toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Castelano, L.K.; Hai, G.-Q.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title Control of the persistent currents in two interacting quantum rings through the Coulomb interaction and interring tunneling Type A1 Journal article
  Year 2008 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 78 Issue 19 Pages 195315,1-195315,4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The persistent current in two vertically coupled quantum rings containing few electrons is studied. We find that the Coulomb interaction between the rings in the absence of tunneling affects the persistent current in each ring and the ground-state configurations. Quantum tunneling between the rings alters significantly the ground state and the persistent current in the system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos (up) 000262607800074 Publication Date 2008-11-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 28 Open Access  
  Notes Approved Most recent IF: 3.836; 2008 IF: 3.322  
  Call Number UA @ lucian @ c:irua:76020 Serial 500  
Permanent link to this record
 

 
Author Avetisyan, A.A.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title Electric field tuning of the band gap in graphene multilayers Type A1 Journal article
  Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 79 Issue 3 Pages 035421,1-035421,7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A perpendicular electric field applied to multilayers of graphene modifies the electronic structure near the K point and may induce an energy gap in the electronic spectrum. This gap is tunable by the gate voltage and its size depends on the number of layers. We use a tight-binding approach to calculate the band structure and include a self-consistent calculation in order to obtain the density of charge carriers. Results are presented for systems consisting of three and four layers of graphene. The effect of the circular asymmetry of the band structure on the gap is critically examined.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos (up) 000262978200119 Publication Date 2009-01-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 106 Open Access  
  Notes Approved Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:75984 Serial 887  
Permanent link to this record
 

 
Author Li, B.; Partoens, B.; Peeters, F.M.; Magnus, W. url  doi
openurl 
  Title Dielectric mismatch effect on coupled shallow impurity states in a semiconductor nanowire Type A1 Journal article
  Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 79 Issue 8 Pages 085306,1-085306,7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Coupled shallow impurity states in a freestanding semiconductor nanowire and in a semiconductor nanowire surrounded by a metallic gate are studied within the effective-mass approximation. Bonding and antibonding states are found due to the coupling of the two impurities, and their energy converges with increasing distance di between the two impurities. The dependences of the binding energy on the wire radius R, the distance di between the two impurities, and the impurity radial position in the nanowire are examined.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos (up) 000263816000051 Publication Date 2009-02-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 11 Open Access  
  Notes Approved Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:76223 Serial 691  
Permanent link to this record
 

 
Author Li, B.; Partoens, B.; Peeters, F.M.; Magnus, W. pdf  doi
openurl 
  Title Dielectric mismatch effect on coupled impurity states in a freestanding nanowire Type A1 Journal article
  Year 2009 Publication Microelectronics journal Abbreviated Journal Microelectron J  
  Volume 40 Issue 3 Pages 446-448  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We studied the coupled impurity states in a freestanding semiconductor nanowire (NW), within the effective mass approximation and including the effect of the dielectric mismatch, by using finite element method. Bonding and anti-bonding states are found and their energies converge with increasing distance di between the two impurities. The dependence of the binding energy on the wire radius R and the distance di between the two impurities is investigated, and we compare it with the result of a freestanding NW that contains a single impurity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Luton Editor  
  Language Wos (up) 000264694700017 Publication Date 2008-07-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0026-2692; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.163 Times cited 4 Open Access  
  Notes Approved Most recent IF: 1.163; 2009 IF: 0.778  
  Call Number UA @ lucian @ c:irua:76410 Serial 690  
Permanent link to this record
 

 
Author Tomecka, D.M.; Kamieniarz, G.; Partoens, B.; Peeters, F.M. doi  openurl
  Title Ground state configurations and melting of two-dimensional non-uniformly charged classical clusters Type A1 Journal article
  Year 2009 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 21 Issue 15 Pages 155301,1-155301,7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We consider classical two-dimensional (2D) Coulomb clusters consisting of two species containing five particles with charge q1 and five with charge q2, respectively. Using Monte Carlo and molecular dynamics (MD) simulations, we investigated the ground state configurations as well as radial and angular displacements of particles as a function of temperature and their dependence on the ratio q = q2/q1. We found new configurations and a new multi-step melting behavior for q sufficiently different from the uniform charge limit q = 1.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos (up) 000264708600007 Publication Date 2009-03-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 2 Open Access  
  Notes Approved Most recent IF: 2.649; 2009 IF: 1.964  
  Call Number UA @ lucian @ c:irua:76412 Serial 1384  
Permanent link to this record
 

 
Author Slachmuylders, A.F.; Partoens, B.; Magnus, W.; Peeters, F.M. doi  openurl
  Title Neutral shallow donors near a metallic interface Type A1 Journal article
  Year 2009 Publication Microelectronics journal Abbreviated Journal Microelectron J  
  Volume 40 Issue 4/5 Pages 753-755  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The effect of a metallic gate on the bound states of a shallow donor located near the gate is studied. We calculate the energy spectrum as a function of the distance between the metallic gate and the donor and find an anti-crossing behavior in the energy levels for certain distances. We show how a transverse electric field can tune the average position of the electron with respect to the metallic gate and the impurity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Luton Editor  
  Language Wos (up) 000265870200024 Publication Date 2009-02-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0026-2692; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.163 Times cited 1 Open Access  
  Notes Approved Most recent IF: 1.163; 2009 IF: 0.778  
  Call Number UA @ lucian @ c:irua:77029 Serial 2296  
Permanent link to this record
 

 
Author Leenaerts, O.; Partoens, B.; Peeters, F.M. doi  openurl
  Title Adsorption of small molecules on graphene Type A1 Journal article
  Year 2009 Publication Microelectronics journal Abbreviated Journal Microelectron J  
  Volume 40 Issue 4/5 Pages 860-862  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate the adsorption process of small molecules on graphene through first-principles calculations and show the presence of two main charge transfer mechanisms. Which mechanism is the dominant one depends on the magnetic properties of the adsorbing molecules. We explain these mechanisms through the density of states of the system and the molecular orbitals of the adsorbates, and demonstrate the possible difficulties in calculating the charge transfer from first principles between a graphene sheet and a molecule. Our results are in good agreement with experiment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Luton Editor  
  Language Wos (up) 000265870200058 Publication Date 2008-12-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0026-2692; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.163 Times cited 116 Open Access  
  Notes Approved Most recent IF: 1.163; 2009 IF: 0.778  
  Call Number UA @ lucian @ c:irua:77030 Serial 65  
Permanent link to this record
 

 
Author Austing, D.G.; Payette, C.; Nair, S.V.; Yu, G.; Gupta, J.A.; Partoens, B.; Amaha, S.; Tarucha, S. doi  openurl
  Title Scheme for coherently quenching resonant current in a three-level quantum dot energy level mixer Type A1 Journal article
  Year 2009 Publication Physica status solidi: C: conferences and critical reviews Abbreviated Journal  
  Volume 6 Issue 4 Pages 940-943  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We outline a scheme to create a dark state by three-level mixing that is potentially a useful tool for quantum coherent transport. Magnetic-field-induced intra-dot level mixing can lead to rich quantum superposition phenomena between three approaching single-particle states in a quantum dot when probed by the ground state of an adjacent weakly coupled quantum dot in the single-electron resonant tunnelling regime. The mixing relies on non-negligible anharmonicity and anisotropy in confining potentials of realistic quantum dots. Anti-crossing and transfer of strengths between resonances can be understood with a simple coherent level mixing model. Superposition can lead to the formation of a dark state by complete cancellation of an otherwise strong resonance. This is an all-electrical analogue of coherent population trapping seen in three-level-systems from quantum and atom optics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos (up) 000266597600040 Publication Date 2008-12-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1862-6351;1610-1642; ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:86927 Serial 2953  
Permanent link to this record
 

 
Author Payette, C.; Partoens, B.; Yu, G.; Gupta, J.A.; Austing, D.G.; Nair, S.V.; Amaha, S.; Tarucha, S. doi  openurl
  Title Modeling single-particle energy levels and resonance currents in a coherent electronic quantum dot mixer Type A1 Journal article
  Year 2009 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 94 Issue 22 Pages 222101,1-22101,3  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We present model calculations based on a coherent tunneling picture, which reproduce well both the single-particle energy level position and the resonant current strength at two typical anticrossings, one involving two levels and the other three levels in a coherent mixer composed of two weakly coupled vertical quantum dots. An essential ingredient is the inclusion of higher degree terms to account for deviations from an ideal elliptical parabolic confining potential in realistic dots. We also calculate density plots of the mixed states for the modified potential.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos (up) 000266674300024 Publication Date 2009-06-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 5 Open Access  
  Notes Approved Most recent IF: 3.411; 2009 IF: 3.554  
  Call Number UA @ lucian @ c:irua:77380 Serial 2139  
Permanent link to this record
 

 
Author Leenaerts, O.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title Water on graphene: hydrophobicity and dipole moment using density functional theory Type A1 Journal article
  Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 79 Issue 23 Pages 235440,1-235440,5  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We apply density-functional theory to study the adsorption of water clusters on the surface of a graphene sheet and find i) graphene is highly hydrophobic and ii) adsorbed water has very little effect on the electronic structure of graphene. A single water cluster on graphene has a very small average dipole moment which is in contrast with an ice layer that exhibits a strong dipole moment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos (up) 000267699500147 Publication Date 2009-06-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 292 Open Access  
  Notes Approved Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:77693 Serial 3904  
Permanent link to this record
 

 
Author Peelaers, H.; Partoens, B.; Peeters, F.M. doi  openurl
  Title Phonons in Ge nanowires Type A1 Journal article
  Year 2009 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 95 Issue 12 Pages 122110,1-122110,3  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The phonon spectra of thin freestanding, hydrogen passivated, Ge nanowires are calculated by ab initio techniques. The effect of confinement on the phonon modes as caused by the small diameters of the wires is investigated. Confinement causes a hardening of the optical modes and a softening of the longitudinal acoustic modes. The stability of the nanowires, undoped or doped with B or P atoms, is investigated using the obtained phonon spectra. All considered wires were stable, except for highly doped, very thin nanowires.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos (up) 000270243800035 Publication Date 2009-09-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 12 Open Access  
  Notes Approved Most recent IF: 3.411; 2009 IF: 3.554  
  Call Number UA @ lucian @ c:irua:79307 Serial 2606  
Permanent link to this record
 

 
Author Castelano, L.K.; Hai, G.Q.; Partoens, B.; Peeters, F.M. doi  openurl
  Title Artificial molecular quantum rings under magnetic field influence Type A1 Journal article
  Year 2009 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 106 Issue 7 Pages 073702,1-073702,8  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The ground states of a few electrons confined in two vertically coupled quantum rings in the presence of an external magnetic field are studied systematically within the current spin-density functional theory. Electron-electron interactions combined with inter-ring tunneling affect the electronic structure and the persistent current. For small values of the external magnetic field, we recover the zero magnetic field molecular quantum ring ground state configurations. Increasing the magnetic field many angular momentum, spin, and isospin transitions are predicted to occur in the ground state. We show that these transitions follow certain rules, which are governed by the parity of the number of electrons, the single-particle picture, Hunds rules, and many-body effects.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos (up) 000270915600047 Publication Date 2009-10-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 5 Open Access  
  Notes Approved Most recent IF: 2.068; 2009 IF: 2.072  
  Call Number UA @ lucian @ c:irua:86926 Serial 155  
Permanent link to this record
 

 
Author Nelissen, K.; Partoens, B.; van den Broeck, C. doi  openurl
  Title Work and dissipation in 2D clusters Type A1 Journal article
  Year 2009 Publication Europhysics letters Abbreviated Journal Epl-Europhys Lett  
  Volume 88 Issue 3 Pages 30001-30001,6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We show by extensive numerical simulations, that far-from-equilibrium experiments on dusty plasmas and on dipole particles in a circular cavity are good candidates for the verification of the Jarzynski equality, the Crooks relation and, to a lesser extent, of the recently obtained microscopic expression for the dissipated work.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Paris Editor  
  Language Wos (up) 000271961400001 Publication Date 2009-11-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0295-5075;1286-4854; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.957 Times cited 2 Open Access  
  Notes Approved Most recent IF: 1.957; 2009 IF: 2.893  
  Call Number UA @ lucian @ c:irua:86925 Serial 3922  
Permanent link to this record
 

 
Author Avetisyan, A.A.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title Electric-field control of the band gap and Fermi energy in graphene multilayers by top and back gates Type A1 Journal article
  Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 80 Issue 19 Pages 195401,1-195401,11  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract It is known that a perpendicular electric field applied to multilayers of graphene modifies the electronic structure near the K point and may induce an energy gap in the electronic spectrum which is tunable by the gate voltage. Here we consider a system of graphene multilayers in the presence of a positively charged top and a negatively charged back gate to control independently the density of electrons on the graphene layers and the Fermi energy of the system. The band structure of three- and four-layer graphene systems in the presence of the top and back gates is obtained using a tight-binding approach. A self-consistent Hartree approximation is used to calculate the induced charges on the different graphene layers. We predict that for opposite and equal charges on the top and bottom layers an energy gap is opened at the Fermi level. For an even number of layers this gap is larger than in the case of an odd number of graphene layers. We find that the circular asymmetry of the spectrum, which is a consequence of the trigonal warping, changes the size of the induced electronic gap, even when the total density of the induced electrons on the graphene layers is low.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos (up) 000272311000087 Publication Date 2009-11-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 106 Open Access  
  Notes Approved Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:80315 Serial 883  
Permanent link to this record
 

 
Author Leenaerts, O.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title Hydrogenation of bilayer graphene and the formation of bilayer graphane from first principles Type A1 Journal article
  Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 80 Issue 24 Pages 245422,1-245422,6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We performed ab initio density-functional theory calculations to investigate the process of hydrogenation of a bilayer of graphene. 50% hydrogen coverage is possible in case that the hydrogen atoms are allowed to adsorb on both sides of the bilayer. In this case interlayer chemical bonding occurs which stabilizes the structure. At maximum coverage, a bilayer of graphane is formed which has properties that are similar to those of a single layer of graphane.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos (up) 000273229200126 Publication Date 2009-12-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 113 Open Access  
  Notes Approved Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:80578 Serial 1535  
Permanent link to this record
 

 
Author Dixit, H.; Saniz, R.; Lamoen, D.; Partoens, B. pdf  doi
openurl 
  Title The quasiparticle band structure of zincblende and rocksalt ZnO Type A1 Journal article
  Year 2010 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 22 Issue 12 Pages 125505,1-125505,7  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract We present the quasiparticle band structure of ZnO in its zincblende (ZB) and rocksalt (RS) phases at the Γ point, calculated within the GW approximation. The effect of the pd hybridization on the quasiparticle corrections to the band gap is discussed. We compare three systems, ZB-ZnO which shows strong pd hybridization and has a direct band gap, RS-ZnO which is also hybridized but includes inversion symmetry and therefore has an indirect band gap, and ZB-ZnS which shows a weaker hybridization due to a change of the chemical species from oxygen to sulfur. The quasiparticle corrections are calculated with different numbers of valence electrons in the Zn pseudopotential. We find that the Zn20 + pseudopotential is essential for the adequate treatment of the exchange interaction in the self-energy. The calculated GW band gaps are 2.47 eV and 4.27 eV respectively, for the ZB and RS phases. The ZB-ZnO band gap is underestimated compared to the experimental value of 3.27 by ~ 0.8 eV. The RS-ZnO band gap compares well with the experimental value of 4.5 eV. The underestimation for ZB-ZnO is correlated with the strong pd hybridization. The GW band gap for ZnS is 3.57 eV, compared to the experimental value of 3.8 eV.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos (up) 000275496600010 Publication Date 2010-03-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 53 Open Access  
  Notes Iwt; Fwo; Bof-Nio Approved Most recent IF: 2.649; 2010 IF: 2.332  
  Call Number UA @ lucian @ c:irua:81531 Serial 2802  
Permanent link to this record
 

 
Author Avetisyan, A.A.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title Stacking order dependent electric field tuning of the band gap in graphene multilayers Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 81 Issue 11 Pages 115432,1-115432,7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The effect of different stacking order of graphene multilayers on the electric field induced band gap is investigated. We considered a positively charged top and a negatively charged back gate in order to independently tune the band gap and the Fermi energy of three and four layer graphene systems. A tight-binding approach within a self-consistent Hartree approximation is used to calculate the induced charges on the different graphene layers. We found that the gap for trilayer graphene with the ABC stacking is much larger than the corresponding gap for the ABA trilayer. Also we predict that for four layers of graphene the energy gap strongly depends on the choice of stacking, and we found that the gap for the different types of stacking is much larger as compared to the case of Bernal stacking. Trigonal warping changes the size of the induced electronic gap by approximately 30% for intermediate and large values of the induced electron density.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000276248800145 Publication Date 2010-03-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 142 Open Access  
  Notes ; ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:82274 Serial 3148  
Permanent link to this record
 

 
Author Payette, C.; Amaha, S.; Yu, G.; Gupta, J.A.; Austing, D.G.; Nair, S.V.; Partoens, B.; Tarucha, S. url  doi
openurl 
  Title Coherent level mixing in dot energy spectra measured by magnetoresonant tunneling spectroscopy of vertical quantum dot molecules Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 81 Issue 24 Pages 245310,1-245310,15  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We study by magnetoresonant tunneling spectroscopy single-particle energy spectra of the constituent weakly coupled dots in vertical quantum dot molecules over a wide energy window. The measured energy spectra are well modeled by calculated spectra for dots with in-plane confinement potentials that are elliptical and parabolic in form. However, in the regions where two, three, or four single-particle energy levels are naively expected to cross, we observe pronounced level anticrossing behavior and strong variations in the resonant currents as a consequence of coherent mixing induced by small deviations in the nearly ideal dot confinement potentials. We present detailed analysis of the energy spectra, and focus on two examples of three-level crossings whereby the coherent mixing leads to concurrent suppression and enhancement of the resonant currents when the anticrossing levels are minimally separated. The suppression of resonant current is of particular interest since it is a signature of dark state formation due to destructive interference. We also describe in detail and compare two measurement strategies to reliably extract the resonant currents required to characterize the level mixing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000278606100003 Publication Date 2010-06-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 6 Open Access  
  Notes ; We thank A. Bezinger, D. Roth, and M. Malloy for assistance with some of the processing, and K. Ono, T. Kodera, T. Hatano, Y. Tokura, M. Stopa, M. Hilke, G.C. Aers, M. Korkusinski, and R. M. Abolfath for useful discussions. Part of this work is supported by NSERC (Discovery Grant No. 208201), Flemish Science Foundation (FWO-VI), Grant-in-Aid for Scientific Research S (Grant No. 191040070), B (Grant No. 18340081), and by Special Coordination Funds for Promoting Science and Technology, and MEXT. S.T. acknowledges support from QuEST program (BAA-0824). ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:83095 Serial 379  
Permanent link to this record
 

 
Author Payette, C.; Austing, D.G.; Yu, G.; Gupta, J.A.; Nair, S.V.; Partoens, B.; Amaha, S.; Tarucha, S. pdf  url
doi  openurl
  Title Branch current behavior at two level anti-crossings in vertical quantum dot single-particle spectra Type A1 Journal article
  Year 2010 Publication AIP conference proceedings Abbreviated Journal  
  Volume 1199 Issue Pages 271-272  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We study single-electron-elastic-resonant-tunneling through two weakly coupled vertical quantum dots and investigate the branch current behavior at anti-crossings between two single-particle energy levels in the constituent dot spectra that are induced to approach each other by application of an out-of-dot-plane magnetic field. We observe both the familiar case of monotonic transfer of the resonant current strengths between the two branches as well as the less familiar case of concurrent enhancement and suppression (ideally complete cancellation) of the resonant current in the two branches. These two situations can be explained in terms of a simple coherent tunneling model. ©2009 American Institute of Physics  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos (up) 000281590800127 Publication Date 2010-01-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:86923 Serial 254  
Permanent link to this record
 

 
Author Peelaers, H.; Partoens, B.; Peeters, F.M. doi  openurl
  Title Phonon band structures of Si nanowires Type A1 Journal article
  Year 2009 Publication AIP conference proceedings Abbreviated Journal  
  Volume 1199 Issue Pages 323-324  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We present full ab initio calculations of the phonon band structure of thin Si nanowires oriented along the [110] direction. Using these phonon dispersion relations we investigate the structural stability of these wires. We found that all studied wires were stable also when doped with either B or P, if the unit cell was taken sufficiently large along the wire axis. The evolution of the phonon dispersion relations and of the sound velocities with respect to the wire diameters is discussed. Softening is observed for acoustic modes and hardening for optical phonon modes with increasing wire diameters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos (up) 000281590800153 Publication Date 2010-01-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:84891 Serial 2602  
Permanent link to this record
 

 
Author Peelaers, H.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title Electronic and dynamical properties of Si/Ge core-shell nanowires Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 82 Issue 11 Pages 113411-113411,4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Full ab initio techniques are applied to study the electronic and dynamical properties of free standing, hydrogen-passivated Si/Ge core-shell nanowires oriented along the [110] direction. All studied wires exhibit a direct band gap and are found to be structurally stable. The different contributions of the core and shell atoms to the phonon spectra are identified. The acoustic phonon velocities and the frequencies of some typical optical modes are compared with those of pure Si and Ge nanowires. These depend either on the concentration or on the type of core material. Optical modes are hardened and longitudinal acoustic velocities are softened with decreasing wire diameter.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000282270000001 Publication Date 2010-09-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 13 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), and NOI-BOF (University of Antwerp). ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:85421 Serial 995  
Permanent link to this record
 

 
Author Hernández-Nieves, A.D.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title Electronic and magnetic properties of superlattices of graphene/graphane nanoribbons with different edge hydrogenation Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 82 Issue 16 Pages 165412-165412,9  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Zigzag graphene nanoribbons patterned on graphane are studied using spin-polarized ab initio calculations. We found that the electronic and magnetic properties of the graphene/graphane superlattice strongly depends on the degree of hydrogenation at the interfaces between the two materials. When both zigzag interfaces are fully hydrogenated, the superlattice behaves like a freestanding zigzag graphene nanoribbon, and the magnetic ground state is antiferromagnetic. When one of the interfaces is half hydrogenated, the magnetic ground state becomes ferromagnetic, and the system is very close to being a half metal with possible spintronics applications whereas the magnetic ground state of the superlattice with both interfaces half hydrogenated is again antiferromagnetic. In this last case, both edges of the graphane nanoribbon also contribute to the total magnetization of the system. All the spin-polarized ground states are semiconducting, independent of the degree of hydrogenation of the interfaces. The ab initio results are supplemented by a simple tight-binding analysis that captures the main qualitative features. Our ab initio results show that patterned hydrogenation of graphene is a promising way to obtain stable graphene nanoribbons with interesting technological applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000282569500011 Publication Date 2010-10-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 46 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-VI), the Belgian Science Policy (IAP), and the collaborative project FWO-MINCyT (FW/08/01). A. D. H. acknowledges also support from ANPCyT (under Grant No. PICT2008-2236) ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:85030 Serial 996  
Permanent link to this record
 

 
Author Leenaerts, O.; Peelaers, H.; Hernández-Nieves, A.D.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title First-principles investigation of graphene fluoride and graphane Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 82 Issue 19 Pages 195436,1-195436,6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Different stoichiometric configurations of graphane and graphene fluoride are investigated within density-functional theory. Their structural and electronic properties are compared, and we indicate the similarities and differences among the various configurations. Large differences between graphane and graphene fluoride are found that are caused by the presence of charges on the fluorine atoms. A configuration that is more stable than the boat configuration is predicted for graphene fluoride. We also perform GW calculations for the electronic band gap of both graphene derivatives. These band gaps and also the calculated Youngs moduli are at variance with available experimental data. This might indicate that the experimental samples contain a large number of defects or are only partially covered with H or F.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000284399200004 Publication Date 2010-11-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 367 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-V1), the NOI-BOF of the University of Antwerp, the Belgian Science Policy (IAP), and the collaborative project FWO-MINCyT (Grant No. FW/08/01). A.D.H. also acknowledges support from ANPCyT (Grant No. PICT 2008-2236). ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:86916 Serial 1212  
Permanent link to this record
 

 
Author Saniz, R.; Dixit, H.; Lamoen, D.; Partoens, B. pdf  doi
openurl 
  Title Quasiparticle energies and uniaxial pressure effects on the properties of SnO2 Type A1 Journal article
  Year 2010 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 97 Issue Pages 261901-261901,3  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract We calculate the quasiparticle energy spectrum of SnO2 within the GW approximation, properly taking into account the contribution of core levels to the energy corrections. The calculated fundamental gap is of 3.85 eV. We propose that the difference with respect to the experimental optical gap (3.6 eV) is due to excitonic effects in the latter. We further consider the effect applied on uniaxial pressure along the c-axis. Compared to GW, the effect of pressure on the quasiparticle energies and band gap is underestimated by the local-density approximation. The quasiparticle effective masses, however, appear to be well described by the latter.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos (up) 000285768100015 Publication Date 2010-12-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 23 Open Access  
  Notes Iwt; Fwo; Bof-Noi Approved Most recent IF: 3.411; 2010 IF: 3.841  
  Call Number UA @ lucian @ c:irua:85759 Serial 2803  
Permanent link to this record
 

 
Author Kishore, V.V.R.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title Electronic structure and optical absorption of GaAs/AlxGa1-xAs and AlxGa1-xAs/GaAs core-shell nanowires Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 82 Issue 23 Pages 235425-235425,9  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The electronic structure of GaAs/AlxGa1−xAs and AlxGa1−xAs/GaAs core-shell nanowires grown in the [001] direction is studied. The k⋅p method with the 6×6 Kohn-Lüttinger Hamiltonian, taking into account the split-off band is used. The variation in the energy level dispersion, the spinor contribution to the ground state and the optical interband absorption are studied. For some range of parameters the top of the valence band exhibits a camelback structure which results in an extra peak in the optical absorption.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000286769100008 Publication Date 2010-12-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 23 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP). ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:86911 Serial 1010  
Permanent link to this record
 

 
Author Peelaers, H.; Partoens, B.; Giantomassi, M.; Rangel, T.; Goossens, E.; Rignanese, G.-M.; Gonze, X.; Peeters, F.M. url  doi
openurl 
  Title Convergence of quasiparticle band structures of Si and Ge nanowires in the GW approximation and the validity of scissor shifts Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 83 Issue 4 Pages 045306-045306,6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Starting from fully converged density-functional theory calculations, the quasiparticle corrections are calculated for different sized Si and Ge nanowires using the GW approximation. The effectiveness of recently developed techniques in speeding up the convergence of the quasiparticle calculations is demonstrated. The complete quasiparticle band structures are also obtained using an interpolation technique based on maximallylocalized Wannier functions. From the quasiparticle results, we assess the correctness of the commonly applied scissor-shift correction. Dispersion changes are observed, which are also reflected in changes in the effective band masses calculated taking into account quasiparticle corrections.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000286771400004 Publication Date 2011-01-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 18 Open Access  
  Notes ; We are grateful to Yann Pouillon for valuable technical support with the build system of ABINIT, related to the WANNIER90 library. This work was supported by the Flemish Science Foundation (FWO-Vl) and by the Interuniversity Attraction Poles Program (P6/42)-Belgian State-Belgian Science Policy. X. G. and G.-M. R. acknowledge funding from the EU's 7th Framework Programme through the ETSF I3 e-Infrastructure project (Grant No. 211956), the Communaute francaise de Belgique through the Action de Recherche Concertee 07/12-003 “Nanosystemes hybrides metal-organiques,” and the Wallon Region Project No. 816849 “ European Theoretical Spectroscopy Facility” (WALL ETSF). M. G. acknowledges funding from the FRFC Project No. 2.4.589.09.F. ; Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:86905 Serial 510  
Permanent link to this record
 

 
Author Peelaers, H.; Hernández-Nieves, A.D.; Leenaerts, O.; Partoens, B.; Peeters, F.M. doi  openurl
  Title Vibrational properties of graphene fluoride and graphane Type A1 Journal article
  Year 2011 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 98 Issue 5 Pages 051914  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The vibrational properties of graphene fluoride and graphane are studied using ab initio calculations. We find that both sp(3) bonded derivatives of graphene have different phonon dispersion relations and phonon densities of states as expected from the different masses associated with the attached atoms of fluorine and hydrogen, respectively. These differences manifest themselves in the predicted temperature behavior of the constant-volume specific heat of both compounds. (C) 2011 American Institute of Physics. [doi:10.1063/1.3551712]  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos (up) 000286988400027 Publication Date 2011-02-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 66 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-V1), the Belgian Science Policy (IAP), and the collaborative project FWO-MINCyT (Contract No. FW /08/01). A.D.H.-N. is also supported by ANPCyT (under Grant No. PICT2008-2236) ; Approved Most recent IF: 3.411; 2011 IF: 3.844  
  Call Number UA @ lucian @ c:irua:105604 Serial 3844  
Permanent link to this record
 

 
Author Lobato, I.; Partoens, B. url  doi
openurl 
  Title Multiple Dirac particles in AA-stacked graphite and multilayers of graphene Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 83 Issue 16 Pages 165429-165429,9  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract Using the tight-binding formalism we show that in the recently experimentally realized AA-stacked graphite in essence two types of massless relativistic Dirac particles are present with a different effective speed of light. We also investigate how the electronic structure evolves from a single graphene sheet into AA-stacked graphite. It is shown that in contrast to AB-stacked graphene layers, the spectrum of AA-stacked graphene layers can be considered as a superposition of single-layer spectra and only particles with a linear spectrum at the Fermi energy around the K point are present. From the evolution of the band overlap we show that 6 multilayers of AA-stacked graphene already behave as AA-stacked graphite. The evolution of the effective speeds of light of the Dirac particles to their bulk values shows exactly the same behavior. The tight-binding parameters we use to describe AA-stacked graphite and multilayers of graphene are obtained by ab initio calculations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000290113900005 Publication Date 2011-04-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 68 Open Access  
  Notes ; ; Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:89717 Serial 2225  
Permanent link to this record
 

 
Author Dixit, H.; Tandon, N.; Cottenier, S.; Saniz, R.; Lamoen, D.; Partoens, B.; van Speybroeck, V.; Waroquier, M. pdf  url
doi  openurl
  Title Electronic structure and band gap of zinc spinel oxides beyond LDA : ZnAl2O4, ZnGa2O4 and ZnIn2O4 Type A1 Journal article
  Year 2011 Publication New journal of physics Abbreviated Journal New J Phys  
  Volume 13 Issue 6 Pages 063002-063002,11  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract We examine the electronic structure of the family of ternary zinc spinel oxides ZnX2O4 (X=Al, Ga and In). The band gap of ZnAl2O4 calculated using density functional theory (DFT) is 4.25 eV and is overestimated compared with the experimental value of 3.83.9 eV. The DFT band gap of ZnGa2O4 is 2.82 eV and is underestimated compared with the experimental value of 4.45.0 eV. Since DFT typically underestimates the band gap in the oxide system, the experimental measurements for ZnAl2O4 probably require a correction. We use two first-principles techniques capable of describing accurately the excited states of semiconductors, namely the GW approximation and the modified BeckeJohnson (MBJ) potential approximation, to calculate the band gap of ZnX2O4. The GW and MBJ band gaps are in good agreement with each other. In the case of ZnAl2O4, the predicted band gap values are >6 eV, i.e. ~2 eV larger than the only reported experimental value. We expect future experimental work to confirm our results. Our calculations of the electron effective masses and the second band gap indicate that these compounds are very good candidates to act as transparent conducting host materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos (up) 000292137500002 Publication Date 2011-06-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.786 Times cited 98 Open Access  
  Notes Iwt; Fwo; Bof-Noi Approved Most recent IF: 3.786; 2011 IF: 4.177  
  Call Number UA @ lucian @ c:irua:89555 Serial 1008  
Permanent link to this record
 

 
Author Nowak, M.P.; Szafran, B.; Peeters, F.M.; Partoens, B.; Pasek, W.J. url  doi
openurl 
  Title Tuning of the spin-orbit interaction in a quantum dot by an in-plane magnetic field Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 83 Issue 24 Pages 245324-245324,12  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using an exact-diagonalization approach we show that one- and two-electron InAs quantum dots exhibit an avoided crossing in the energy spectra that is induced by the spin-orbit coupling in the presence of an in-plane external magnetic field. The width of the avoided crossings depends strongly on the orientation of the magnetic field, which reveals the intrinsic anisotropy of the spin-orbit-coupling interactions. We find that for specific orientations of the magnetic field avoided crossings vanish. A value of this orientation can be used to extract the ratio of the strength of Rashba and Dresselhaus interactions. The spin-orbit anisotropy effects for various geometries and orientations of the confinement potential are discussed. Our analysis explains the physics behind the recent measurements performed on a gated self-assembled quantum dot [ S. Takahashi et al. Phys. Rev. Lett. 104 246801 (2010)].  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000292254000005 Publication Date 2011-06-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 27 Open Access  
  Notes ; The authors thank S. Takahashi for helpful discussions. This work was supported by the “Krakow Interdisciplinary PhD Project in Nanoscience and Advanced Nanostructures” operated within the Foundation for Polish Science MPD Programme co-financed by the EU European Regional Development Fund, the Project No. N N202103938 supported by the Ministry of Science an Higher Education (MNiSW) for 2010-2013, and the Belgian Science Policy (IAP). W. J. P. has been partially supported by the EU Human Capital Operation Program, Polish Project No. POKL.04.0101-00-434/08-00. Calculations were performed in ACK-CYFRONET-AGH on the RackServer Zeus. ; Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:90923 Serial 3755  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: