toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Eckert, M.; Mortet, V.; Zhang, L.; Neyts, E.; Verbeeck, J.; Haenen, ken; Bogaerts, A. pdf  doi
openurl 
  Title Theoretical investigation of grain size tuning during prolonged bias-enhanced nucleation Type A1 Journal article
  Year 2011 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 23 Issue 6 Pages 1414-1423  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this paper, the effects of prolonged bias-enhanced nucleation (prolonged BEN) on the growth mechanisms of diamond are investigated by molecular dynamics (MD) and combined MD-Metropolis Monte Carlo (MD-MMC) simulations. First, cumulative impacts of CxHy+ and Hx+ on an a-C:H/nanodiamond composite were simulated; second, nonconsecutive impacts of the dominant ions were simulated in order to understand the observed phenomena in more detail. As stated in the existing literature, the growth of diamond structures during prolonged BEN is a process that takes place below the surface of the growing film. The investigation of the penetration behavior of CxHy+ and Hx+ species shows that the carbon-containing ions remain trapped within this amorphous phase where they dominate mechanisms like precipitation of sp3 carbon clusters. The H+ ions, however, penetrate into the crystalline phase at high bias voltages (>100 V), destroying the perfect diamond structure. The experimentally measured reduction of grain sizes at high bias voltage, reported in the literature, might thus be related to penetrating H+ ions. Furthermore, the CxHy+ ions are found to be the most efficient sputtering agents, preventing the build up of defective material.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos (up) 000288291400011 Publication Date 2011-02-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 9 Open Access  
  Notes Iwt; Fwo; Esteem 026019; Iap Approved Most recent IF: 9.466; 2011 IF: 7.286  
  Call Number UA @ lucian @ c:irua:87642 Serial 3605  
Permanent link to this record
 

 
Author Boschker, H.; Huijben, M.; Vailinois, A.; Verbeeck, J.; Van Aert, S.; Luysberg, M.; Bals, S.; Van Tendeloo, G.; Houwman, E.P.; Koster, G.; Blank, D.H.A.; Rijnders, G. pdf  doi
openurl 
  Title Optimized fabrication of high-quality La0.67Sr0.33MnO3 thin films considering all essential characteristics Type A1 Journal article
  Year 2011 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 44 Issue 20 Pages 205001-205001,9  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In this paper, an overview of the fabrication and properties of high-quality La0.67Sr0.33MnO3 (LSMO) thin films is given. A high-quality LSMO film combines a smooth surface morphology with a large magnetization and a small residual resistivity, while avoiding precipitates and surface segregation. In the literature, typically only a few of these issues are adressed. We therefore present a thorough characterization of our films, which were grown by pulsed laser deposition. The films were characterized with reflection high energy electron diffraction, atomic force microscopy, x-ray diffraction, magnetization and transport measurements, x-ray photoelectron spectroscopy and scanning transmission electron microscopy. The films have a saturation magnetization of 4.0 µB/Mn, a Curie temperature of 350 K and a residual resistivity of 60 µΩ cm. These results indicate that high-quality films, combining both large magnetization and small residual resistivity, were realized. A comparison between different samples presented in the literature shows that focussing on a single property is insufficient for the optimization of the deposition process. For high-quality films, all properties have to be adressed. For LSMO devices, the thin-film quality is crucial for the device performance. Therefore, this research is important for the application of LSMO in devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos (up) 000290150900001 Publication Date 2011-04-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 99 Open Access  
  Notes This research was financially supported by the Dutch Science Foundation, by NanoNed, a nanotechnology program of the Dutch Ministry of Economic Affairs, and by the NanOxide program of the European Science Foundation. This work is supported in part by the Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under contract DE-AC02-76SF00515. Approved Most recent IF: 2.588; 2011 IF: 2.544  
  Call Number UA @ lucian @ c:irua:89557UA @ admin @ c:irua:89557 Serial 2491  
Permanent link to this record
 

 
Author Molina, L.; Tan, H.; Biermans, E.; Batenburg, K.J.; Verbeeck, J.; Bals, S.; Van Tendeloo, G. pdf  doi
openurl 
  Title Barrier efficiency of sponge-like La2Zr2O7 buffer layers for YBCO-coated conductors Type A1 Journal article
  Year 2011 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech  
  Volume 24 Issue 6 Pages 065019-065019,8  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract Solution derived La2Zr2O7 films have drawn much attention for potential applications as thermal barriers or low-cost buffer layers for coated conductor technology. Annealing and coating parameters strongly affect the microstructure of La2Zr2O7, but different film processing methods can yield similar microstructural features such as nanovoids and nanometer-sized La2Zr2O7 grains. Nanoporosity is a typical feature found in such films and the implications for the functionality of the films are investigated by a combination of scanning transmission electron microscopy (STEM), electron energy-loss spectroscopy (EELS) and quantitative electron tomography. Chemical solution based La2Zr2O7 films deposited on flexible Ni5 at.%W substrates with a {100}lang001rang biaxial texture were prepared for an in-depth characterization. A sponge-like structure composed of nanometer-sized voids is revealed by high-angle annular dark-field scanning transmission electron microscopy in combination with electron tomography. A three-dimensional quantification of nanovoids in the La2Zr2O7 film is obtained on a local scale. Mostly non-interconnected highly faceted nanovoids compromise more than one-fifth of the investigated sample volume. The diffusion barrier efficiency of a 170 nm thick La2Zr2O7 film is investigated by STEM-EELS, yielding a 1.8 ± 0.2 nm oxide layer beyond which no significant nickel diffusion can be detected and intermixing is observed. This is of particular significance for the functionality of YBa2Cu3O7 − δ coated conductor architectures based on solution derived La2Zr2O7 films as diffusion barriers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos (up) 000290472900021 Publication Date 2011-04-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.878 Times cited 31 Open Access  
  Notes Esteem 026019; Fwo Approved Most recent IF: 2.878; 2011 IF: 2.662  
  Call Number UA @ lucian @ c:irua:88639UA @ admin @ c:irua:88639 Serial 221  
Permanent link to this record
 

 
Author Turner, S.; Lazar, S.; Freitag, B.; Egoavil, R.; Verbeeck, J.; Put, S.; Strauven, Y.; Van Tendeloo, G. pdf  doi
openurl 
  Title High resolution mapping of surface reduction in ceria nanoparticles Type A1 Journal article
  Year 2011 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 3 Issue 8 Pages 3385-3390  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Surface reduction of ceria nano octahedra with predominant {111} and {100} type surfaces is studied using a combination of aberration-corrected Transmission Electron Microscopy (TEM) and spatially resolved electron energy-loss spectroscopy (EELS) at high energy resolution and atomic spatial resolution. The valency of cerium ions at the surface of the nanoparticles is mapped using the fine structure of the Ce M4,5 edge as a fingerprint. The valency of the surface cerium ions is found to change from 4+ to 3+ owing to oxygen deficiency (vacancies) close to the surface. The thickness of this Ce3+ shell is measured using atomic-resolution Scanning Transmission Electron Microscopy (STEM)-EELS mapping over a {111} surface (the predominant facet for this ceria morphology), {111} type surface island steps and {100} terminating planes. For the {111} facets and for {111} surface islands, the reduction shell is found to extend over a single fully reduced surface plane and 12 underlying mixed valency planes. For the {100} facets the reduction shell extends over a larger area of 56 oxygen vacancy-rich planes. This finding provides a plausible explanation for the higher catalytic activity of the {100} surface facets in ceria.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos (up) 000293521700057 Publication Date 2011-06-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 127 Open Access  
  Notes Fwo Approved Most recent IF: 7.367; 2011 IF: 5.914  
  Call Number UA @ lucian @ c:irua:90361UA @ admin @ c:irua:90361 Serial 1458  
Permanent link to this record
 

 
Author Tan, H.; Turner, S.; Yücelen, E.; Verbeeck, J.; Van Tendeloo, G. url  doi
openurl 
  Title 2D atomic mapping of oxidation states in transition metal oxides by scanning transmission electron microscopy and electron energy-loss spectroscopy Type A1 Journal article
  Year 2011 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 107 Issue 10 Pages 107602  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Using a combination of high-angle annular dark-field scanning transmission electron microscopy and atomically resolved electron energy-loss spectroscopy in an aberration-corrected transmission electron microscope we demonstrate the possibility of 2D atom by atom valence mapping in the mixed valence compound Mn3O4. The Mn L2,3 energy-loss near-edge structures from Mn2+ and Mn3+ cation sites are similar to those of MnO and Mn2O3 references. Comparison with simulations shows that even though a local interpretation is valid here, intermixing of the inelastic signal plays a significant role. This type of experiment should be applicable to challenging topics in materials science, such as the investigation of charge ordering or single atom column oxidation states in, e.g., dislocations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos (up) 000294406600018 Publication Date 2011-09-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 115 Open Access  
  Notes Esteem 026019; Fwo Approved Most recent IF: 8.462; 2011 IF: 7.370  
  Call Number UA @ lucian @ c:irua:91265 c:irua:91265 c:irua:91265UA @ admin @ c:irua:91265 Serial 5  
Permanent link to this record
 

 
Author Guda, A.A.; Smolentsev, N.; Verbeeck, J.; Kaidashev, E.M.; Zubavichus, Y.; Kravtsova, A.N.; Polozhentsev, O.E.; Soldatov, A.V. pdf  doi
openurl 
  Title X-ray and electron spectroscopy investigation of the coreshell nanowires of ZnO:Mn Type A1 Journal article
  Year 2011 Publication Solid state communications Abbreviated Journal Solid State Commun  
  Volume 151 Issue 19 Pages 1314-1317  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract ZnO/ZnO:Mn coreshell nanowires were studied by means of X-ray absorption spectroscopy of the Mn K- and L2,3-edges and electron energy loss spectroscopy of the O K-edge. The combination of conventional X-ray and nanofocused electron spectroscopies together with advanced theoretical analysis turned out to be fruitful for the clear identification of the Mn phase in the volume of the coreshell structures. Theoretical simulations of spectra, performed using the full-potential linear augmented plane wave approach, confirm that the shell of the nanowires, grown by the pulsed laser deposition method, is a real dilute magnetic semiconductor with Mn2+ atoms at the Zn sites, while the core is pure ZnO.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos (up) 000295492200003 Publication Date 2011-06-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0038-1098; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.554 Times cited 12 Open Access  
  Notes We acknowledge the Helmholtz-Zentrum Berlin – Electron storage ring BESSY-II for provision of synchrotron radiation at the Russian-German beamline and financial support. This research was supported by the Russian Ministry to education and science (RPN 2.1.1. 5932 grant and RPN 2.1.1.6758 grant). N.S. and A.G. would like to thank the Russian Ministry of Education for providing the fellowships of President of Russian Federation to study abroad. We would like to thank the UGINFO computer center of Southern federal university for providing the computer time. Approved Most recent IF: 1.554; 2011 IF: 1.649  
  Call Number UA @ lucian @ c:irua:92831 Serial 3925  
Permanent link to this record
 

 
Author Verbeeck, J.; Schattschneider, P.; Lazar, S.; Stöger-Pollach, M.; Löffler, S.; Steiger-Thirsfeld, A.; Van Tendeloo, G. pdf  doi
openurl 
  Title Atomic scale electron vortices for nanoresearch Type A1 Journal article
  Year 2011 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 99 Issue 20 Pages 203109-203109,3  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Electron vortex beams were only recently discovered and their potential as a probe for magnetism in materials was shown. Here we demonstrate a method to produce electron vortex beams with a diameter of less than 1.2 Å. This unique way to prepare free electrons to a state resembling atomic orbitals is fascinating from a fundamental physics point of view and opens the road for magnetic mapping with atomic resolution in an electron microscope.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos (up) 000297786500058 Publication Date 2011-11-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 90 Open Access  
  Notes Hercules Approved Most recent IF: 3.411; 2011 IF: 3.844  
  Call Number UA @ lucian @ c:irua:93625UA @ admin @ c:irua:93625 Serial 184  
Permanent link to this record
 

 
Author Verbeeck, J.; Bertoni, G.; Lichte, H. pdf  doi
openurl 
  Title A holographic biprism as a perfect energy filter? Type A1 Journal article
  Year 2011 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 111 Issue 7 Pages 887-893  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract It has often been stated that a holographic biprism represents a near perfect energy filter and only elastically scattered electrons can participate in the interference fringes. This is based on the assumption that the reference wave does not contain inelastically scattered electrons. In this letter we show that this is not exactly true because of the delocalised inelastic interaction of the reference wave with the sample. We experimentally and theoretically show that inelastic scattering plays a role in the fringe formation, but it is shown that this contribution is small and can usually be neglected in practice. (C) 2011 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos (up) 000300461000021 Publication Date 2011-02-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 13 Open Access  
  Notes Fwo; Esteem 026019 Approved Most recent IF: 2.843; 2011 IF: 2.471  
  Call Number UA @ lucian @ c:irua:97250UA @ admin @ c:irua:97250 Serial 1482  
Permanent link to this record
 

 
Author Goris, B.; Bals, S.; van den Broek, W.; Verbeeck, J.; Van Tendeloo, G. pdf  doi
openurl 
  Title Exploring different inelastic projection mechanisms for electron tomography Type A1 Journal article
  Year 2011 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 111 Issue 8 Pages 1262-1267  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract Several different projection mechanisms that all make use of inelastically scattered electrons are used for electron tomography. The advantages and the disadvantages of these methods are compared to HAADFSTEM tomography, which is considered as the standard electron tomography technique in materials science. The different inelastic setups used are energy filtered transmission electron microscopy (EFTEM), thickness mapping based on the log-ratio method and bulk plasmon mapping. We present a comparison that can be used to select the best inelastic signal for tomography, depending on different parameters such as the beam stability and nature of the sample. The appropriate signal will obviously also depend on the exact information which is requested.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos (up) 000300461100039 Publication Date 2011-03-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 21 Open Access  
  Notes Fwo; Iap; Esteem 026019 Approved Most recent IF: 2.843; 2011 IF: 2.471  
  Call Number UA @ lucian @ c:irua:91260UA @ admin @ c:irua:91260 Serial 1151  
Permanent link to this record
 

 
Author Schattschneider, P.; Verbeeck, J. pdf  url
doi  openurl
  Title Theory of free electron vortices Type A1 Journal article
  Year 2011 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 111 Issue 9/10 Pages 1461-1468  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The recent creation of electron vortex beams and their first practical application motivates a better understanding of their properties. Here, we develop the theory of free electron vortices with quantized angular momentum, based on solutions of the Schrödinger equation for cylindrical boundary conditions. The principle of transformation of a plane wave into vortices with quantized angular momentum, their paraxial propagation through round magnetic lenses, and the effect of partial coherence are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos (up) 000300461200002 Publication Date 2011-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 57 Open Access  
  Notes Esteem 026019 Approved Most recent IF: 2.843; 2011 IF: 2.471  
  Call Number UA @ lucian @ c:irua:91882 Serial 3617  
Permanent link to this record
 

 
Author Verbeeck, J.; Tian, H.; Béché, A. pdf  doi
openurl 
  Title A new way of producing electron vortex probes for STEM Type A1 Journal article
  Year 2012 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 113 Issue Pages 83-87  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A spiral holographic aperture is used in the condensor plane of a scanning transmission electron microscope to produce a focussed electron vortex probe carrying a topological charge of either −1, 0 or +1. The spiral aperture design has a major advantage over the previously used forked aperture in that the three beams with topological charge m=−1, 0, and 1 are not side by side in the specimen plane, but rather on top of each other, focussed at different heights. This allows us to have only one selected beam in focus on the sample while the others contribute only to a background signal. In this paper we describe the working principle as well as first experimental results demonstrating atomic resolution HAADF STEM images obtained with electron vortex probes. These results pave the way for atomic resolution magnetic information when combined with electron energy loss spectroscopy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos (up) 000300554400002 Publication Date 2011-10-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 62 Open Access  
  Notes J.V. wants to thank Miles Padgett for suggesting this setup and pointing to the relevant optics literature. Peter Schattschneider is acknowledged for in depth discussions on related topics. J.V acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC Grant no. 46791-COUN-TATOMS and ERC Starting Grant no. 278510 VORTEX. The Qu-Ant-EM microscope is partially funded by the Hercules fund of the Flemish Government. ECASJO_; Approved Most recent IF: 2.843; 2012 IF: 2.470  
  Call Number UA @ lucian @ c:irua:93624UA @ admin @ c:irua:93624 Serial 2336  
Permanent link to this record
 

 
Author Brück, S.; Paul, M.; Tian, H.; Müller, A.; Kufer, D.; Praetorius, C.; Fauth, K.; Audehm, P.; Goering, E.; Verbeeck, J.; Van Tendeloo, G.; Sing, M.; Claessen, R.; pdf  doi
openurl 
  Title Magnetic and electronic properties of the interface between half metallic Fe3O4 and semiconducting ZnO Type A1 Journal article
  Year 2012 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 100 Issue 8 Pages 081603-081603,4  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We have investigated the magnetic depth profile of an epitaxial Fe3O4 thin film grown directly on a semiconducting ZnO substrate by soft x-ray resonant magnetic reflectometry (XRMR) and electron energy loss spectroscopy (EELS). Consistent chemical profiles at the interface between ZnO and Fe3O4 are found from both methods. Valence selective EELS and XRMR reveal independently that the first monolayer of Fe at the interface between ZnO and Fe3O4 contains only Fe3+ ions. Besides this narrow 2.5 Å interface layer, Fe3O4 shows magnetic bulk properties throughout the whole film making highly efficient spin injection in this system feasible.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos (up) 000300711200014 Publication Date 2012-02-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 12 Open Access  
  Notes The authors thank E. Pellegrin for helpful comments and S. Macke for help with the software REMAGX. S.B. acknowledges financial support by the HZB, Berlin, and the Australian Government via Grant No. RM08550. H.T. acknowledges funding from GOA project “XANES meets ELNES,” J.V. and G.V.T. acknowledge funding from the European Research Council under Grant No. 46791-COUN-TATOMS. The authors acknowledge financial support by the DFG through Forschergruppe FOR 1162. Approved Most recent IF: 3.411; 2012 IF: 3.794  
  Call Number UA @ lucian @ c:irua:95041UA @ admin @ c:irua:95041 Serial 1860  
Permanent link to this record
 

 
Author Schattschneider, P.; Schaffer, B.; Ennen, I.; Verbeeck, J. url  doi
openurl 
  Title Mapping spin-polarized transitions with atomic resolution Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 85 Issue 13 Pages 134422-134422,8  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The coupling of angstrom-sized electron probes with spin-polarized electronic transitions shows that the inelastically scattered probe electron is in a mixed state containing electron vortices with nonzero orbital angular momentum. These electrons create an asymmetric intensity distribution in energy filtered diffraction patterns, giving access to maps of the magnetic moments with atomic resolution. A feasibility experiment shows evidence of the predicted effect. Potential applications are column-by-column maps of magnetic ordering, and the creation of angstrom-sized free electrons with orbital angular momentum by inelastic scattering in a thin ferromagnetic foil.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000302608100004 Publication Date 2012-04-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 41 Open Access  
  Notes The authors thank A. Bleloch, S. Loffler, and P. Nellist for fruitful discussions and suggestions. P.S. acknowledges financial support from the Austrian Science Fund, Project No. I543-N20. The support of the EPSRC for the SuperSTEM facility is gratefully acknowledged. J.V. acknowledges support from the European Research Council under the 7th Framework Program (FP7), ERC Grant No. 246791-COUNTATOMS and ERC Starting Grant No. 278510-VORTEX. ECASJO_; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:97390UA @ admin @ c:irua:97390 Serial 1945  
Permanent link to this record
 

 
Author Lu, Y.-G.; Verbeeck, J.; Turner, S.; Hardy, A.; Janssens, S.D.; De Dobbelaere, C.; Wagner, P.; Van Bael, M.K.; Van Tendeloo, G. pdf  doi
openurl 
  Title Analytical TEM study of CVD diamond growth on TiO2 sol-gel layers Type A1 Journal article
  Year 2012 Publication Diamond and related materials Abbreviated Journal Diam Relat Mater  
  Volume 23 Issue Pages 93-99  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The early growth stages of chemical vapor deposition (CVD) diamond on a solgel TiO2 film with buried ultra dispersed diamond seeds (UDD) have been studied. In order to investigate the diamond growth mechanism and understand the role of the TiO2 layer in the growth process, high resolution transmission electron microscopy (HRTEM), energy-filtered TEM and electron energy loss spectroscopy (EELS) techniques were applied to cross sectional diamond film samples. We find evidence for the formation of TiC crystallites inside the TiO2 layer at different diamond growth stages. However, there is no evidence that diamond nucleation starts from these crystallites. Carbon diffusion into the TiO2 layer and the chemical bonding state of carbon (sp2/sp3) were both extensively investigated. We provide evidence that carbon diffuses through the TiO2 layer and that the diamond seeds partially convert to amorphous carbon during growth. This carbon diffusion and diamond to amorphous carbon conversion make the seed areas below the TiO2 layer grow and bend the TiO2 layer upwards to form the nucleation center of the diamond film. In some of the protuberances a core of diamond seed remains, covered by amorphous carbon. It is however unlikely that the remaining seeds are still active during the growth process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos (up) 000302887600017 Publication Date 2012-01-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-9635; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.561 Times cited 16 Open Access  
  Notes Iap; Esteem 026019; Fwo Approved Most recent IF: 2.561; 2012 IF: 1.709  
  Call Number UA @ lucian @ c:irua:95037UA @ admin @ c:irua:95037 Serial 111  
Permanent link to this record
 

 
Author Schattschneider, P.; Stöger-Pollach, M.; Löffler, S.; Steiger-Thirsfeld, A.; Hell, J.; Verbeeck, J. pdf  doi
openurl 
  Title Sub-nanometer free electrons with topological charge Type A1 Journal article
  Year 2012 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 115 Issue Pages 21-25  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The holographic mask technique is used to create freely moving electrons with quantized angular momentum. With electron optical elements they can be focused to vortices with diameters below the nanometer range. The understanding of these vortex beams is important for many applications. Here, we produce electron vortex beams and compare them to a theory of electrons with topological charge. The experimental results show excellent agreement with simulations. As an immediate application, fundamental experimental parameters like spherical aberration and partial coherence are determined. (C) 2012 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos (up) 000302962400004 Publication Date 2012-01-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 24 Open Access  
  Notes vortex ECASJO_; Approved Most recent IF: 2.843; 2012 IF: 2.470  
  Call Number UA @ lucian @ c:irua:98279 Serial 3344  
Permanent link to this record
 

 
Author Palgrave, R.G.; Borisov, P.; Dyer, M.S.; McMitchell, S.R.C.; Darling, G.R.; Claridge, J.B.; Batuk, M.; Tan, H.; Tian, H.; Verbeeck, J.; Hadermann, J.; Rosseinsky, M.J.; pdf  doi
openurl 
  Title Artificial construction of the layered Ruddlesden-Popper manganite La2Sr2Mn3O10 by reflection high energy electron diffraction monitored pulsed laser deposition Type A1 Journal article
  Year 2012 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 134 Issue 18 Pages 7700-7714  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Pulsed laser deposition has been used to artificially construct the n = 3 Ruddlesden Popper structure La2Sr2Mn3O10 in epitaxial thin film form by sequentially layering La1-xSrxMnO3 and SrO unit cells aided by in situ reflection high energy electron diffraction monitoring. The interval deposition technique was used to promote two-dimensional SrO growth. X-ray diffraction and cross-sectional transmission electron microscopy indicated that the trilayer structure had been formed. A site ordering was found to differ from that expected thermodynamically, with the smaller Sr2+ predominantly on the R site due to kinetic trapping of the deposited cation sequence. A dependence of the out-of-plane lattice parameter on growth pressure was interpreted as changing the oxygen content of the films. Magnetic and transport measurements on fully oxygenated films indicated a frustrated magnetic ground state characterized as a spin glass-like magnetic phase with the glass temperature T-g approximate to 34 K. The magnetic frustration has a clear in-plane (ab) magnetic anisotropy, which is maintained up to temperatures of 150 K. Density functional theory calculations suggest competing antiferromagnetic and ferromagnetic long-range orders, which are proposed as the origin of the low-temperature glassy state.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos (up) 000303696200029 Publication Date 2012-03-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 27 Open Access  
  Notes Fwo; Esteem 026019 Approved Most recent IF: 13.858; 2012 IF: 10.677  
  Call Number UA @ lucian @ c:irua:98947UA @ admin @ c:irua:98947 Serial 153  
Permanent link to this record
 

 
Author Turner, S.; Verbeeck, J.; Ramezanipour, F.; Greedan, J.E.; Van Tendeloo, G.; Botton, G.A. pdf  doi
openurl 
  Title Atomic resolution coordination mapping in Ca2FeCoO5 brownmillerite by spatially resolved electron energy-loss spectroscopy Type A1 Journal article
  Year 2012 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 24 Issue 10 Pages 1904-1909  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Using a combination of high-angle annular dark field scanning transmission electron microscopy and atomically resolved electron energy-loss spectroscopy at high energy resolution in an aberration-corrected electron microscope, we demonstrate the capability of coordination mapping in complex oxides. Brownmillerite compound Ca2FeCoO5, consisting of repetitive octahedral and tetrahedral coordination layers with Fe and Co in a fixed 3+ valency, is selected to demonstrate the principle of atomic resolution coordination mapping. Analysis of the Co-L2,3 and the Fe-L2,3 edges shows small variations in the fine structure that can be specifically attributed to Co/Fe in tetrahedral or in octahedral coordination. Using internal reference spectra, we show that the coordination of the Fe and Co atoms in the compound can be mapped at atomic resolution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos (up) 000304237500024 Publication Date 2012-04-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 33 Open Access  
  Notes A.M. Abakumov is thanked for fruitful discussions. S.T. gratefully acknowledges the Fund for Scientific Research Flanders (FWO). J.E.G. and GAB. acknowledge the support of the NSERC of Canada through Discovery Grants. The Canadian Centre for Electron Microscopy is a National Facility supported by NSERC and McMaster University and was funded by the Canada Foundation for Innovation and the Ontario Government. Part of this work was supported by funding from the European Research Council under the FP7, ERC Grant N 246791 COUNTATOMS and ERC Starting Grant N 278510 VORTEX. The EMAT microscope is partially funded by the Hercules fund of the Flemish Government. ECASJO_; Approved Most recent IF: 9.466; 2012 IF: 8.238  
  Call Number UA @ lucian @ c:irua:98379UA @ admin @ c:irua:98379 Serial 175  
Permanent link to this record
 

 
Author Tan, H.; Verbeeck, J.; Abakumov, A.; Van Tendeloo, G. pdf  doi
openurl 
  Title Oxidation state and chemical shift investigation in transition metal oxides by EELS Type A1 Journal article
  Year 2012 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 116 Issue Pages 24-33  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Transition metal L2,3 electron energy-loss spectra for a wide range of V-, Mn- and Fe-based oxides were recorded and carefully analyzed for their correlation with the formal oxidation states of the transition metal ions. Special attention is paid to obtain an accurate energy scale which provides absolute energy positions for all core-loss edges. The white-line ratio method, chemical shift method, ELNES fitting method, two-parameter method and other methods are compared and their validity is discussed. Both the ELNES fitting method and the chemical shift method have the advantage of a wide application range and good consistency but require special attention to accurately measure the core-loss edge position. The obtained conclusions are of fundamental importance, e.g., for obtaining atomic resolution oxidation state information in modern experiments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos (up) 000304473700004 Publication Date 2012-03-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 413 Open Access  
  Notes Fwo Approved Most recent IF: 2.843; 2012 IF: 2.470  
  Call Number UA @ lucian @ c:irua:96959UA @ admin @ c:irua:96959 Serial 2541  
Permanent link to this record
 

 
Author Boschker, H.; Verbeeck, J.; Egoavil, R.; Bals, S.; Van Tendeloo, G.; Huijben, M.; Houwman, E.P.; Koster, G.; Blank, D.H.A.; Rijnders, G. pdf  doi
openurl 
  Title Preventing the reconstruction of the polar discontinuity at oxide heterointerfaces Type A1 Journal article
  Year 2012 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater  
  Volume 22 Issue 11 Pages 2235-2240  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Perovskite oxide heteroepitaxy receives much attention because of the possibility to combine the diverse functionalities of perovskite oxide building blocks. A general boundary condition for the epitaxy is the presence of polar discontinuities at heterointerfaces. These polar discontinuities result in reconstructions, often creating new functionalities at the interface. However, for a significant number of materials these reconstructions are unwanted as they alter the intrinsic materials properties at the interface. Therefore, a strategy to eliminate this reconstruction of the polar discontinuity at the interfaces is required. We show that the use of compositional interface engineering can prevent the reconstruction at the La0.67Sr0.33MnO3/SrTiO3 (LSMO/STO) interface. The polar discontinuity at this interface can be removed by the insertion of a single La0.33Sr0.67O layer, resulting in improved interface magnetization and electrical conductivity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos (up) 000304749600002 Publication Date 2012-03-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 72 Open Access  
  Notes We wish to acknowledge the financial support of the Dutch Science Foundation (NWO) and the Dutch Nanotechnology program NanoNed. S. B. acknowledges the financial support from the European Union under the Framework 6 program under a contract for an Integrated Infrastructure Initiative. Reference 026019 ESTEEM. J. V. and G. V. T. acknowledge funding from the European Research Council under the 7th Framework Program (FP7), ERC grant N246791 – COUNTATOMS. R. E. acknowledges funding by the European Union Council under the 7th Framework Program (FP7) grant NNMP3-LA-2010-246102 IFOX. We thank Sandra Van Aert for stimulating discussions. Approved Most recent IF: 12.124; 2012 IF: 9.765  
  Call Number UA @ lucian @ c:irua:98907UA @ admin @ c:irua:98907 Serial 2712  
Permanent link to this record
 

 
Author Kuznetsov, A.S.; Lu, Y.-G.; Turner, S.; Shestakov, M.V.; Tikhomirov, V.K.; Kirilenko, D.; Verbeeck, J.; Baranov, A.N.; Moshchalkov, V.V. url  doi
openurl 
  Title Preparation, structural and optical characterization of nanocrystalline ZnO doped with luminescent Ag-nanoclusters Type A1 Journal article
  Year 2012 Publication Optical materials express Abbreviated Journal Opt Mater Express  
  Volume 2 Issue 6 Pages 723-734  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Nanocrystalline ZnO doped with Ag-nanoclusters has been synthesized by a salt solid state reaction. Three overlapping broad emission bands due to the Ag nanoclusters have been detected at about 570, 750 and 900 nm. These emission bands are excited by an energy transfer from the exciton state of the ZnO host when pumped in the wavelength range from 250 to 400 nm. The 900 nm emission band shows characteristic orbital splitting into three components pointing out that the anisotropic crystalline wurtzite host of ZnO is responsible for this feature. Heat-treatment and temperature dependence studies confirm the origin of these emission bands. An energy level diagram for the emission process and a model for Ag nanoclusters sites are suggested. The emission of nanocrystalline ZnO doped with Ag nanoclusters may be applied for white light generation, displays driven by UV light, down-convertors for solar cells and luminescent lamps.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000304953700004 Publication Date 2012-04-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2159-3930; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.591 Times cited Open Access  
  Notes We are grateful to the Methusalem Funding of Flemish Government for the support of this work. Y.-G. L. and S. T. acknowledge funding from the Fund for Scientific Research Flanders (FWO) for a postdoctoral grant and under grant number G056810N. The microscope used in this study was partially financed by the Hercules Foundation. J.V. acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC grant No246791 – COUNTATOMS and ERC Starting Grant 278510 VORTEX. The authors acknowledge the guidance of Prof. G. Van Tendeloo, EMAT Antwerpen University, in transmission electron microscopy study in this work. ECASJO_; Approved Most recent IF: 2.591; 2012 IF: 2.616  
  Call Number UA @ lucian @ c:irua:97709UA @ admin @ c:irua:97709 Serial 2707  
Permanent link to this record
 

 
Author Tan, H.; Turner, S.; Yucelen, E.; Verbeeck, J.; Van Tendeloo, G. url  doi
openurl 
  Title 2D atomic mapping of oxidation states in transition metal oxides by scanning transmission electron microscopy and electron energy-loss spectroscopy : reply Type Editorial
  Year 2012 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 108 Issue 25 Pages 259702  
  Keywords Editorial; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000305568700038 Publication Date 2012-06-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 8.462 Times cited Open Access  
  Notes Approved Most recent IF: 8.462; 2012 IF: 7.943  
  Call Number UA @ admin @ c:irua:100293 Serial 5370  
Permanent link to this record
 

 
Author Gontard, L.C.; Jinschek, J.R.; Ou, H.; Verbeeck, J.; Dunin-Borkowski, R.E. pdf  doi
openurl 
  Title Three-dimensional fabrication and characterisation of core-shell nano-columns using electron beam patterning of Ge-doped SiO2 Type A1 Journal article
  Year 2012 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 100 Issue 26 Pages 263113  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A focused electron beam in a scanning transmission electron microscope (STEM) is used to create arrays of core-shell structures in a specimen of amorphous SiO2 doped with Ge. The same electron microscope is then used to measure the changes that occurred in the specimen in three dimensions using electron tomography. The results show that transformations in insulators that have been subjected to intense irradiation using charged particles can be studied directly in three dimensions. The fabricated structures include core-shell nano-columns, sputtered regions, voids, and clusters. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4731765]  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos (up) 000305831500081 Publication Date 2012-06-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 11 Open Access  
  Notes Approved Most recent IF: 3.411; 2012 IF: 3.794  
  Call Number UA @ lucian @ c:irua:100337 Serial 3651  
Permanent link to this record
 

 
Author Lu, Y.-G.; Turner, S.; Verbeeck, J.; Janssens, S.D.; Wagner, P.; Haenen, K.; Van Tendeloo, G. pdf  doi
openurl 
  Title Direct visualization of boron dopant distribution and coordination in individual chemical vapor deposition nanocrystalline B-doped diamond grains Type A1 Journal article
  Year 2012 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 101 Issue 4 Pages 041907  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The boron dopant distribution in individual heavily boron-doped nanocrystalline diamond film grains, with sizes ranging from 100 to 350nm in diameter, has been studied using a combination of high resolution annular dark field scanning transmission electron microscopy and spatially resolved electron energy-loss spectroscopy. Using these tools, the boron distribution and local boron coordination have been determined. Quantification results reveal embedding of B dopants in the diamond lattice, and a preferential enrichment of boron at defective areas and twin boundaries. Coordination mapping reveals a distinct difference in coordination of the B dopants in “pristine” diamond areas and in defective regions. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4738885]  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos (up) 000306944700030 Publication Date 2012-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 59 Open Access  
  Notes This work was performed within the framework of an IAP P6/42 project of the Belgian government. The authors acknowledge financial support from the Fund for Scientific Research Flanders (FWO) under Contract No. G.0568.10N. The authors acknowledge support from the European Union under a Contract from an Integrated Infrastructure Initiative (Reference 262348 ESMI), the Marie Curie ITN “MATCON” (PITN-GA-2009-238201), and the Collaborative Project “DINAMO” (No. 245122). G.V.T. and J.V. acknowledge the ERC Grant N246791-COUNTATOMS and ERC Starting Grant 278510 VORTEX. S.T. gratefully acknowledges financial support from the FWO. The microscope used in this study was partially financed by the Hercules Foundation of the Flemish Government. ECASJO_; Approved Most recent IF: 3.411; 2012 IF: 3.794  
  Call Number UA @ lucian @ c:irua:100468UA @ admin @ c:irua:100468 Serial 726  
Permanent link to this record
 

 
Author Schattschneider, P.; Stoeger-Pollach, M.; Verbeeck, J. url  doi
openurl 
  Title Novel vortex generator and mode converter for electron beams Type A1 Journal article
  Year 2012 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 109 Issue 8 Pages 084801-1  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A mode converter for electron vortex beams is described. Numerical simulations, confirmed by experiment, show that the converter transforms a vortex beam with a topological charge m = +/- 1 into beams closely resembling Hermite-Gaussian HG(10) and HG(01) modes. The converter can be used as a mode discriminator or filter for electron vortex beams. Combining the converter with a phase plate turns a plane wave into modes with topological charge m = +/- 1. This combination serves as a generator of electron vortex beams of high brilliance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos (up) 000307790900004 Publication Date 2012-08-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 74 Open Access  
  Notes Countatoms; Vortex ECASJO_; Approved Most recent IF: 8.462; 2012 IF: 7.943  
  Call Number UA @ lucian @ c:irua:101103UA @ admin @ c:irua:101103 Serial 2384  
Permanent link to this record
 

 
Author Verbeeck, J.; Béché, A.; van den Broek, W. pdf  doi
openurl 
  Title A holographic method to measure the source size broadening in STEM Type A1 Journal article
  Year 2012 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 120 Issue Pages 35-40  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Source size broadening is an important resolution limiting effect in modern STEM experiments. Here, we propose an alternative method to measure the source size broadening making use of a holographic biprism to create interference patterns in an empty Ronchigram. This allows us to measure the exact shape of the source size broadening with a much better sampling than previously possible. We find that the shape of the demagnified source deviates considerably from a Gaussian profile that is often assumed. We fit the profile with a linear combination of a Gaussian and a bivariate Cauchy distribution showing that even though the full width at half maximum is similar to previously reported measurements, the tails of the profile are considerable wider. This is of fundamental importance for quantitative comparison of STEM simulations with experiments as these tails make the image contrast dependent on the interatomic distance, an effect that cannot be reproduced by a single Gaussian profile of fixed width alone.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos (up) 000308082600005 Publication Date 2012-06-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 29 Open Access  
  Notes This work was supported by funding from the European Research Council under the 7th Framework Program (FP7), ERC Grant no. 246791 COUNTATOMS and ERC Starting Grant 278510 VORTEX. The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. W. Van den Broek acknowledges funding from the Condor project, a project under the supervision of the Embedded Systems Institute (ESI) and FEI. This project is partially supported by the Dutch Ministry of Economic Affairs under the BSIK program. ECASJO_; Approved Most recent IF: 2.843; 2012 IF: 2.470  
  Call Number UA @ lucian @ c:irua:100466UA @ admin @ c:irua:100466 Serial 1483  
Permanent link to this record
 

 
Author Turner, S.; Lu, Y.-G.; Janssens, S.D.; da Pieve, F.; Lamoen, D.; Verbeeck, J.; Haenen, K.; Wagner, P.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Local boron environment in B-doped nanocrystalline diamond films Type A1 Journal article
  Year 2012 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 4 Issue 19 Pages 5960-5964  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Thin films of heavily B-doped nanocrystalline diamond (B:NCD) have been investigated by a combination of high resolution annular dark field scanning transmission electron microscopy and spatially resolved electron energy-loss spectroscopy performed on a state-of-the-art aberration corrected instrument to determine the B concentration, distribution and the local B environment. Concentrations of [similar]1 to 3 at.% of boron are found to be embedded within individual grains. Even though most NCD grains are surrounded by a thin amorphous shell, elemental mapping of the B and C signal shows no preferential embedding of B in these amorphous shells or in grain boundaries between the NCD grains, in contrast with earlier work on more macroscopic superconducting polycrystalline B-doped diamond films. Detailed inspection of the fine structure of the boron K-edge and comparison with density functional theory calculated fine structure energy-loss near-edge structure signatures confirms that the B atoms present in the diamond grains are substitutional atoms embedded tetrahedrally into the diamond lattice.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos (up) 000308705900026 Publication Date 2012-08-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 39 Open Access  
  Notes FWO G056810N; GOA XANES meets ELNES; 246791 COUNTATOMS; Hercules; 262348 ESMI; Methusalem Nano Approved Most recent IF: 7.367; 2012 IF: 6.233  
  Call Number UA @ lucian @ c:irua:101227UA @ admin @ c:irua:101227 Serial 1825  
Permanent link to this record
 

 
Author Mortet, V.; Zhang, L.; Eckert, M.; D'Haen, J.; Soltani, A.; Moreau, M.; Troadec, D.; Neyts, E.; De Jaeger, J.C.; Verbeeck, J.; Bogaerts, A.; Van Tendeloo, G.; Haenen, K.; Wagner, P. pdf  doi
openurl 
  Title Grain size tuning of nanocrystalline chemical vapor deposited diamond by continuous electrical bias growth : experimental and theoretical study Type A1 Journal article
  Year 2012 Publication Physica status solidi : A : applications and materials science Abbreviated Journal Phys Status Solidi A  
  Volume 209 Issue 9 Pages 1675-1682  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this work, a detailed structural and spectroscopic study of nanocrystalline diamond (NCD) thin films grown by a continuous bias assisted CVD growth technique is reported. This technique allows the tuning of grain size and phase purity in the deposited material. The crystalline properties of the films are characterized by SEM, TEM, EELS, and Raman spectroscopy. A clear improvement of the crystalline structure of the nanograined diamond film is observed for low negative bias voltages, while high bias voltages lead to thin films consisting of diamond grains of only ∼10 nm nanometer in size, showing remarkable similarities with so-called ultrananocrystalline diamond. These layers arecharacterized by an increasing amount of sp2-bonded carbon content of the matrix in which the diamond grains are embedded. Classical molecular dynamics simulations support the observed experimental data, giving insight in the underlying mechanism for the observed increase in deposition rate with bias voltage. Furthermore, a high atomic concentration of hydrogen has been determined in these films. Finally, Raman scattering analyses confirm that the Raman line observed at ∼1150 cm−1 cannot be attributed to trans-poly-acetylene, which continues to be reported in literature, reassigning it to a deformation mode of CHx bonds in NCD.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000308942100009 Publication Date 2012-09-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1862-6300; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.775 Times cited 31 Open Access  
  Notes M.E. and E.N. acknowledge financial support from, respectively, the Institute for Promotion of Innovation through Science and Technology in Flanders (IWT), and the Research Foundation-Flanders (FWO). J.V. gratefully acknowledges financial support from the GOA project “XANES meets ELNES” of the research fund of the University of Antwerp. Calculation support was provided by the University of Antwerp through the core facility CALCUA. G.V.T. acknowledges the ERC grant COUNTATOMS. The work was also financially supported by the joint UAUHasseltMethusalem “NANO” network, the Research Programs G.0068.07 and G.0555.10N of the Research Foundation-Flanders (FWO), the IAP-P6/42 project “Quantum Effects in Clusters and Nanowires”, and by the EU FP7 through the Integrated Infrastructure Initiative “ESMI” (No. 262348), the Marie Curie ITN “MATCON” (PITN-GA-2009-238201), and the Collaborative Project “DINAMO” (No. 245122). Approved Most recent IF: 1.775; 2012 IF: 1.469  
  Call Number UA @ lucian @ c:irua:101516UA @ admin @ c:irua:101516 Serial 1364  
Permanent link to this record
 

 
Author Van Tendeloo, G.; Bals, S.; Van Aert, S.; Verbeeck, J.; van Dyck, D. pdf  url
doi  openurl
  Title Advanced electron microscopy for advanced materials Type A1 Journal article
  Year 2012 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 24 Issue 42 Pages 5655-5675  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract The idea of this Review is to introduce newly developed possibilities of advanced electron microscopy to the materials science community. Over the last decade, electron microscopy has evolved into a full analytical tool, able to provide atomic scale information on the position, nature, and even the valency atoms. This information is classically obtained in two dimensions (2D), but can now also be obtained in 3D. We show examples of applications in the field of nanoparticles and interfaces.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos (up) 000310602200001 Publication Date 2012-08-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 107 Open Access  
  Notes This work was supported by funding from the European Research Council under the 7th Framework Program (FP7), ERC grant No 246791 – COUNTATOMS. J.V. Acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant 278510 VORTEX. The authors gratefully acknowledge funding from the Research Foundation Flanders (FWO, Belgium). The Qu-Ant-EM microscope was partly funded by the Hercules Fund from the Flemish Government. We thank Rafal Dunin-Borkowski for providing Figure 5d. The authors would like to thank the colleagues who have contributed to this work over the years, including K.J. Batenburg, R. Erni, B. Goris, F. Leroux, H. Lichte, A. Lubk, B. Partoens, M. D. Rossell, P. Schattschneider, B. Schoeters, D. Schryvers, H. Tan, H. Tian, S. Turner, M. van Huis. ECASJO_; Approved Most recent IF: 19.791; 2012 IF: 14.829  
  Call Number UA @ lucian @ c:irua:100470UA @ admin @ c:irua:100470 Serial 70  
Permanent link to this record
 

 
Author Bliokh, K.Y.; Schattschneider, P.; Verbeeck, J.; Nori, F. url  doi
openurl 
  Title Electron vortex beams in a magnetic field : a new twist on Landau levels and Aharonov-Bohm states Type A1 Journal article
  Year 2012 Publication Physical review X Abbreviated Journal Phys Rev X  
  Volume 2 Issue 4 Pages 041011-41015  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We examine the propagation of the recently discovered electron vortex beams in a longitudinal magnetic field. We consider both the Aharonov-Bohm configuration with a single flux line and the Landau case of a uniform magnetic field. While stationary Aharonov-Bohm modes represent Bessel beams with flux- and vortex-dependent probability distributions, stationary Landau states manifest themselves as nondiffracting Laguerre-Gaussian beams. Furthermore, the Landau-state beams possess field- and vortex-dependent phases: (i) the Zeeman phase from coupling the quantized angular momentum to the magnetic field and (ii) the Gouy phase, known from optical Laguerre-Gaussian beams. Remarkably, together these phases determine the structure of Landau energy levels. This unified Zeeman-Landau-Gouy phase manifests itself in a nontrivial evolution of images formed by various superpositions of modes. We demonstrate that, depending on the chosen superposition, the image can rotate in a magnetic field with either (i) Larmor, (ii) cyclotron (double-Larmor), or (iii) zero frequency. At the same time, its centroid always follows the classical cyclotron trajectory, in agreement with the Ehrenfest theorem. Interestingly, the nonrotating superpositions reproduce stable multivortex configurations that appear in rotating superfluids. Our results open an avenue for the direct electron-microscopy observation of fundamental properties of free quantum-electron states in magnetic fields.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication College Park, Md Editor  
  Language Wos (up) 000311551100001 Publication Date 2012-11-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2160-3308; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.789 Times cited 130 Open Access  
  Notes Vortex ECASJO_; Approved Most recent IF: 12.789; 2012 IF: 6.711  
  Call Number UA @ lucian @ c:irua:105139UA @ admin @ c:irua:105139 Serial 991  
Permanent link to this record
 

 
Author Turner, S.; Egoavil, R.; Batuk, M.; Abakumov, A.A.; Hadermann, J.; Verbeeck, J.; Van Tendeloo, G. pdf  doi
openurl 
  Title Site-specific mapping of transition metal oxygen coordination in complex oxides Type A1 Journal article
  Year 2012 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 101 Issue 24 Pages 241910  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We demonstrate site-specific mapping of the oxygen coordination number for transition metals in complex oxides using atomically resolved electron energy-loss spectroscopy in an aberration-corrected scanning transmission electron microscope. Pb2Sr2Bi2Fe6O16 contains iron with a constant Fe3+ valency in both octahedral and tetragonal pyramidal coordination and is selected to demonstrate the principle of site-specific coordination mapping. Analysis of the site-specific Fe-L2,3 data reveals distinct variations in the fine structure that are attributed to Fe in a six-fold (octahedron) or five-fold (distorted tetragonal pyramid) oxygen coordination. Using these variations, atomic resolution coordination maps are generated that are in excellent agreement with simulations.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos (up) 000312490000035 Publication Date 2012-12-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 12 Open Access  
  Notes Fwo; Countatoms; Vortex; Esteem 312483; esteem2jra3 ECASJO; Approved Most recent IF: 3.411; 2012 IF: 3.794  
  Call Number UA @ lucian @ c:irua:105302UA @ admin @ c:irua:105302 Serial 3030  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: