toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author van den Broek, W.; Van Aert, S.; Goos, P.; van Dyck, D. pdf  doi
openurl 
  Title Throughput maximization of particle radius measurements by balancing size and current of the electron probe Type A1 Journal article
  Year (up) 2011 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 111 Issue 7 Pages 940-947  
  Keywords A1 Journal article; Engineering Management (ENM); Electron microscopy for materials research (EMAT); Vision lab  
  Abstract In thispaperweinvestigatewhichprobesizemaximizesthethroughputwhenmeasuringtheradiusof nanoparticlesinhighangleannulardarkfieldscanningtransmissionelectronmicroscopy(HAADFSTEM). The sizeandthecorrespondingcurrentoftheelectronprobedeterminetheprecisionoftheestimateofa particlesradius.Maximizingthroughputmeansthatamaximumnumberofparticlesshouldbeimaged withinagiventimeframe,sothataprespecifiedprecisionisattained.WeshowthatBayesianstatistical experimentaldesignisaveryusefulapproachtodeterminetheoptimalprobesizeusingacertainamount of priorknowledgeaboutthesample.Thedependenceoftheoptimalprobesizeonthedetectorgeometry and thediameter,variabilityandatomicnumberoftheparticlesisinvestigated.Anexpressionforthe optimalprobesizeintheabsenceofanykindofpriorknowledgeaboutthespecimenisderivedaswell.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000300461000026 Publication Date 2010-11-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 7 Open Access  
  Notes Approved Most recent IF: 2.843; 2011 IF: 2.471  
  Call Number UA @ lucian @ c:irua:89657 Serial 3659  
Permanent link to this record
 

 
Author Lin, K.; Lebedev, O.I.; Van Tendeloo, G.; Jacobs, P.A.; Pescarmona, P.P. pdf  doi
openurl 
  Title Titanosilicate beads with hierarchical porosity : synthesis and application as epoxidation catalysts Type A1 Journal article
  Year (up) 2011 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J  
  Volume 16 Issue 45 Pages 13509-13518  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Porous titanosilicate beads with a diameter of 0.51.5 mm (TiSil-HPB-60) were synthesized from a preformed titanosilicate solution with a porous anion-exchange resin as template. The bead format of this material enables its straightforward separation from the reaction mixture in its application as a liquid-phase heterogeneous catalyst. The material displays hierarchical porosity (micro/mesopores) and incipient TS-1 structure building units. The titanium species are predominantly located in tetrahedral framework positions. TiSil-HPB-60 is a highly active catalyst for the epoxidation of cyclohexene with t-butyl hydroperoxide (TBHP) and aqueous H2O2. With both oxidants, TiSil-HPB-60 gave higher epoxide yields than Ti-MCM-41 and TS-1. The improved catalytic performance of TiSil-HPB-60 is mainly ascribed to the large mesopores favoring the diffusion of reagents and products to and from the titanium active sites. The epoxide yield and selectivity could be further improved by silylation of the titanosilicate beads. Importantly, TiSil-HPB-60 is a stable catalyst immune to titanium leaching, and can be easily recovered and reused in successive catalytic cycles without significant loss of activity. Moreover, TiSil-HPB-60 is active and selective in the epoxidation of a wide range of bulky alkenes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000285398400029 Publication Date 2010-10-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0947-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.317 Times cited 38 Open Access  
  Notes Iap; Goa Approved Most recent IF: 5.317; 2011 IF: 5.925  
  Call Number UA @ lucian @ c:irua:88153 Serial 3668  
Permanent link to this record
 

 
Author Delville, R.; Malard, B.; Pilch, J.; Sittner, P.; Schryvers, D. pdf  doi
openurl 
  Title Transmission electron microscopy investigation of dislocation slip during superelastic cycling of NiTi wires Type A1 Journal article
  Year (up) 2011 Publication International journal of plasticity Abbreviated Journal Int J Plasticity  
  Volume 27 Issue 2 Pages 282-297  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Superelastic deformation of thin NiTi wires containing various nanograined microstructures was investigated by tensile cyclic loading with in situ evaluation of electric resistivity. Defects created by the superelastic cycling in these wires were analyzed by transmission electron microscopy. The role of dislocation slip in superelastic deformation is discussed. NiTi wires having finest microstructures (grain diameter <100 nm) are highly resistant against dislocation slip, while those with fully recrystallized microstructure and grain size exceeding 200 nm are prone to dislocation slip. The density of the observed dislocation defects increases significantly with increasing grain size. The upper plateau stress of the superelastic stressstrain curves is largely grain size independent from 10 up to 1000 nm. It is hence claimed that the HallPetch relationship fails for the stress-induced martensitic transformation in this grain size range. It is proposed that dislocation slip taking place during superelastic cycling is responsible for the accumulated irreversible strains, cyclic instability and degradation of functional properties. No residual martensite phase was found in the microstructures of superelastically cycled wires by TEM and results of the in situ electric resistance measurements during straining also indirectly suggest that none or very little martensite phase remains in the studied cycled superelastic wires after unloading. The accumulation of dislocation defects, however, does not prevent the superelasticity. It only affects the shape of the stressstrain response, makes it unstable upon cycling and changes the deformation mode from localized to homogeneous. The activity of dislocation slip during superelastic deformation of NiTi increases with increasing test temperature and ultimately destroys the superelasticity as the plateau stress approaches the yield stress for slip. Deformation twins in the austenite phase ({1 1 4} compound twins) were frequently found in cycled wires having largest grain size. It is proposed that they formed in the highly deformed B19′ martensite phase during forward loading and are retained in austenite after unloading. Such twinning would represent an additional deformation mechanism of NiTi yielding residual irrecoverable strains.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000284921800007 Publication Date 2010-05-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0749-6419; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.702 Times cited 157 Open Access  
  Notes Fwo; Iap Approved Most recent IF: 5.702; 2011 IF: 4.603  
  Call Number UA @ lucian @ c:irua:84651 Serial 3709  
Permanent link to this record
 

 
Author Delville, R.; Malard, B.; Pilch, J.; Sittner, P.; Schryvers, D. doi  openurl
  Title Transmission electron microscopy study of microstructural evolution in nanograined Ni-Ti microwires heat treated by electric pulse Type A1 Journal article
  Year (up) 2011 Publication Diffusion and defect data : solid state data : part B : solid state phenomena Abbreviated Journal  
  Volume 172/174 Issue Pages 682-687  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Transmission electron microscopy and mechanical testing were employed to investigate the evolution of microstructure and functional superelastic properties of 0.1mm diameter as-drawn Ni-Ti wires subjected to a non-conventional heat treatment by controlled electric pulse current. This method enables a finer control of the recovery and recrystallisation processes taking place during the heat treatment and accordingly a better control on the final microstructure. The best functional properties were obtained for heat-treated Ni-Ti wires having a nanograined microstructure (20-50 nm) partially recovered through polygonization and partially recrystallized. Such microstructure is highly resistant against dislocation slip upon cycling, while microstructures annealed for longer time and showing mostly recrystallized grains were prone to dislocation slip, particularly as the grain size exceeds 100 nm. The density of dislocation defects increased significantly with increasing grain size of the microstructure. The activity of three <100>/{011} slip systems was identified in the largest grains of 500-1200 nm. An additional mode of plastic deformation, {114} compound austenite twinning, was observed in the largest grains of fully recrystallized microstructures. It is proposed that dislocation slip (and possibly deformation twinning) occurring in superelastic cycling is coupled with the stress-induced martensitic transformation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Vaduz Editor  
  Language Wos 000303359700105 Publication Date 2011-07-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1662-9779; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 3 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:90154 Serial 3717  
Permanent link to this record
 

 
Author Verberck, B.; Tarakina, N.V. pdf  doi
openurl 
  Title Tubular fullerenes inside carbon nanotubes : optimal molecular orientation versus tube radius Type A1 Journal article
  Year (up) 2011 Publication European physical journal : B : condensed matter and complex systems Abbreviated Journal Eur Phys J B  
  Volume 80 Issue 3 Pages 355-362  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract We present an investigation of the orientations and positions of tubular fullerene molecules (C90, ..., C200) encapsulated in single-walled carbon nanotubes (SWCNT), a series of so-called fullerene nanopeapods. We find that increasing the tube radius leads to the following succession of energetically stable regimes: (1) lying molecules positioned on the tube's long axis; (2) tilted molecules on the tube's long axis; and (3) lying molecules shifted away from the tube's long axis. As opposed to C70 and C80 molecules encapsulated in a SWCNT, standing orientations do not develop. Our results are relevant for the possible application of molecular-orientation-dependent electronic properties of fullerene nanopeapods, and also for the interpretation of future experiments on double-walled carbon nanotube formation by annealing fullerene peapod systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000289576200010 Publication Date 2011-03-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6028;1434-6036; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.461 Times cited 10 Open Access  
  Notes ; This work was financially supported by the Research Foundation – Flanders (FWO-VI). B.V. is a Postdoctoral Fellow of the Research Foundation – Flanders (FWO-VI). ; Approved Most recent IF: 1.461; 2011 IF: 1.534  
  Call Number UA @ lucian @ c:irua:89286 Serial 3738  
Permanent link to this record
 

 
Author Grodzińska, D.; Evers, W.H.; Dorland, R.; van Rijssel, J.; van Huis, M.A.; Meijerink, A.; de Mello Donegá, C.; Vanmaekelbergh, D. doi  openurl
  Title Two-fold emission from the S-shell of PbSe/CdSe core/shell quantum dots Type A1 Journal article
  Year (up) 2011 Publication Small Abbreviated Journal Small  
  Volume 7 Issue 24 Pages 3493-3501  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The optical properties of PbSe/CdSe core/shell quantum dots with core sizes smaller than 4 nm in the 5300 K range are reported. The photoluminescence spectra show two peaks, which become increasingly separated in energy as the core diameter is reduced below 4 nm. It is shown that these peaks are due to intrinsic exciton transitions in each quantum dot, rather than emission from different quantum dot sub-ensembles. Most likely, the energy separation between the peaks is due to inter-valley coupling between the L-points of PbSe. The temperature dependence of the relative intensities of the peaks implies that the two emitting states are not in thermal equilibrium and that dark exciton states must play an important role.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000298298300012 Publication Date 2011-10-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1613-6810; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.643 Times cited 23 Open Access  
  Notes Approved Most recent IF: 8.643; 2011 IF: 8.349  
  Call Number UA @ lucian @ c:irua:94371 Serial 3781  
Permanent link to this record
 

 
Author Guttmann, P.; Bittencourt, C.; Ke, X.; Van Tendeloo, G.; Umek, P.; Arcon, D.; Ewels, C.P.; Rehbein, S.; Heim, S.; Schneider, G. pdf  url
doi  openurl
  Title TXM-NEXAFS of TiO2-based nanostructures Type P1 Proceeding
  Year (up) 2011 Publication AIP conference proceedings Abbreviated Journal  
  Volume 1365 Issue Pages 437-440  
  Keywords P1 Proceeding; Electron microscopy for materials research (EMAT)  
  Abstract In this work, electronic properties of individual TiOx-pristine nanoribbons (NR) prepared by hydrothermal treatment of anatase TiO(2) micro-particles were studied using the HZB transmission x-ray microscope (TXM) at the BESSY II undulator beamline U41-FSGM. NEXAFS is ideally suited to study TiO(2)-based materials because both the O K-edge and Ti L-edge features are very sensitive to the local bonding environment, providing diagnostic information about the crystal structures and oxidation states of various forms of titanium oxides and sub-oxides. TXM-NEXAFS combines full-field x-ray microscopy with spectroscopy, allowing the study of the electronic structure of individual nanostructures with spatial resolution better than 25 nm and a spectral resolution of up to E/Delta E = 10000. The typical image field in TXM-NEXAFS measurements is about 10 mu m. 10 mu m, which is large compared to the individual nanoparticle. Therefore, one image stack already contains statistically significant data. In addition, the directional electric field vector ((E) over bar) of the x-rays can be used as a “search tool” for the direction of chemical bonds of the atom selected by its absorption edge.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos 000298672400103 Publication Date 2011-09-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 2 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:113071 Serial 3789  
Permanent link to this record
 

 
Author Batenburg, K.J.; Bals, S.; Van Aert, S.; Roelandts, T.; Sijbers, J. url  doi
openurl 
  Title Ultra-high resolution electron tomography for materials science : a roadmap Type A1 Journal article
  Year (up) 2011 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal  
  Volume 17 Issue S:2 Pages 934-935  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge, Mass. Editor  
  Language Wos Publication Date 2011-10-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1431-9276;1435-8115; ISBN Additional Links UA library record  
  Impact Factor 1.891 Times cited Open Access  
  Notes Approved Most recent IF: 1.891; 2011 IF: 3.007  
  Call Number UA @ lucian @ c:irua:96554 Serial 3792  
Permanent link to this record
 

 
Author Idrissi, H.; Wang, B.; Colla, M.S.; Raskin, J.P.; Schryvers, D.; Pardoen, T. pdf  doi
openurl 
  Title Ultrahigh strain hardening in thin palladium films with nanoscale twins Type A1 Journal article
  Year (up) 2011 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 23 Issue 18 Pages 2119-2122  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Nanocrystalline Pd thin films containing coherent growth twin boundaries are deformed using on-chip nanomechanical testing. A large work-hardening capacity is measured. The origin of the observed behavior is unraveled using transmission electron microscopy and shows specific dislocations and twin boundaries interactions. The results indicate the potential for large strength and ductility balance enhancement in Pd films, as needed in membranes for H technologies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000291164200013 Publication Date 2011-04-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 57 Open Access  
  Notes Iap Approved Most recent IF: 19.791; 2011 IF: 13.877  
  Call Number UA @ lucian @ c:irua:90103 Serial 3794  
Permanent link to this record
 

 
Author Leroux, O.; Leroux, F.; Bagniewska-Zadworna,.; Knox, J.P.; Claeys, M.; Bals, S.; Viane, R.L.L. pdf  doi
openurl 
  Title Ultrastructure and composition of cell wall appositions in the roots of Asplenium (Polypodiales) Type A1 Journal article
  Year (up) 2011 Publication Micron Abbreviated Journal Micron  
  Volume 42 Issue 8 Pages 863-870  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Cell wall appositions (CWAs), formed by the deposition of extra wall material at the contact site with microbial organisms, are an integral part of the response of plants to microbial challenge. Detailed histological studies of CWAs in fern roots do not exist. Using light and electron microscopy we examined the (ultra)structure of CWAs in the outer layers of roots of Asplenium species. All cell walls studded with CWAs were impregnated with yellow-brown pigments. CWAs had different shapes, ranging from warts to elongated branched structures, as observed with scanning and transmission electron microscopy. Ultrastructural study further showed that infecting fungi grow intramurally and that they are immobilized by CWAs when attempting to penetrate intracellularly. Immunolabelling experiments using monoclonal antibodies indicated pectic homogalacturonan, xyloglucan, mannan and cellulose in the CWAs, but tests for lignins and callose were negative. We conclude that these appositions are defense-related structures made of a non-lignified polysaccharide matrix on which phenolic compounds are deposited in order to create a barrier protecting the root against infections.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000294942600013 Publication Date 2011-06-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0968-4328; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.98 Times cited 20 Open Access  
  Notes Fwo Approved Most recent IF: 1.98; 2011 IF: 1.527  
  Call Number UA @ lucian @ c:irua:92540 Serial 3798  
Permanent link to this record
 

 
Author Zeng, Y.I.; Menghini, M.; Li, D.Y.; Lin, S.S.; Ye, Z.Z.; Hadermann, J.; Moorkens, T.; Seo, J.W.; Locquet, J.-P.; van Haesendonck, C. doi  openurl
  Title Unexpected optical response of single ZnO nanowires probed using controllable electrical contacts Type A1 Journal article
  Year (up) 2011 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 13 Issue 15 Pages 6931-6935  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Relying on combined electron-beam lithography and lift-off methods Au/Ti bilayer electrical contacts were attached to individual ZnO nanowires (NWs) that were grown by a vapor phase deposition method. Reliable Schottky-type as well as ohmic contacts were obtained depending on whether or not an ion milling process was used. The response of the ZnO NWs to ultraviolet light was found to be sensitive to the type of contacts. The intrinsic electronic properties of the ZnO NWs were studied in a field-effect transistor configuration. The transfer characteristics, including gate threshold voltage, hysteresis and operational mode, were demonstrated to unexpectedly respond to visible light. The origin of this effect could be accounted for by the presence of point defects in the ZnO NWs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000288951000019 Publication Date 2011-03-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 7 Open Access  
  Notes Approved Most recent IF: 4.123; 2011 IF: 3.573  
  Call Number UA @ lucian @ c:irua:89378 Serial 3807  
Permanent link to this record
 

 
Author Kazakov, S.M.; Abakumov, A.M.; Perz-Mato, J.M.; Ovchinnikov, A.V.; Roslova, M.V.; Boltalin, A.I.; Morozov, I.V.; Antipov, E.V.; Van Tendeloo, G. doi  openurl
  Title Uniform patterns of Fe-vacancy ordering in the Kx(Fe,Co)2-ySe2 superconductors Type A1 Journal article
  Year (up) 2011 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 23 Issue 19 Pages 4311-4316  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The Fe-vacancy ordering patterns in the superconducting KxFe2ySe2 and nonsuperconducting Kx(Fe,Co)2ySe2 samples have been investigated by electron diffraction and high angle annular dark field scanning transmission electron microscopy. The Fe-vacancy ordering occurs in the ab plane of the parent ThCr2Si2-type structure, demonstrating two types of patterns. Superstructure I retains the tetragonal symmetry and can be described with the aI = bI = as√5 (as is the unit cell parameter of the parent ThCr2Si2-type structure) supercell and I4/m space group. Superstructure II reduces the symmetry to orthorhombic with the aII = as√2, bII = 2as√2 supercell and the Ibam space group. This type of superstructure is observed for the first time in KxFe2ySe2. The Fe-vacancy ordering is inhomogeneous: the disordered areas interleave with the superstructures I and II in the same crystallite. The observed superstructures represent the compositionally dependent uniform ordering patterns of two species (the Fe atoms and vacancies) on a square lattice. More complex uniform ordered configurations, including compositional stripes, can be predicted for different chemical compositions of the KxFe2ySe2 (0 < y < 0.5) solid solutions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000295487800005 Publication Date 2011-09-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 20 Open Access  
  Notes Approved Most recent IF: 9.466; 2011 IF: 7.286  
  Call Number UA @ lucian @ c:irua:92805 Serial 3810  
Permanent link to this record
 

 
Author Talgorn, E.; Gao, Y.; Aerts, M.; Kunneman, L.T.; Schins, J.M.; Savenije, T.J.; van Huis, M.A.; van der Zant, H.S.J.; Houtepen, A.J.; Siebbeles, L.D.A. doi  openurl
  Title Unity quantum yield of photogenerated charges and band-like transport in quantum-dot solids Type A1 Journal article
  Year (up) 2011 Publication Nature nanotechnology Abbreviated Journal Nat Nanotechnol  
  Volume 6 Issue 11 Pages 733-739  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Solid films of colloidal quantum dots show promise in the manufacture of photodetectors and solar cells. These devices require high yields of photogenerated charges and high carrier mobilities, which are difficult to achieve in quantum-dot films owing to a strong electronhole interaction and quantum confinement. Here, we show that the quantum yield of photogenerated charges in strongly coupled PbSe quantum-dot films is unity over a large temperature range. At high photoexcitation density, a transition takes place from hopping between localized states to band-like transport. These strongly coupled quantum-dot films have electrical properties that approach those of crystalline bulk semiconductors, while retaining the size tunability and cheap processing properties of colloidal quantum dots.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000296737300012 Publication Date 2011-09-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-3387;1748-3395; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 38.986 Times cited 129 Open Access  
  Notes Approved Most recent IF: 38.986; 2011 IF: 27.270  
  Call Number UA @ lucian @ c:irua:93296 Serial 3813  
Permanent link to this record
 

 
Author Philippaerts, A.; Paulussen, S.; Breesch, A.; Turner, S.; Lebedev, O.I.; Van Tendeloo, G.; Sels, B.; Jacobs, P. pdf  doi
openurl 
  Title Unprecedented shape selectivity in hydrogenation of triacylglycerol molecules with Pt/ZSM-5 zeolite Type A1 Journal article
  Year (up) 2011 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume 50 Issue 17 Pages 3947-3949  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Well tuned: ZSM-5 with platinum nanoparticles preferably hydrogenates trans fatty acids over cis isomers in model triacylglycerols for geometric reasons. The central fatty acid chain reacts faster, pointing to pore mouth adsorption in a tuning fork conformation (see picture). This conformation induces stepwise hydrogenation, resulting in fast removal of the unstable central triene, while formation of saturated chains is limited.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000289514100025 Publication Date 2011-03-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited 31 Open Access  
  Notes Approved Most recent IF: 11.994; 2011 IF: 13.455  
  Call Number UA @ lucian @ c:irua:88381 Serial 3814  
Permanent link to this record
 

 
Author He, Z.; Lee, C.S.; Maurice, J.-L.; Pribat, D.; Haghi-Ashtiani, P.; Cojocaru, C.S. pdf  doi
openurl 
  Title Vertically oriented nickel nanorod/carbon nanofiber core/shell structures synthesized by plasma-enhanced chemical vapor deposition Type A1 Journal article
  Year (up) 2011 Publication Carbon Abbreviated Journal Carbon  
  Volume 49 Issue 14 Pages 4710-4718  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Plasma-enhanced chemical vapor deposition, without a nickel-containing gaseous precursor, was used to synthesize continuous nickel (Ni) nanorods inside the hollow cavity of carbon nanofibers (CNFs), thus forming vertically aligned Ni/CNF core/shell structures. Scanning and transmission electron microscopic images indicate that the elongated Ni nanorods originate from the catalyst particles at the tips of the CNFs and that their formation is due to the effect of extrusion induced by the compressive force of the graphene layers during growth. Different from previous work, each vertically-aligned core/shell structure reported is totally isolated from its neighbors. Continuous Ni nanorods are found to separate into smaller ones with increasing growth time, which was ascribed to (i) the limited amount of Ni available in the tip of the CNF, (ii) the polycrystalline nature of the Ni nanorods and (iii) the combined effects of the compressive stresses on the side of the Ni nanorods and of the tensile stress along their axis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000295308300010 Publication Date 2011-06-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 16 Open Access  
  Notes Approved Most recent IF: 6.337; 2011 IF: 5.378  
  Call Number UA @ lucian @ c:irua:92782 Serial 3841  
Permanent link to this record
 

 
Author Chen, X.; Cao, S.; Ikeda, T.; Srivastava, V.; Snyder, G.J.; Schryvers, D.; James, R.D. pdf  doi
openurl 
  Title A weak compatibility condition for precipitation with application to the microstructure of PbTe-Sb2Te3 thermoelectrics Type A1 Journal article
  Year (up) 2011 Publication Acta materialia Abbreviated Journal Acta Mater  
  Volume 59 Issue 15 Pages 6124-6132  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract We propose a weak condition of compatibility between phases applicable to cases exhibiting full or partial coherence and Widmanstätten microstructure. The condition is applied to the study of Sb2Te3 precipitates in a PbTe matrix in a thermoelectric alloy. The weak condition of compatibility predicts elongated precipitates lying on a cone determined by a transformation stretch tensor. Comparison of this cone with the long directions of precipitates determined by a slice-and-view method of scanning electron microscopy combined with focused ion beam sectioning shows good agreement between theory and experiment. A further study of the morphology of precipitates by the Eshelby method suggests that interfacial energy also plays a role and gives an approximate value of interfacial energy per unit area of 250 dyn cm−1.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000294086900026 Publication Date 2011-07-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.301 Times cited 8 Open Access  
  Notes Approved Most recent IF: 5.301; 2011 IF: 3.755  
  Call Number UA @ lucian @ c:irua:92388 Serial 3911  
Permanent link to this record
 

 
Author Yang, X.-Y.; Tian, G.; Chen, L.-H.; Li, Y.; Rooke, J.C.; Wei, Y.-X.; Liu, Z.-M.; Deng, Z.; Van Tendeloo, G.; Su, B.-L. pdf  doi
openurl 
  Title Well-organized zeolite nanocrystal aggregates with interconnected hierarchically micro-meso-macropore systems showing enhanced catalytic performance Type A1 Journal article
  Year (up) 2011 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J  
  Volume 17 Issue 52 Pages 14987-14995  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Preparation and characterization of well-organized zeolitic nanocrystal aggregates with an interconnected hierarchically micromesomacro porous system are described. Amorphous nanoparticles in bimodal aluminosilicates were directly transformed into highly crystalline nanosized zeolites, as well as acting as scaffold template. All pores on three length scales incorporated in one solid body are interconnected with each other. These zeolitic nanocrystal aggregates with hierarchically micromesomacroporous structure were thoroughly characterized. TEM images and 29Si NMR spectra showed that the amorphous phase of the initial material had been completely replaced by nanocrystals to give a micromesomacroporous crystalline zeolitic structure. Catalytic testing demonstrated their superiority due to the highly active sites and the presence of interconnected micromesomacroporosity in the cracking of bulky 1,3,5-triisopropylbenzene (TIPB) compared to traditional zeolite catalysts. This synthesis strategy was extended to prepare various zeolitic nanocrystal aggregates (ZSM-5, Beta, TS-1, etc.) with well-organized hierarchical micromesomacroporous structures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000298547300035 Publication Date 2011-11-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0947-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.317 Times cited 61 Open Access  
  Notes Approved Most recent IF: 5.317; 2011 IF: 5.925  
  Call Number UA @ lucian @ c:irua:96274 Serial 3913  
Permanent link to this record
 

 
Author Li, Y.; Tan, H.; Yang, X.-Y.; Goris, B.; Verbeeck, J.; Bals, S.; Colson, P.; Cloots, R.; Van Tendeloo, G.; Su, B.-L. pdf  doi
openurl 
  Title Well shaped Mn3O4 nano-octahedra with anomalous magnetic behavior and enhanced photodecomposition properties Type A1 Journal article
  Year (up) 2011 Publication Small Abbreviated Journal Small  
  Volume 7 Issue 4 Pages 475-483  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Very uniform and well shaped Mn3O4 nano-octahedra are synthesized using a simple hydrothermal method under the help of polyethylene glycol (PEG200) as a reductant and shape-directing agent. The nano-octahedra formation mechanism is monitored. The shape and crystal orientation of the nanoparticles is reconstructed by scanning electron microscopy and electron tomography, which reveals that the nano-octahedra only selectively expose {101} facets at the external surfaces. The magnetic testing demonstrates that the Mn3O4 nano-octahedra exhibit anomalous magnetic properties: the Mn3O4 nano-octahedra around 150 nm show a similar Curie temperature and blocking temperature to Mn3O4 nanoparticles with 10 nm size because of the vertical axis of [001] plane and the exposed {101} facets. With these Mn3O4 nano-octahedra as a catalyst, the photodecomposition of rhodamine B is evaluated and it is found that the photodecomposition activity of Mn3O4 nano-octahedra is much superior to that of commercial Mn3O4 powders. The anomalous magnetic properties and high superior photodecomposition activity of well shaped Mn3O4 nano-octahedra should be related to the special shape of the nanoparticles and the abundantly exposed {101} facets at the external surfaces. Therefore, the shape preference can largely broaden the application of the Mn3O4 nano-octahedra.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000288080400008 Publication Date 2011-01-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1613-6810; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.643 Times cited 131 Open Access  
  Notes This work was realized in the frame of an Interuniversity Attraction Poles Program (Inanomat-P6/17)-Belgian State-Belgian Science Policy and the project “Redugaz”, financially supported by the European community and the Wallon government in the frame of Interreg IV (France-Wallonie). B. L. S. acknowledges the Chinese Central Government for an “Expert of the State” position in the program of “Thousand talents” and the Chinese Ministry of Education for a Changjiang Scholar position at the Wuhan University of Technology. H. T. acknowledges the financial support from FWO-Vlaanderen (Project nr. G.0147.06). J.V. thanks the financial support from the European Union under Framework 6 program for Integrated Infrastructure Initiative, Reference 026019 ESTEEM. Approved Most recent IF: 8.643; 2011 IF: 8.349  
  Call Number UA @ lucian @ c:irua:87908 Serial 3914  
Permanent link to this record
 

 
Author Guda, A.A.; Smolentsev, N.; Verbeeck, J.; Kaidashev, E.M.; Zubavichus, Y.; Kravtsova, A.N.; Polozhentsev, O.E.; Soldatov, A.V. pdf  doi
openurl 
  Title X-ray and electron spectroscopy investigation of the coreshell nanowires of ZnO:Mn Type A1 Journal article
  Year (up) 2011 Publication Solid state communications Abbreviated Journal Solid State Commun  
  Volume 151 Issue 19 Pages 1314-1317  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract ZnO/ZnO:Mn coreshell nanowires were studied by means of X-ray absorption spectroscopy of the Mn K- and L2,3-edges and electron energy loss spectroscopy of the O K-edge. The combination of conventional X-ray and nanofocused electron spectroscopies together with advanced theoretical analysis turned out to be fruitful for the clear identification of the Mn phase in the volume of the coreshell structures. Theoretical simulations of spectra, performed using the full-potential linear augmented plane wave approach, confirm that the shell of the nanowires, grown by the pulsed laser deposition method, is a real dilute magnetic semiconductor with Mn2+ atoms at the Zn sites, while the core is pure ZnO.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000295492200003 Publication Date 2011-06-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0038-1098; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.554 Times cited 12 Open Access  
  Notes We acknowledge the Helmholtz-Zentrum Berlin – Electron storage ring BESSY-II for provision of synchrotron radiation at the Russian-German beamline and financial support. This research was supported by the Russian Ministry to education and science (RPN 2.1.1. 5932 grant and RPN 2.1.1.6758 grant). N.S. and A.G. would like to thank the Russian Ministry of Education for providing the fellowships of President of Russian Federation to study abroad. We would like to thank the UGINFO computer center of Southern federal university for providing the computer time. Approved Most recent IF: 1.554; 2011 IF: 1.649  
  Call Number UA @ lucian @ c:irua:92831 Serial 3925  
Permanent link to this record
 

 
Author Afanasov, I.M.; Van Tendeloo, G. doi  openurl
  Title Zirconia-modified exfoliated graphite Type A1 Journal article
  Year (up) 2011 Publication Inorganic materials Abbreviated Journal Inorg Mater+  
  Volume 47 Issue 6 Pages 603-608  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Zirconia has been incorporated into exfoliated graphite (EG) through the anodic polarization in the natural graphite-ZrO(NO3)2-HNO3-H2O system, followed by flash heating. The thermal properties of the oxidized graphites employed as precursors to EG have been studied by thermogravimetry in combination with differential scanning calorimetry, and the distribution of ZrO2 particles in the EG has been assessed by scanning and transmission electron microscopy. Conditions are described for the preparation of EG with bulk densities in the range 1.34.7 g/l and ZrO2 contents in the range 434 wt %.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000291698100008 Publication Date 2011-05-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1685;1608-3172; ISBN Additional Links UA library record; WoS full record  
  Impact Factor 0.62 Times cited Open Access  
  Notes Approved Most recent IF: 0.62; 2011 IF: 0.414  
  Call Number UA @ lucian @ c:irua:90447 Serial 3933  
Permanent link to this record
 

 
Author Esken, D.; Noei, H.; Wang, Y.; Wiktor, C.; Turner, S.; Van Tendeloo, G.; Fischer, R.A. pdf  doi
openurl 
  Title ZnO@ZIF-8 : stabilization of quantum confined ZnO nanoparticles by a zinc methylimidazolate framework and their surface structural characterization probed by CO2 adsorption Type A1 Journal article
  Year (up) 2011 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem  
  Volume 21 Issue 16 Pages 5907-5915  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The microporous and activated zeolitic imidazolate framework (Zn(MeIM)2; MeIM = imidazolate-2-methyl; ZIF-8) was loaded with the MOCVD precursor diethyl zinc [Zn(C2H5)2]. Exposure of ZIF-8 to the vapour of the volatile organometallic molecule resulted in the formation of the inclusion compound [Zn(C2H5)2]0.38@ZIF-8 revealing two precursor molecules per cavity. In a second step the obtained material was treated with oxygen (5 vol% in argon) at various temperatures (oxidative annealing) to achieve the composite material ZnO0.35@ZIF-8. The new material was characterized with powder XRD, FT-IR, UV-vis, solid state NMR, elemental analysis, N2 sorption measurements, and transmission electron microscopy. The data give evidence for the presence of nano-sized ZnO particles stabilized by ZIF-8 showing a blue-shift of the UV-vis absorption caused by quantum size effect (QSE). The surface structure and reactivity of embedded ZnO nanoparticles were characterized via carbon dioxide adsorption at different temperatures monitored by ultra-high vacuum FTIR techniques. It was found that the surface of ZnO nanoparticles is dominated by polar OZnO and ZnZnO facets as well as by defect sites, which all exhibit high reactivity towards CO2 activation forming various adsorbed carbonate and chemisorbed CO2δ− species.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000289260000012 Publication Date 2011-03-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 76 Open Access  
  Notes Esteem 026019 Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:88641 Serial 3936  
Permanent link to this record
 

 
Author Béché, A.; Rouvière, J.L.; Barnes, J.P.; Cooper, D. doi  openurl
  Title Dark field electron holography for strain measurement Type A1 Journal article
  Year (up) 2011 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 111 Issue 3 Pages 227-238  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Dark field electron holography is a new TEM-based technique for measuring strain with nanometer scale resolution. Here we present the procedure to align a transmission electron microscope and obtain dark field holograms as well as the theoretical background necessary to reconstruct strain maps from holograms. A series of experimental parameters such as biprism voltage, sample thickness, exposure time, tilt angle and choice of diffracted beam are then investigated on a silicon-germanium layer epitaxially embedded in a silicon matrix in order to obtain optimal dark field holograms over a large field of view with good spatial resolution and strain sensitivity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000288638200007 Publication Date 2010-12-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 31 Open Access  
  Notes Approved Most recent IF: 2.843; 2011 IF: 2.471  
  Call Number UA @ lucian @ c:irua:136368 Serial 4496  
Permanent link to this record
 

 
Author Cooper, D.; de la Peña, F.; Béché, A.; Rouvière, J.-L.; Servanton, G.; Pantel, R.; Morin, P. doi  openurl
  Title Field mapping with nanometer-scale resolution for the next generation of electronic devices Type A1 Journal article
  Year (up) 2011 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 11 Issue 11 Pages 4585-4590  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In order to improve the performance of todays nanoscaled semiconductor devices, characterization techniques that can provide information about the position and activity of dopant atoms and the strain fields are essential. Here we demonstrate that by using a modern transmission electron microscope it is possible to apply multiple techniques to advanced materials systems in order to provide information about the structure, fields, and composition with nanometer-scale resolution. Off-axis electron holography has been used to map the active dopant potentials in state-of-the-art semiconductor devices with 1 nm resolution. These dopant maps have been compared to electron energy loss spectroscopy maps that show the positions of the dopant atoms. The strain fields in the devices have been measured by both dark field electron holography and nanobeam electron diffraction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington Editor  
  Language Wos 000296674700014 Publication Date 2011-10-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 12 Open Access  
  Notes Approved Most recent IF: 12.712; 2011 IF: 13.198  
  Call Number UA @ lucian @ c:irua:136369 Serial 4499  
Permanent link to this record
 

 
Author Cooper, D.; Rouvière, J.-L.; Béché, A.; Kadkhodazadeh, S.; Semenova, E.S.; Dunin-Borkowsk, R. doi  openurl
  Title Quantitative strain mapping of InAs/InP quantum dots with 1 nm spatial resolution using dark field electron holography Type A1 Journal article
  Year (up) 2011 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 99 Issue Pages 261911-261913  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The optical properties of semiconductor quantum dots are greatly influenced by their strain state. Dark field electron holography has been used to measure the strain in InAsquantum dotsgrown in InP with a spatial resolution of 1 nm. A strain value of 5.4% ± 0.1% has been determined which is consistent with both measurements made by geometrical phase analysis of high angle annular dark field scanning transmission electron microscopy images and with simulations.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000298638500027 Publication Date 2012-01-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 26 Open Access  
  Notes Approved Most recent IF: 3.411; 2011 IF: 3.844  
  Call Number UA @ lucian @ c:irua:136428 Serial 4507  
Permanent link to this record
 

 
Author Denneulin, T.; Rouvière, J.L.; Béché, A.; Py, M.; Barnes, J.P.; Rochat, N.; Hartmann, J.M.; Cooper, D. pdf  doi
openurl 
  Title The reduction of the substitutional C content in annealed Si/SiGeC superlattices studied by dark-field electron holography Type A1 Journal article
  Year (up) 2011 Publication Semiconductor science and technology Abbreviated Journal Semicond Sci Tech  
  Volume 26 Issue 12 Pages 1-10  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Si/Si(1 − x − y)GexCy superlattices are used in the construction of new microelectronic architectures such as multichannel transistors. The introduction of carbon in SiGe allows for compensation of the strain and to avoid plastic relaxation. However, the formation of incoherent β-SiC clusters during annealing limits the processability of SiGeC. This precipitation leads to a modification of the strain in the alloy due to the reduction of the substitutional carbon content. Here, we investigated the strain in annealed Si/Si0.744Ge0.244C0.012 superlattices grown by reduced pressure chemical vapour deposition using dark-field electron holography. The variation of the substitutional C content was calculated by correlating the results with finite-element simulations. The obtained values were then compared with Fourier-transformed infrared spectrometry measurements. It was shown that after annealing for 2 min at 1050 °C carbon no longer has any influence on strain in the superlattice, which behaves like pure SiGe. However, a significant proportion of substitutional C atoms remain in a third-nearest neighbour (3nn) configuration. It was deduced that the influence of 3nn C on strain is negligible and that only isolated atoms have a significant contribution. It was also proposed that the 3nn configuration is an intermediary step during the formation of SiC clusters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000300151300010 Publication Date 2011-11-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0268-1242 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.305 Times cited Open Access  
  Notes Approved Most recent IF: 2.305; 2011 IF: 1.723  
  Call Number UA @ lucian @ c:irua:136427 Serial 4508  
Permanent link to this record
 

 
Author Tan, H.; Turner, S.; Yucelen, E.; Verbeeck, J.; Van Tendeloo, G. url  doi
openurl 
  Title 2D atomic mapping of oxidation states in transition metal oxides by scanning transmission electron microscopy and electron energy-loss spectroscopy : reply Type Editorial
  Year (up) 2012 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 108 Issue 25 Pages 259702  
  Keywords Editorial; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000305568700038 Publication Date 2012-06-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 8.462 Times cited Open Access  
  Notes Approved Most recent IF: 8.462; 2012 IF: 7.943  
  Call Number UA @ admin @ c:irua:100293 Serial 5370  
Permanent link to this record
 

 
Author Roelandts, T.; Batenburg, K.J.; Biermans, E.; Kübel, C.; Bals, S.; Sijbers, J. pdf  doi
openurl 
  Title Accurate segmentation of dense nanoparticles by partially discrete electron tomography Type A1 Journal article
  Year (up) 2012 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 114 Issue Pages 96-105  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract Accurate segmentation of nanoparticles within various matrix materials is a difficult problem in electron tomography. Due to artifacts related to image series acquisition and reconstruction, global thresholding of reconstructions computed by established algorithms, such as weighted backprojection or SIRT, may result in unreliable and subjective segmentations. In this paper, we introduce the Partially Discrete Algebraic Reconstruction Technique (PDART) for computing accurate segmentations of dense nanoparticles of constant composition. The particles are segmented directly by the reconstruction algorithm, while the surrounding regions are reconstructed using continuously varying gray levels. As no properties are assumed for the other compositions of the sample, the technique can be applied to any sample where dense nanoparticles must be segmented, regardless of the surrounding compositions. For both experimental and simulated data, it is shown that PDART yields significantly more accurate segmentations than those obtained by optimal global thresholding of the SIRT reconstruction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000301954300011 Publication Date 2012-01-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 34 Open Access  
  Notes Fwo Approved Most recent IF: 2.843; 2012 IF: 2.470  
  Call Number UA @ lucian @ c:irua:97710 Serial 52  
Permanent link to this record
 

 
Author Van Tendeloo, G.; Bals, S.; Van Aert, S.; Verbeeck, J.; van Dyck, D. pdf  url
doi  openurl
  Title Advanced electron microscopy for advanced materials Type A1 Journal article
  Year (up) 2012 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 24 Issue 42 Pages 5655-5675  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract The idea of this Review is to introduce newly developed possibilities of advanced electron microscopy to the materials science community. Over the last decade, electron microscopy has evolved into a full analytical tool, able to provide atomic scale information on the position, nature, and even the valency atoms. This information is classically obtained in two dimensions (2D), but can now also be obtained in 3D. We show examples of applications in the field of nanoparticles and interfaces.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000310602200001 Publication Date 2012-08-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 107 Open Access  
  Notes This work was supported by funding from the European Research Council under the 7th Framework Program (FP7), ERC grant No 246791 – COUNTATOMS. J.V. Acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant 278510 VORTEX. The authors gratefully acknowledge funding from the Research Foundation Flanders (FWO, Belgium). The Qu-Ant-EM microscope was partly funded by the Hercules Fund from the Flemish Government. We thank Rafal Dunin-Borkowski for providing Figure 5d. The authors would like to thank the colleagues who have contributed to this work over the years, including K.J. Batenburg, R. Erni, B. Goris, F. Leroux, H. Lichte, A. Lubk, B. Partoens, M. D. Rossell, P. Schattschneider, B. Schoeters, D. Schryvers, H. Tan, H. Tian, S. Turner, M. van Huis. ECASJO_; Approved Most recent IF: 19.791; 2012 IF: 14.829  
  Call Number UA @ lucian @ c:irua:100470UA @ admin @ c:irua:100470 Serial 70  
Permanent link to this record
 

 
Author Wang, B.; Idrissi, H.; Galceran, M.; Colla, M.S.; Turner, S.; Hui, S.; Raskin, J.P.; Pardoen, T.; Godet, S.; Schryvers, D. pdf  doi
openurl 
  Title Advanced TEM investigation of the plasticity mechanisms in nanocrystalline freestanding palladium films with nanoscale twins Type A1 Journal article
  Year (up) 2012 Publication International journal of plasticity Abbreviated Journal Int J Plasticity  
  Volume 37 Issue Pages 140-156  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Nanocrystalline palladium thin films deposited by electron-beam evaporation and deformed by on-chip tensile testing reveal a surprisingly large strain hardening capacity when considering the small similar to 25 nm grain size. The as-grown films contain several coherent single and multifold twin boundaries. The coherency of the twin boundaries considerably decreases with deformation due to dislocation/twin boundary interactions. These reactions are described based on a detailed analysis of the number and the type of dislocations located at the twin boundaries using high-resolution TEM, including aberration corrected microscopy. Sessile Frank dislocations were observed at the twin/matrix interfaces, explaining the loss of the TB coherency due to the Burgers vector pointing out of the twinning plane. Grain boundary mediated processes were excluded as a mechanism dominating the plastic deformation based on the investigation of the grain size distribution as well as the crystallographic texture using Automated Crystallographic Orientation Indexation TEM. Other factors influencing the plastic deformation such as impurities and the presence of a native passivation oxide layer at the surface of the films were investigated using analytical TEM. The twin boundaries observed in the present work partly explain the high strain hardening capacity by providing both increasing resistance to dislocation motion with deformation and a source for dislocation multiplication. (C) 2012 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000307416100009 Publication Date 2012-05-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0749-6419; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.702 Times cited 44 Open Access  
  Notes Iap; Fwo Approved Most recent IF: 5.702; 2012 IF: 4.356  
  Call Number UA @ lucian @ c:irua:101082 Serial 74  
Permanent link to this record
 

 
Author Lu, Y.-G.; Verbeeck, J.; Turner, S.; Hardy, A.; Janssens, S.D.; De Dobbelaere, C.; Wagner, P.; Van Bael, M.K.; Van Tendeloo, G. pdf  doi
openurl 
  Title Analytical TEM study of CVD diamond growth on TiO2 sol-gel layers Type A1 Journal article
  Year (up) 2012 Publication Diamond and related materials Abbreviated Journal Diam Relat Mater  
  Volume 23 Issue Pages 93-99  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The early growth stages of chemical vapor deposition (CVD) diamond on a solgel TiO2 film with buried ultra dispersed diamond seeds (UDD) have been studied. In order to investigate the diamond growth mechanism and understand the role of the TiO2 layer in the growth process, high resolution transmission electron microscopy (HRTEM), energy-filtered TEM and electron energy loss spectroscopy (EELS) techniques were applied to cross sectional diamond film samples. We find evidence for the formation of TiC crystallites inside the TiO2 layer at different diamond growth stages. However, there is no evidence that diamond nucleation starts from these crystallites. Carbon diffusion into the TiO2 layer and the chemical bonding state of carbon (sp2/sp3) were both extensively investigated. We provide evidence that carbon diffuses through the TiO2 layer and that the diamond seeds partially convert to amorphous carbon during growth. This carbon diffusion and diamond to amorphous carbon conversion make the seed areas below the TiO2 layer grow and bend the TiO2 layer upwards to form the nucleation center of the diamond film. In some of the protuberances a core of diamond seed remains, covered by amorphous carbon. It is however unlikely that the remaining seeds are still active during the growth process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000302887600017 Publication Date 2012-01-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-9635; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.561 Times cited 16 Open Access  
  Notes Iap; Esteem 026019; Fwo Approved Most recent IF: 2.561; 2012 IF: 1.709  
  Call Number UA @ lucian @ c:irua:95037UA @ admin @ c:irua:95037 Serial 111  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: