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 2 Open Access  
  Notes Approved Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:78294 Serial 3763  
Permanent link to this record
 

 
Author Lin, N.S.; Misko, V.R.; Peeters, F.M. url  doi
openurl 
  Title Unconventional vortex dynamics in mesoscopic superconducting corbino disks Type A1 Journal article
  Year (down) 2009 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 102 Issue 19 Pages 197003,1-197003,4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The discrete shell structure of vortex matter strongly influences the flux dynamics in mesoscopic superconducting Corbino disks. While the dynamical behavior is well understood in large and in very small disks, in the intermediate-size regime it occurs to be much more complex and unusual, due to (in)commensurability between the vortex shells. We demonstrate unconventional vortex dynamics (inversion of shell velocities with respect to the gradient driving force) and angular melting (propagating from the boundary where the shear stress is minimum, towards the center) in mesoscopic Corbino disks.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000266207700063 Publication Date 2009-05-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 18 Open Access  
  Notes Approved Most recent IF: 8.462; 2009 IF: 7.328  
  Call Number UA @ lucian @ c:irua:77396 Serial 3800  
Permanent link to this record
 

 
Author Pereira, J.M.; Peeters, F.M.; Costa Filho, R.N.; Farias, G.A. doi  openurl
  Title Valley polarization due to trigonal warping on tunneling electrons in graphene Type A1 Journal article
  Year (down) 2009 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 21 Issue 4 Pages 045301,1-045301,4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The effect of trigonal warping on the transmission of electrons tunneling through potential barriers in graphene is investigated. We present calculations of the transmission coefficient for single and double barriers as a function of energy, incidence angle and barrier heights. The results show remarkable valley-dependent directional effects for barriers oriented parallel to the armchair or parallel to the zigzag direction. These results indicate that electrostatic gates can be used as valley filters in graphene-based devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000262354700004 Publication Date 2008-12-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 78 Open Access  
  Notes Approved Most recent IF: 2.649; 2009 IF: 1.964  
  Call Number UA @ lucian @ c:irua:75736 Serial 3834  
Permanent link to this record
 

 
Author Szafran, B.; Poniedziałek, M.R.; Peeters, F.M. doi  openurl
  Title Violation of Onsager symmetry for a ballistic channel Coulomb coupled to a quantum ring Type A1 Journal article
  Year (down) 2009 Publication Europhysics letters Abbreviated Journal Epl-Europhys Lett  
  Volume 87 Issue 4 Pages 47002,1-47002,6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate a scattering of electron which is injected individually into an empty ballistic channel containing a cavity that is Coulomb coupled to a quantum ring charged with a single electron. We solve the time-dependent Schrödinger equation for the electron pair with an exact account for the electron-electron correlation. Absorption of energy and angular momentum by the quantum ring is not an even function of the external magnetic field. As a consequence we find that the electron backscattering probability is asymmetric in the magnetic field and thus violates Onsager symmetry.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Paris Editor  
  Language Wos 000270146400017 Publication Date 2009-09-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0295-5075;1286-4854; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.957 Times cited 4 Open Access  
  Notes Approved Most recent IF: 1.957; 2009 IF: 2.893  
  Call Number UA @ lucian @ c:irua:79734 Serial 3847  
Permanent link to this record
 

 
Author Bending, S.J.; Neal, J.S.; Milošević, M.V.; Potenza, A.; san Emeterio, L.; Marrows, C.H. url  doi
openurl 
  Title Vortex-antivortex 'molecular crystals' in hybrid ferromagnet/superconductor structures Type A1 Journal article
  Year (down) 2009 Publication Journal of physics : conference series Abbreviated Journal  
  Volume 150 Issue 5 Pages 052019  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We have used high resolution Hall probe microscopy to image vortex-antivortex (V-AV) 'molecules' induced in superconducting Pb films by the stray fields from square arrays of ferromagnetic Co/Pt dots. We have directly observed spontaneous V-AV pairs and studied how they interact with added 'free' (anti)fluxons in an applied magnetic field. We observe a rich variety of subtle phenomena arising from competing symmetries in our system which can either drive added antivortices to join AV shells around nanomagnets or stabilise the translationally symmetric AV lattice between the dots. Added vortices annihilate AV shells, leading eventually to a stable 'nulling' state with no free fluxons, which should exhibit a strongly (field-)enhanced critical current. At higher densities we actually observe vortex shells around the magnets, stabilised by the asymmetric anti-pinning potential. Our experimental findings are in good agreement with Ginzburg-Landau calculations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos Publication Date 2009-04-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588;1742-6596; ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:106136 Serial 3855  
Permanent link to this record
 

 
Author Xu, B.; Milošević, M.V.; Peeters, F.M. url  doi
openurl 
  Title Vortex matter in oblate mesoscopic superconductors with a hole: broken symmetry vortex states and multi-vortex entry Type A1 Journal article
  Year (down) 2009 Publication New journal of physics Abbreviated Journal New J Phys  
  Volume 11 Issue Pages 013020,1-013020,21  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using three-dimensional (3D) numerical discretization of the GinzburgLandau (GL) equations, we investigate the superconducting state of a sphere with a piercing hole in the presence of a magnetic field. In the case of samples with central perforation, in axially applied homogeneous magnetic field, we realized unconventional vortex states of broken symmetry due to complex, 3D competing interactions, which depend on the GL parameter ê. For certain sizes of the sample, non-hysteretic multi-vortex entry and exit is predicted with the non-existence of some vorticities as stable states. In a tilted magnetic field, we studied the gradual transformation of 3D flux patterns into 1D vortex chains, where vortices align along the perforation, and the evolvement of the multi-vortex entry as well. We analyze the flux-guiding ability of the hole in a tilted field, which leads to fractional flux response in magnetization M(H) curves.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000262932500003 Publication Date 2009-01-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.786 Times cited 8 Open Access  
  Notes Approved Most recent IF: 3.786; 2009 IF: 3.312  
  Call Number UA @ lucian @ c:irua:75986 Serial 3873  
Permanent link to this record
 

 
Author Connolly, M.R.; Milošević, M.V.; Bending, S.J.; Clem, J.R.; Tamegai, T. url  doi
openurl 
  Title Vortex 'puddles' and magic vortex numbers in mesoscopic superconducting disks Type A1 Journal article
  Year (down) 2009 Publication Journal of physics : conference series Abbreviated Journal  
  Volume 150 Issue 5 Pages 052039  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The magnetic properties of a superconducting disk change dramatically when its dimensions become mesoscopic. Unlike large disks, where the screening currents induced by an applied magnetic field are strong enough to force vortices to accumulate in a 'puddle' at the centre, in a mesoscopic disk the interaction between one of these vortices and the edge currents can be comparable to the intervortex repulsion, resulting in a destruction of the ordered triangular vortex lattice structure at the centre. Vortices instead form clusters which adopt polygonal and shell-like structures which exhibit magic number states similar to those of charged particles in a confining potential, and electrons in artificial atoms. We have fabricated mesoscopic high temperature superconducting Bi2Sr2CaCu2O8+δ disks and investigated their magnetic properties using magneto-optical imaging (MOI) and high resolution scanning Hall probe microscopy (SHPM). The temperature dependence of the vortex penetration field measured using MOI is in excellent agreement with models of the thermal excitation of pancake vortices over edge barriers. The growth of the central vortex puddle has been directly imaged using SHPM and magic vortex numbers showing higher stability have been correlated with abrupt jumps in the measured local magnetisation curves.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos Publication Date 2009-04-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588;1742-6596; ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:106137 Serial 3881  
Permanent link to this record
 

 
Author Leenaerts, O.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title Water on graphene: hydrophobicity and dipole moment using density functional theory Type A1 Journal article
  Year (down) 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 79 Issue 23 Pages 235440,1-235440,5  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We apply density-functional theory to study the adsorption of water clusters on the surface of a graphene sheet and find i) graphene is highly hydrophobic and ii) adsorbed water has very little effect on the electronic structure of graphene. A single water cluster on graphene has a very small average dipole moment which is in contrast with an ice layer that exhibits a strong dipole moment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000267699500147 Publication Date 2009-06-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 292 Open Access  
  Notes Approved Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:77693 Serial 3904  
Permanent link to this record
 

 
Author Chaves, A.; Farias, G.A.; Peeters, F.M.; Szafran, B. url  doi
openurl 
  Title Wave packet dynamics in semiconductor quantum rings of finite width Type A1 Journal article
  Year (down) 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 80 Issue 12 Pages 125331,1-125331,14  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The time evolution of a wave packet injected into a semiconductor quantum ring is investigated in order to obtain the transmission and reflection probabilities. Within the effective-mass approximation, the time-dependent Schrödinger equation is solved for a system with nonzero width of the ring and leads and finite potential-barrier heights, where we include smooth lead-ring connections. In the absence of a magnetic field, an analysis of the projection of the wave function over the different subband states shows that when the injected wave packet is within a single subband, the junction can scatter this wave packet into different subbands but remarkably at the second junction the wave packet is scattered back into the subband state of the incoming wave packet. If a magnetic field is applied perpendicularly to the ring plane, transmission and reflection probabilities exhibit Aharonov-Bohm (AB) oscillations and the outgoing electrons may end up in different subband states from those of the incoming electrons. Localized impurities, placed in the ring arms, influence the AB oscillation period and amplitude. For a single impurity or potential barrier of sufficiently strong strength, the period of the AB oscillations is halved while for two impurities localized in diametrically opposite points of the ring, the original AB period is recovered. A theoretical investigation of the confined states and time evolution of wave packets in T wires is also made, where a comparison between this system and the lead-ring junction is drawn.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000270383300098 Publication Date 2009-09-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 40 Open Access  
  Notes Approved Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:79231 Serial 3906  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: