toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Erni, R.; Abakumov, A.M.; Rossell, M.D.; Batuk, D.; Tsirlin, A.A.; Nénert, G.; Van Tendeloo, G. pdf  doi
openurl 
  Title Nanoscale phase separation in perovskites revisited Type L1 Letter to the editor
  Year 2014 Publication Nature materials Abbreviated Journal Nat Mater  
  Volume 13 Issue 3 Pages 216-217  
  Keywords L1 Letter to the editor; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos (up) 000331945200002 Publication Date 2014-02-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1476-1122;1476-4660; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 39.737 Times cited 5 Open Access  
  Notes Approved Most recent IF: 39.737; 2014 IF: 36.503  
  Call Number UA @ lucian @ c:irua:114579 Serial 2270  
Permanent link to this record
 

 
Author El-Gogary, R.I.; Rubio, N.; Wang, J.T.W.; Al-Jamal, W.T.; Bourgognon, M.; Kafa, H.; Naeem, M.; Klippstein, R.; Abbate, V.; Leroux, F.; Bals, S.; Van Tendeloo, G.; Kamel, A.O.; Awad, G.A.S.; Mortada, N.D.; Al-Jamal, K.T.; doi  openurl
  Title Polyethylene glycol conjugated polymeric nanocapsules for targeted delivery of quercetin to folate-expressing cancer cells in vitro and in vivo Type A1 Journal article
  Year 2014 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 8 Issue 2 Pages 1384-1401  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract In this work we describe the formulation and characterization of chemically modified polymeric nanocapsules incorporating the anticancer drug, quercetin, for the passive and active targeting to tumors. Folic acid was conjugated to poly(lactide-co-glycolide) (PLGA) polymer to facilitate active targeting to cancer cells. Two different methods for the conjugation of PLGA to folic acid were employed utilizing polyethylene glycol (PEG) as a spacer. Characterization of the conjugates was performed using FTIR and H-1 NMR studies. The PEG and folk acid content was independent of the conjugation methodology employed. PEGylation has shown to reduce the size of the nanocapsule; moreover, zeta-potential was shown to be polymer-type dependent. Comparative studies on the cytotoxicity and cellular uptake of the different formulations by He La cells, in the presence and absence of excess folic acid, were carried out using MTT assay and Confocal Laser Scanning Microscopy, respectively. Both results confirmed the selective uptake and cytotoxicity of the folic acid targeted nanocapsules to the folate enriched cancer cells in a folate-dependent manner. Finally, the passive tumor accumulation and the active targeting of the nanocapsules to folate-expressing cells were confirmed upon intravenous administration in He La or IGROV-1 tumor-bearing mice. The developed nanocapsules provide a system for targeted delivery of a range of hydrophobic anticancer drugs in vivo.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000332059200032 Publication Date 2014-01-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 144 Open Access Not_Open_Access  
  Notes 290023 Raddel; 262348 Esmi; Iap-Pai Approved Most recent IF: 13.942; 2014 IF: 12.881  
  Call Number UA @ lucian @ c:irua:115862 Serial 2670  
Permanent link to this record
 

 
Author Batuk, M.; Turner, S.; Abakumov, A.M.; Batuk, D.; Hadermann, J.; Van Tendeloo, G. pdf  doi
openurl 
  Title Atomic structure of defects in anion-deficient perovskite-based ferrites with a crystallographic shear structure Type A1 Journal article
  Year 2014 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 53 Issue 4 Pages 2171-2180  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Crystallographic shear (CS) planes provide a new structure-generation mechanism in the anion-deficient perovskites containing lone-pair cations. Pb2Sr2Bi2Fe6O16, a new n = 6 representative of the AnBnO3n2 homologous series of the perovskite-based ferrites with the CS structure, has been synthesized using the solid-state technique. The structure is built of perovskite blocks with a thickness of four FeO6 octahedra spaced by double columns of FeO5 edge-sharing distorted tetragonal pyramids, forming 1/2[110](101)p CS planes (space group Pnma, a = 5.6690(2) Å, b = 3.9108(1) Å, c = 32.643(1) Å). Pb2Sr2Bi2Fe6O16 features a wealth of microstructural phenomena caused by the flexibility of the CS planes due to the variable ratio and length of the constituting fragments with {101}p and {001}p orientation. This leads to the formation of waves, hairpins, Γ-shaped defects, and inclusions of the hitherto unknown layered anion-deficient perovskites Bi2(Sr,Pb)Fe3O8.5 and Bi3(Sr,Pb)Fe4O11.5. Using a combination of diffraction, imaging, and spectroscopic transmission electron microscopy techniques this complex microstructure was fully characterized, including direct determination of positions, chemical composition, and coordination number of individual atomic species. The complex defect structure makes these perovskites particularly similar to the CS structures in ReO3-type oxides. The flexibility of the CS planes appears to be a specific feature of the Sr-based system, related to the geometric match between the SrO perovskite layers and the {100}p segments of the CS planes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos (up) 000332144100039 Publication Date 2014-01-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 6 Open Access  
  Notes Countatoms; FWO Approved Most recent IF: 4.857; 2014 IF: 4.762  
  Call Number UA @ lucian @ c:irua:113507 Serial 198  
Permanent link to this record
 

 
Author Gou, H.; Tsirlin, A.A.; Bykova, E.; Abakumov, A.M.; Van Tendeloo, G.; Richter, A.; Ovsyannikov, S.V.; Kurnosov, A.V.; Trots, D.M.; Konôpková, Z.; Liermann, H.P.; Dubrovinsky, L.; Dubrovinskaia, N.; url  doi
openurl 
  Title Peierls distortion, magnetism, and high hardness of manganese tetraboride Type A1 Journal article
  Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 89 Issue 6 Pages 064108-64109  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We report crystal structure, electronic structure, and magnetism of manganese tetraboride, MnB4, synthesized under high-pressure, high-temperature conditions. In contrast to superconducting FeB4 and metallic CrB4, which are both orthorhombic, MnB4 features a monoclinic crystal structure. Its lower symmetry originates from a Peierls distortion of the Mn chains. This distortion nearly opens the gap at the Fermi level, but despite the strong dimerization and the proximity of MnB4 to the insulating state, we find indications for a sizable paramagnetic effective moment of about 1.7 mu(B)/f.u., ferromagnetic spin correlations, and, even more surprisingly, a prominent electronic contribution to the specific heat. However, no magnetic order has been observed in standard thermodynamic measurements down to 2 K. Altogether, this renders MnB4 a structurally simple but microscopically enigmatic material; we argue that its properties may be influenced by electronic correlations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000332405000002 Publication Date 2014-02-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 39 Open Access  
  Notes Approved Most recent IF: 3.836; 2014 IF: 3.736  
  Call Number UA @ lucian @ c:irua:115819 Serial 2571  
Permanent link to this record
 

 
Author Carraro, G.; Maccato, C.; Gasparotto, A.; Montini, T.; Turner, S.; Lebedev, O.I.; Gombac, V.; Adami, G.; Van Tendeloo, G.; Barreca, D.; Fornasiero, P.; pdf  doi
openurl 
  Title Enhanced hydrogen production by photoreforming of renewable oxygenates through nanostructured Fe2O3 polymorphs Type A1 Journal article
  Year 2014 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater  
  Volume 24 Issue 3 Pages 372-378  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Sunlight-driven hydrogen production via photoreforming of aqueous solutions containing renewable compounds is an attractive option for sustainable energy generation with reduced carbon footprint. Nevertheless, the absence of photocatalysts combining high efficiency and stability upon solar light activation has up to date strongly hindered the development of this technology. Herein, two scarcely investigated iron(III) oxide polymorphs, β- and ε-Fe2O3, possessing a remarkable activity in sunlight-activated H2 generation from aqueous solutions of renewable oxygenates (i.e., ethanol, glycerol, glucose) are reported. For β-Fe2O3 and ε-Fe2O3, H2 production rates up to 225 and 125 mmol h−1 m−2 are obtained, with significantly superior performances with respect to the commonly investigated α-Fe2O3.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos (up) 000332832500011 Publication Date 2013-10-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 95 Open Access  
  Notes Countatoms; Hercules; Fwo Approved Most recent IF: 12.124; 2014 IF: 11.805  
  Call Number UA @ lucian @ c:irua:113090 Serial 1051  
Permanent link to this record
 

 
Author Zhang, G.; Turner, S.; Ekimov, E.A.; Vanacken, J.; Timmermans, M.; Samuely, T.; Sidorov, V.A.; Stishov, S.M.; Lu, Y.; Deloof, B.; Goderis, B.; Van Tendeloo, G.; Van de Vondel, J.; Moshchalkov, V.V.; pdf  doi
openurl 
  Title Global and local superconductivity in boron-doped granular diamond Type A1 Journal article
  Year 2014 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 26 Issue 13 Pages 2034-2040  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Strong granularity-correlated and intragrain modulations of the superconducting order parameter are demonstrated in heavily boron-doped diamond situated not yet in the vicinity of the metal-insulator transition. These modulations at the superconducting state (SC) and at the global normal state (NS) above the resistive superconducting transition, reveal that local Cooper pairing sets in prior to the global phase coherence.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos (up) 000333616700008 Publication Date 2013-12-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 34 Open Access  
  Notes Methusalem Funding; FWO projects; MP1201 COST Action; ERC Grant N246791-COUNTATOMS; post-doctoral grant (S.T.) and for project no. G.0568.10N.;Hercules Foundation Approved Most recent IF: 19.791; 2014 IF: 17.493  
  Call Number UA @ lucian @ c:irua:116150 Serial 1346  
Permanent link to this record
 

 
Author Kundu, P.; Heidari, H.; Bals, S.; Ravishankar, N.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Formation and thermal stability of gold-silica nanohybrids : insight into the mechanism and morphology by electron tomography Type A1 Journal article
  Year 2014 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume 53 Issue 15 Pages 3970-3974  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Gold-silica hybrids are appealing in different fields of applications like catalysis, sensorics, drug delivery, and biotechnology. In most cases, the morphology and distribution of the heterounits play significant roles in their functional behavior. Methods of synthesizing these hybrids, with variable ordering of the heterounits, are replete; however, a complete characterization in three dimensions could not be achieved yet. A simple route to the synthesis of Au-decorated SiO2 spheres is demonstrated and a study on the 3D ordering of the heterounits by scanning transmission electron microscopy (STEM) tomography is presentedat the final stage, intermediate stages of formation, and after heating the hybrid. The final hybrid evolves from a soft self-assembled structure of Au nanoparticles. The hybrid shows good thermal stability up to 400 degrees C, beyond which the Au particles start migrating inside the SiO2 matrix. This study provides an insight in the formation mechanism and thermal stability of the structures which are crucial factors for designing and applying such hybrids in fields of catalysis and biotechnology. As the method is general, it can be applied to make similar hybrids based on SiO2 by tuning the reaction chemistry as needed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos (up) 000333634800036 Publication Date 2014-03-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited 10 Open Access OpenAccess  
  Notes This research has received funding from the European Community’s Seventh Framework Program (ERC; grant number 246791)— COUNTATOMS, COLOURATOMS, as well as from the IAP 7/05 Programme initiated by the Belgian Science Policy Office. Funding from the Department of Science and Technology (DST) is also acknowledged.; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 11.994; 2014 IF: 11.261  
  Call Number UA @ lucian @ c:irua:117186 Serial 1251  
Permanent link to this record
 

 
Author Wang, J.T.W.; Cabana, L.; Bourgognon, M.; Kafa, H.; Protti, A.; Venner, K.; Shah, A.M.; Sosabowski, J.K.; Mather, S.J.; Roig, A.; Ke, X.; Van Tendeloo, G.; de Rosales, R.T.M.; Tobias, G.; Al-Jamal, K.T. pdf  doi
openurl 
  Title Magnetically decorated multiwalled carbon nanotubes as dual MRI and SPECT contrast agents Type A1 Journal article
  Year 2014 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater  
  Volume 24 Issue 13 Pages 1880-1894  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Carbon nanotubes (CNTs) are one of the most promising nanomaterials to be used in biomedicine for drug/gene delivery as well as biomedical imaging. This study develops radio-labeled, iron oxide-decorated multiwalled CNTs (MWNTs) as dual magnetic resonance (MR) and single photon emission computed tomography (SPECT) contrast agents. Hybrids containing different amounts of iron oxide are synthesized by in situ generation. Physicochemical characterisations reveal the presence of superparamagnetic iron oxide nanoparticles (SPION) granted the magnetic properties of the hybrids. Further comprehensive examinations including high resolution transmission electron microscopy (HRTEM), fast Fourier transform simulations, X-ray diffraction, and X-ray photoelectron spectroscopy assure the conformation of prepared SPION as γ-Fe2O3. High r2 relaxivities are obtained in both phantom and in vivo MRI compared to the clinically approved SPION Endorem. The hybrids are successfully radio labeled with technetium-99m through a functionalized bisphosphonate and enable SPECT/CT imaging and γ-scintigraphy to quantitatively analyze the biodistribution in mice. No abnormality is found by histological examination and the presence of SPION and MWNT are identified by Perls stain and Neutral Red stain, respectively. TEM images of liver and spleen tissues show the co-localization of SPION and MWNTs within the same intracellular vesicles, indicating the in vivo stability of the hybrids after intravenous injection. The results demonstrate the capability of the present SPIONMWNT hybrids as dual MRI and SPECT contrast agents for in vivo use.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos (up) 000333674100007 Publication Date 2013-11-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 50 Open Access  
  Notes Countatoms; Fp7; Esteem2; esteem2_ta Approved Most recent IF: 12.124; 2014 IF: 11.805  
  Call Number UA @ lucian @ c:irua:111589 Serial 1891  
Permanent link to this record
 

 
Author Bals, S.; Goris, B.; Altantzis, T.; Heidari, H.; Van Aert, S.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Seeing and measuring in 3D with electrons Type A1 Journal article
  Year 2014 Publication Comptes rendus : physique Abbreviated Journal Cr Phys  
  Volume 15 Issue 2-3 Pages 140-150  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Modern TEM enables the investigation of nanostructures at the atomic scale. However, TEM images are only two-dimensional (2D) projections of a three-dimensional (3D) object. Electron tomography can overcome this limitation. The technique is increasingly focused towards quantitative measurements and reaching atomic resolution in 3D has been the ultimate goal for many years. Therefore, one needs to optimize the acquisition of the data, the 3D reconstruction techniques as well as the quantification methods. Here, we will review a broad range of methodologies and examples. Finally, we will provide an outlook and will describe future challenges in the field of electron tomography.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Paris Editor  
  Language Wos (up) 000334013600005 Publication Date 2014-01-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1631-0705; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.048 Times cited 15 Open Access OpenAccess  
  Notes (FWO;Belgium); European Research Council under the 7th Framework Program (FP7); ERC grant No.246791 – COUNTATOMS; ERC grant No.335078 – COLOURATOMS; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 2.048; 2014 IF: 2.035  
  Call Number UA @ lucian @ c:irua:113855 Serial 2960  
Permanent link to this record
 

 
Author Verbeeck, J.; Guzzinati, G.; Clark, L.; Juchtmans, R.; Van Boxem, R.; Tian, H.; Béché, A.; Lubk, A.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Shaping electron beams for the generation of innovative measurements in the (S)TEM Type A1 Journal article
  Year 2014 Publication Comptes rendus : physique Abbreviated Journal Cr Phys  
  Volume 15 Issue 2-3 Pages 190-199  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In TEM, a typical goal consists of making a small electron probe in the sample plane in order to obtain high spatial resolution in scanning transmission electron microscopy. In order to do so, the phase of the electron wave is corrected to resemble a spherical wave compensating for aberrations in the magnetic lenses. In this contribution, we discuss the advantage of changing the phase of an electron wave in a specific way in order to obtain fundamentally different electron probes opening up new applications in the (S)TEM. We focus on electron vortex states as a specific family of waves with an azimuthal phase signature and discuss their properties, production and applications. The concepts presented here are rather general and also different classes of probes can be obtained in a similar fashion, showing that electron probes can be tuned to optimize a specific measurement or interaction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Paris Editor  
  Language Wos (up) 000334013600009 Publication Date 2014-02-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1631-0705; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.048 Times cited 22 Open Access  
  Notes Vortex ECASJO_; Approved Most recent IF: 2.048; 2014 IF: 2.035  
  Call Number UA @ lucian @ c:irua:116946UA @ admin @ c:irua:116946 Serial 2992  
Permanent link to this record
 

 
Author Snoeck, E.; Van Tendeloo, G. pdf  doi
openurl 
  Title Networking strategies of the microscopy community for improved utilisation of advanced instruments : (3) two European initiatives to support TEM infrastructures and promote electron microscopy over Europe, ESTEEM (20062011) and ESTEEM 2 (20122016) Type A1 Journal article
  Year 2014 Publication Comptes rendus : physique Abbreviated Journal Cr Phys  
  Volume 15 Issue 2-3 Pages 281-284  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The ESTEEM consortium of electron microscopy laboratories for materials science and solid-state physics has been created as an EU-supported delocalized infrastructure (I3) to bring together the major electron microscopy centres in Europe. Its main objectives were to develop networking, to offer transnational access to these centres with specialized and complementary techniques and skills and to upgrade in close collaboration different technical and methodological aspects such as tomography, spectroscopy, holography, detectors, and specimen holders. These efforts were aimed to strengthen the position of European microscopy and to generate new technologies potentially of high relevance in many domains identified as strategic. Following the success of the first program, ESTEEM has been reconducted in 2012 for four more years with an enlarged set of partners.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Paris Editor  
  Language Wos (up) 000334013600017 Publication Date 2014-01-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1631-0705; ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.048 Times cited Open Access  
  Notes Approved Most recent IF: 2.048; 2014 IF: 2.035  
  Call Number UA @ lucian @ c:irua:115550 Serial 2293  
Permanent link to this record
 

 
Author Leusink, D.P.; Coneri, F.; Hoek, M.; Turner, S.; Idrissi, H.; Van Tendeloo, G.; Hilgenkamp, H. pdf  url
doi  openurl
  Title Thin films of the spin ice compound Ho2Ti2O7 Type A1 Journal article
  Year 2014 Publication APL materials Abbreviated Journal Apl Mater  
  Volume 2 Issue 3 Pages 032101-32107  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The pyrochlore compounds Ho2Ti2O7 and Dy2Ti2O7 show an exotic form of magnetism called the spin ice state, resulting from the interplay between geometrical frustration and ferromagnetic coupling. A fascinating feature of this state is the appearance of magnetic monopoles as emergent excitations above the degenerate ground state. Over the past years, strong effort has been devoted to the investigation of these monopoles and other properties of the spin ice state in bulk crystals. Here, we report the fabrication of Ho2Ti2O7 thin films using pulsed laser deposition on yttria-stabilized ZrO2 substrates. We investigated the structural properties of these films by X-ray diffraction, scanning transmission electron microscopy, and atomic force microscopy, and the magnetic properties by vibrating sample magnetometry at 2 K. The films not only show a high crystalline quality, but also exhibit the hallmarks of a spin ice: a pronounced magnetic anisotropy and an intermediate plateau in the magnetization along the [111] crystal direction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000334220300002 Publication Date 2014-03-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2166-532X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.335 Times cited 18 Open Access  
  Notes The authors acknowledge support from the Dutch FOM and NWO foundations and from the European Union under the Framework 7 program under a contract from an Integrated Infrastructure Initiative (Reference 312483 ESTEEM2). G.V.T. acknowledges the ERC Grant N246791- COUNTATOMS. S.T. gratefully acknowledges financial support from the Fund for Scientific Research Flanders (FWO). H.I. acknowledges the IAP program of the Belgian State Federal Office for Scientific, Technical and Cultural Affairs under Contract No. P7/21. The microscope used in this study was partially financed by the Hercules Foundation of the Flemish Government. The authors acknowledge fruitful interactions with A. Brinkman, M. G. Blamire, M. Egilmez, F. J. G. Roesthuis, J. N. Beukers, C. G. Molenaar, M. Veldhorst, and X. Renshaw Wang; esteem2_ta Approved Most recent IF: 4.335; 2014 IF: NA  
  Call Number UA @ lucian @ c:irua:115555 Serial 3641  
Permanent link to this record
 

 
Author Tian, H.; Verbeeck, J.; Brück, S.; Paul, M.; Kufer, D.; Sing, M.; Claessen, R.; Van Tendeloo, G. pdf  doi
openurl 
  Title Interface-induced modulation of charge and polarization in thin film Fe3O4 Type A1 Journal article
  Year 2014 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 26 Issue 3 Pages 461-465  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Charge and polarization modulations in Fe3O4 are controlled by taking advantage of interfacial strain effects. The feasibility of oxidation state control by strain modification is demonstrated and it is shown that this approach offers a stable configuration at room temperature. Direct evidence of how a local strain field changes the atomic coordination and introduces atomic displacements leading to polarization of Fe ions is presented.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos (up) 000334289300011 Publication Date 2013-10-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 15 Open Access  
  Notes Vortex; FWO; Countatoms; Hercules ECASJO_; Approved Most recent IF: 19.791; 2014 IF: 17.493  
  Call Number UA @ lucian @ c:irua:112419UA @ admin @ c:irua:112419 Serial 1694  
Permanent link to this record
 

 
Author Galván-Moya, J.E.; Altantzis, T.; Nelissen, K.; Peeters, F.M.; Grzelczak, M.; Liz-Marán, L.M.; Bals, S.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Self-organization of highly symmetric nanoassemblies : a matter of competition Type A1 Journal article
  Year 2014 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 8 Issue 4 Pages 3869-3875  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract The properties and applications of metallic nanoparticles are inseparably connected not only to their detailed morphology and composition but also to their structural configuration and mutual interactions. As a result, the assemblies often have superior properties as compared to individual nanoparticles. Although it has been reported that nanoparticles can form highly symmetric clusters, if the configuration can be predicted as a function of the synthesis parameters, more targeted and accurate synthesis will be possible. We present here a theoretical model that accurately predicts the structure and configuration of self-assembled gold nanoclusters. The validity of the model is verified using quantitative experimental data extracted from electron tomography 3D reconstructions of different assemblies. The present theoretical model is generic and can in principle be used for different types of nanoparticles, providing a very wide window of potential applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000334990600084 Publication Date 2014-03-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 34 Open Access OpenAccess  
  Notes FWO; Methusalem; 246791 COUNTATOMS; 335078 COLOURATOM; 262348 ESMI; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 13.942; 2014 IF: 12.881  
  Call Number UA @ lucian @ c:irua:116955 Serial 2977  
Permanent link to this record
 

 
Author Schütte, K.; Doddi, A.; Kroll, C.; Meyer, H.; Wiktor, C.; Gemel, C.; Van Tendeloo, G.; Fischer, R.A.; Janiak, C. pdf  url
doi  openurl
  Title Colloidal nickel/gallium nanoalloys obtained from organometallic precursors in conventional organic solvents and in ionic liquids : noble-metal-free alkyne semihydrogenation catalysts Type A1 Journal article
  Year 2014 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 6 Issue 10 Pages 5532-5544  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Efforts to replace noble-metal catalysts by low-cost alternatives are of constant interest. The organometallic, non-aqueous wet-chemical synthesis of various hitherto unknown nanocrystalline Ni/Ga intermetallic materials and the use of NiGa for the selective semihydrogenation of alkynes to alkenes are reported. Thermal co-hydrogenolysis of the all-hydrocarbon precursors [Ni(COD)(2)] (COD = 1,5-cyclooctadiene) and GaCp* (Cp* = pentamethylcyclopentadienyl) in high-boiling organic solvents mesitylene and n-decane in molar ratios of 1 : 1, 2 : 3 and 3 : 1 yields the nano-crystalline powder materials of the over-all compositions NiGa, Ni2Ga3 and Ni3Ga, respectively. Microwave induced co-pyrolysis of the same precursors without additional hydrogen in the ionic liquid [BMIm][BF4] (BMIm = 1-butyl-3-methyl-imidazolium) selectively yields the intermetallic phases NiGa and Ni3Ga from the respective 1 : 1 and 3 : 1 molar ratios of the precursors. The obtained materials are characterized by transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), IR, powder X-ray diffraction (PXRD) and atomic absorption spectroscopy (AAS). The single-source precursor [Ni(GaCp*)(PMe3)(3)] with a fixed Ni : Ga stoichiometry of 1 : 1 was employed as well. In comparison with the co-hydrogenolytic dual precursor source approach it turned out to be less practical due to inefficient nickel incorporation caused by the parasitic formation of stable [Ni(PMe3)(4)]. The use of ionic liquid [BMIm][BF4] as a non-conventional solvent to control the reaction and stabilize the nanoparticles proved to be particularly advantageous and stable colloids of the nanoalloys NiGa and Ni3Ga were obtained. A phase-selective Ni/Ga colloid synthesis in conventional solvents and in the presence of surfactants such as hexadecylamine (HDA) was not feasible due to the undesired reactivity of HDA with GaCp* leading to inefficient gallium incorporation. Recyclable NiGa nanoparticles selectively semihydrogenate 1-octyne and diphenylacetylene (tolan) to 1-octene and diphenylethylene, respectively, with a yield of about 90% and selectivities of up to 94 and 87%. Ni-NPs yield alkanes with a selectivity of 97 or 78%, respectively, under the same conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos (up) 000335148800069 Publication Date 2014-03-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 40 Open Access  
  Notes Approved Most recent IF: 7.367; 2014 IF: 7.394  
  Call Number UA @ lucian @ c:irua:117251 Serial 390  
Permanent link to this record
 

 
Author Khazzan, S.; Bessais, L.; Van Tendeloo, G.; Mliki, N. pdf  doi
openurl 
  Title Correlation between the nanocrystalline Sm(Fe,Mo)12 and its out of equilibrium phase Sm(Fe,Mo)10 Type A1 Journal article
  Year 2014 Publication Journal of magnetism and magnetic materials Abbreviated Journal J Magn Magn Mater  
  Volume 363 Issue Pages 125-132  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Nanostructured Sm-Fe-Mo semi-hard magnetic material exhibiting enhanced magnetic properties can be produced by ball milling followed by recrystallization. Milled samples were annealed for 30 min in a vacuum at different temperatures (T-A) between 700 and 1190 degrees C. The effects of heat treatment and Mo content on structural and magnetic property changes have been investigated by means of X-ray diffraction using the Rietvekl method, transmission electron microscopy and magnetic measurements. For samples annealed at T-A > 900 degrees C the tetragonal ThMn12-type structure is identified, while for 700 < T-A < 900 degrees C a new out of equilibrium P6/mmm type structure was found as the major phase. This novel nanocrystalline phase has never been synthesized before. The correspondent stoichiometry is determined on the basis of the vacancy model. The Rietveld analysis gives a stoichiometry ratio equal to 1:10, for the out of equilibrium hexagonal phase, which is described with three crystallographic transition metal sites: 3g is fully occupied, 61 occupation is limited to hexagons surrounding the Fe dumbbell pairs 2e. We have performed a magnetic and structural study of nanocrystalline metastable P6/mrnm Sm(Fe1-xMo)(10), correlated with structural transformation towards its equilibrium derivative 14/mrnm Sm(Fe1-xMo)(12). A maximum of the coercive field H-C (H-C > 5 kOe) has been observed for the new hexagonal P6/rnmm phase suggesting that nanocrystalline Sm(Fe,Mo)(10), is a semi hard material, and is potential candidate for magnetic recording. (C) 2014 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos (up) 000335393900021 Publication Date 2014-04-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-8853; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.63 Times cited 6 Open Access  
  Notes Approved Most recent IF: 2.63; 2014 IF: 1.970  
  Call Number UA @ lucian @ c:irua:117139 Serial 524  
Permanent link to this record
 

 
Author Shenderova, O.; Hens, S.; Vlasov, I.; Turner, S.; Lu, Y.-G.; Van Tendeloo, G.; Schrand, A.; Burikov, S.A.; Dolenko, T.A. pdf  doi
openurl 
  Title Carbon-dot-decorated nanodiamonds Type A1 Journal article
  Year 2014 Publication Particle and particle systems characterization Abbreviated Journal Part Part Syst Char  
  Volume 31 Issue 5 Pages 580-590  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The synthesis of a new class of fluorescent carbon nanomaterials, carbon-dot-decorated nanodiamonds (CDD-ND), is reported. These CDD-NDs are produced by specific acid treatment of detonation soot, forming tiny rounded sp2 carbon species (carbon dots), 12 atomic layers thick and 12 nm in size, covalently attached to the surface of the detonation diamond nanoparticles. A combination of nanodiamonds bonded with a graphitic phase as a starting material and the application of graphite intercalated acids for oxidation of the graphitic carbon is necessary for the successful production of CDD-ND. The CDD-ND photoluminescence (PL) is stable, 20 times more intense than the intrinsic PL of well-purified NDs and can be tailored by changing the oxidation process parameters. Carbon-dot-decorated DNDs are shown to be excellent probes for bioimaging applications and inexpensive additives for PL nanocomposites.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos (up) 000335518900008 Publication Date 2014-01-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0934-0866; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.474 Times cited 30 Open Access  
  Notes Fwo; 262348 Esmi; 246791 Countatoms Approved Most recent IF: 4.474; 2014 IF: 3.081  
  Call Number UA @ lucian @ c:irua:117332 Serial 280  
Permanent link to this record
 

 
Author Verbruggen, S.W.; Keulemans, M.; Filippousi, M.; Flahaut, D.; Van Tendeloo, G.; Lacombe, S.; Martens, J.A.; Lenaerts, S. pdf  doi
openurl 
  Title Plasmonic goldsilver alloy on TiO2 photocatalysts with tunable visible light activity Type A1 Journal article
  Year 2014 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 156 Issue Pages 116-121  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Adaptation of the photoresponse of anatase TiO2 to match the solar spectrum is an important scientific challenge. Modification of TiO2 with noble metal nanoparticles displaying surface plasmon resonance effects is one of the promising approaches. Surface plasmon resonance typically depends on chemical composition, size, shape and spatial organization of the metal nanoparticles in contact with TiO2. AuxAg(1 − x) alloy nanoparticles display strong composition-dependent surface plasmon resonance in the visible light region of the spectrum. In this work, a general strategy is presented to prepare plasmonic TiO2-based photocatalysts with a visible light response that can be accurately tuned over a broad range of the spectrum. The application as self-cleaning material toward the degradation of stearic acid is demonstrated for a plasmonic TiO2 photocatalyst displaying visible light photoactivity at the intensity maximum of solar light around 490 nm.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos (up) 000336013200014 Publication Date 2014-03-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.446 Times cited 84 Open Access  
  Notes Flanders(FWO); Methusalem Approved Most recent IF: 9.446; 2014 IF: 7.435  
  Call Number UA @ lucian @ c:irua:115552 Serial 2646  
Permanent link to this record
 

 
Author Liakakos, N.; Gatel, C.; Blon, T.; Altantzis, T.; Lentijo-Mozo, S.; Garcia-Marcelot, C.; Lacroix, L.M.; Respaud, M.; Bals, S.; Van Tendeloo, G.; Soulantica, K. pdf  url
doi  openurl
  Title CoFe nanodumbbells : synthesis, structure, and magnetic properties Type A1 Journal article
  Year 2014 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 14 Issue 5 Pages 2747-2754  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract We report the solution phase synthesis, the structural analysis, and the magnetic properties of hybrid nanostructures combining two magnetic metals. These nano-objects are characterized by a remarkable shape, combining Fe nanocubes on Co nanorods. The topological composition, the orientation relationship, and the growth steps have been studied by advanced electron microscopy techniques, such as HRTEM, electron tomography, and state-of-the-art 3-dimensional elemental mapping by EDX tomography. The soft iron nanocubes behave as easy nucleation centers that induce the magnetization reversal of the entire nanohybrid, leading to a drastic modification of the overall effective magnetic anisotropy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington Editor  
  Language Wos (up) 000336074800080 Publication Date 2014-04-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 27 Open Access OpenAccess  
  Notes The authors thank the ANR for the project “Batmag”, the French national project EMMA (ANR12 BS10 013 01), the European Commission for the FP7 NAMDIATREAM project (EU NMP4-LA-2010-246479), and the METSA network for the HRTEM. This has received funding from the European Union Seventh Framework Programme under Grant Agreement 312483-ESTEEM2 (Integrated Infrastructure Initiative- I3). It was also supported by Programme Investissements d’Avenir under the program ANR-11-IDEX-0002-02, reference ANR-10-LABX-0037-NEXT. The authors acknowledge financial support from European Research Council (ERC Advanced Grant # 24691-COUNTATOMS and ERC Starting Grant # 335078-COLOURATOMS).; esteem2ta; ECASSara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 12.712; 2014 IF: 13.592  
  Call Number UA @ lucian @ c:irua:116953 Serial 377  
Permanent link to this record
 

 
Author Morozov, V.A.; Lazoryak, B.I.; Shmurak, S.Z.; Kiselev, A.P.; Lebedev, O.I.; Gauquelin, N.; Verbeeck, J.; Hadermann, J.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Influence of the structure on the properties of NaxEuy(MoO4)z red phosphors Type A1 Journal article
  Year 2014 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 26 Issue 10 Pages 3238-3248  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Scheelite related compounds (A',A '')(n)[(B',B '')O-4](m) with B', B '' = W and/or Mo are promising new materials for red phosphors in pc-WLEDs (phosphor-converted white-light-emitting-diode) and solid-state lasers. Cation substitution in CaMoO4 of Ca2+ by the combination of Na+ and Eu3+, with the creation of A cation vacancies, has been investigated as a factor for controlling the scheelite-type structure and the luminescent properties. Na5Eu(MoO4)(4) and NaxEu(2-x)/33+square(2-x)/3MoO4 (0.138 <= x <= 0.5) phases with a scheelite-type structure were synthesized by the solid state method; their structural characteristics were investigated using transmission electron microscopy. Contrary to powder synchrotron X-ray diffraction before, the study by electron diffraction and high resolution transmission electron microscopy in this paper revealed that Na0.286Eu0.571MoO4 has a (3 + 2)D incommensurately modulated structure and that (3 + 2)D incommensurately modulated domains are present in Na0.200Eu0.600MoO4. It also confirmed the (3 + 1)D incommensurately modulated character of Na(0.138)Eu(0.621)Mo04. The luminescent properties of all phases under near-ultraviolet (n-UV) light have been investigated. The excitation spectra of these phosphors show the strongest absorption at about 395 nm, which matches well with the commercially available n-UV-emitting GaN-based LED chip. The emission spectra indicate an intense red emission due to the D-5(0) -> F-7(2) transition of Eu3+, with local minima in the intensity at Na0.286Eu0.571MoO4 and Na0.200Eu0.600MoO4 for similar to 613 nm and similar to 616 nm bands. The phosphor Na5Eu(MoO4)(4) shows the brightest red light emission among the phosphors in the Na2MoO4-Eu2/3MoO4 system and the maximum luminescence intensity of Na5Eu(MoO4)(4) (lambda(ex) = 395 nm) in the D-5(0) -> F-7(2) transition region is close to that of the commercially used red phosphor YVO4:Eu3+ (lambda(ex) = 326 nm). Electron energy loss spectroscopy measurements revealed the influence of the structure and Na/Eu cation distribution on the number and positions of bands in the UV-optical-infrared regions of the EELS spectrum.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000336637000028 Publication Date 2014-05-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 53 Open Access  
  Notes Fwo G039211n; Fwo G004413n; 278510 Vortex ECASJO_; Approved Most recent IF: 9.466; 2014 IF: 8.354  
  Call Number UA @ lucian @ c:irua:117765UA @ admin @ c:irua:117765 Serial 1652  
Permanent link to this record
 

 
Author Abakumov, A.M.; Tsirlin, A.A.; Bakaimi, I.; Van Tendeloo, G.; Lappas, A. doi  openurl
  Title Multiple twinning as a structure directing mechanism in layered rock-salt-type oxides : NaMnO2 polymorphism, redox potentials, and magnetism Type A1 Journal article
  Year 2014 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 26 Issue 10 Pages 3306-3315  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract New polymorphs of NaMnO2 have been observed using transmission electron microscopy and synchrotron X-ray powder diffraction. Coherent twin planes confined to the (NaMnO2) layers, parallel to the (10 (1) over bar) crystallographic planes of the monoclinic layered rock-salt-type alpha-NaMnO2 (O3) structure, form quasi-periodic modulated sequences, with the known alpha-and beta-NaMnO2 polymorphs as the two limiting cases. The energy difference between the polymorphic forms, estimated using a DFT-based structure relaxation, is on the scale of the typical thermal energies that results in a high degree of stacking disorder in these compounds. The results unveil the remarkable effect of the twin planes on both the magnetic and electrochemical properties. The polymorphism drives the magnetic ground state from a quasi-1D spin system for the geometrically frustrated alpha-polymorph through a two-leg spin ladder for the intermediate stacking sequence toward a quasi-2D magnet for the beta-polymorph. A substantial increase of the equilibrium potential for Na deintercalation upon increasing the concentration of the twin planes is calculated, providing a possibility to tune the electrochemical potential of the layered rock-salt ABO(2) cathodes by engineering the materials with a controlled concentration of twins.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000336637000036 Publication Date 2014-05-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 35 Open Access  
  Notes Approved Most recent IF: 9.466; 2014 IF: 8.354  
  Call Number UA @ lucian @ c:irua:117766 Serial 2232  
Permanent link to this record
 

 
Author Huang, S.-Z.; Jin, J.; Cai, Y.; Li, Y.; Tan, H.-Y.; Wang, H.-E.; Van Tendeloo, G.; Su, B.-L. pdf  doi
openurl 
  Title Engineering single crystalline Mn3O4 nano-octahedra with exposed highly active {011} facets for high performance lithium ion batteries Type A1 Journal article
  Year 2014 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 6 Issue 12 Pages 6819-6827  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Well shaped single crystalline Mn3O4 nano-octahedra with exposed highly active {011} facets at different particle sizes have been synthesized and used as anode materials for lithium ion batteries. The electrochemical results show that the smallest sized Mn3O4 nano-octahedra show the best cycling performance with a high initial charge capacity of 907 mA h g−1 and a 50th charge capacity of 500 mA h g−1 at a current density of 50 mA g−1 and the best rate capability with a charge capacity of 350 mA h g−1 when cycled at 500 mA g−1. In particular, the nano-octahedra samples demonstrate a much better electrochemical performance in comparison with irregular shaped Mn3O4 nanoparticles. The best electrochemical properties of the smallest Mn3O4 nano-octahedra are ascribed to the lower charge transfer resistance due to the exposed highly active {011} facets, which can facilitate the conversion reaction of Mn3O4 and Li owing to the alternating Mn and O atom layers, resulting in easy formation and decomposition of the amorphous Li2O and the multi-electron reaction. On the other hand, the best electrochemical properties of the smallest Mn3O4 nano-octahedra can also be attributed to the smallest size resulting in the highest specific surface area, which provides maximum contact with the electrolyte and facilitates the rapid Li-ion diffusion at the electrode/electrolyte interface and fast lithium-ion transportation within the particles. The synergy of the exposed {011} facets and the smallest size (and/or the highest surface area) led to the best performance for the Mn3O4 nano-octahedra. Furthermore, HRTEM observations verify the oxidation of MnO to Mn3O4 during the charging process and confirm that the Mn3O4 octahedral structure can still be partly maintained after 50 dischargecharge cycles. The high Li-ion storage capacity and excellent cycling performance suggest that Mn3O4 nano-octahedra with exposed highly active {011} facets could be excellent anode materials for high-performance lithium-ion batteries.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos (up) 000337143900072 Publication Date 2014-04-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 80 Open Access  
  Notes Approved Most recent IF: 7.367; 2014 IF: 7.394  
  Call Number UA @ lucian @ c:irua:117076 Serial 1047  
Permanent link to this record
 

 
Author Deng, S.; Kurttepeli, M.; Deheryan, S.; Cott, D.J.; Vereecken, P.M.; Martens, J.A.; Bals, S.; Van Tendeloo, G.; Detavernier, C. pdf  url
doi  openurl
  Title Synthesis of a 3D network of Pt nanowires by atomic layer deposition on a carbonaceous template Type A1 Journal article
  Year 2014 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 6 Issue 12 Pages 6939-6944  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The formation of a 3D network composed of free standing and interconnected Pt nanowires is achieved by a two-step method, consisting of conformal deposition of Pt by atomic layer deposition (ALD) on a forest of carbon nanotubes and subsequent removal of the carbonaceous template. Detailed characterization of this novel 3D nanostructure was carried out by transmission electron microscopy (TEM) and electrochemical impedance spectroscopy (EIS). The characterization showed that this pure 3D nanostructure of platinum is self-supported and offers an enhancement of the electrochemically active surface area by a factor of 50.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos (up) 000337143900086 Publication Date 2014-04-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 14 Open Access OpenAccess  
  Notes The authors wish to thank the Research Foundation – Flanders (FWO) for financial support. The authors acknowledge the European Research Council for funding under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERCgrant agreement N°239865-COCOON, N°246791-COUNTATOMS and N°335078–COLOURATOM). The authors would also want to thank the support from UGENT-GOA-01G01513, IWT-SBO SOSLion and the Belgian government through Interuniversity Attraction Poles (IAPPAI).; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 7.367; 2014 IF: 7.394  
  Call Number UA @ lucian @ c:irua:118393 Serial 3454  
Permanent link to this record
 

 
Author Goris, B.; Polavarapu, L.; Bals, S.; Van Tendeloo, G.; Liz-Marzán, L.M. pdf  url
doi  openurl
  Title Monitoring galvanic replacement through three-dimensional morphological and chemical mapping Type A1 Journal article
  Year 2014 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 14 Issue 6 Pages 3220-3226  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Galvanic replacement reactions on metal nanoparticles are often used for the preparation of hollow nanostructures with tunable porosity and chemical composition, leading to tailored optical and catalytic properties. However, the precise interplay between the three-dimensional (3D) morphology and chemical composition of nanostructures during galvanic replacement is not always well understood as the 3D chemical imaging of nanoscale materials is still challenging. It is especially far from straightforward to obtain detailed information from the inside of hollow nanostructures using electron microscopy techniques such as SEM or TEM. We demonstrate here that a combination of state-of-the-art EDX mapping with electron tomography results in the unambiguous determination of both morphology transformation and elemental composition of nanostructures in 3D, during galvanic replacement of Ag nanocubes. This work provides direct and unambiguous experimental evidence toward understanding the galvanic replacement reaction. In addition, the powerful approach presented here can be applied to a wide range of nanoscale transformation processes, which will undoubtedly guide the development of novel nanostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington Editor  
  Language Wos (up) 000337337100038 Publication Date 2014-05-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 120 Open Access OpenAccess  
  Notes 267867 Plasmaquo; 246791 Countatoms; 335078 Colouratom; 262348 Esmi; Fwo; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 12.712; 2014 IF: 13.592  
  Call Number UA @ lucian @ c:irua:116954 Serial 2189  
Permanent link to this record
 

 
Author Yalcin, A.O.; Fan, Z.; Goris, B.; Li, W.F.; Koster, R.S.; Fang, C.M.; van Blaaderen, A.; Casavola, M.; Tichelaar, F.D.; Bals, S.; Van Tendeloo, G.; Vlugt, T.J.H.; Vanmaekelbergh, D.; Zandbergen, H.W.; van Huis, M.A.; pdf  url
doi  openurl
  Title Atomic resolution monitoring of cation exchange in CdSe-PbSe heteronanocrystals during epitaxial solid-solid-vapor growth Type A1 Journal article
  Year 2014 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 14 Issue 6 Pages 3661-3667  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Here, we show a novel solidsolidvapor (SSV) growth mechanism whereby epitaxial growth of heterogeneous semiconductor nanowires takes place by evaporation-induced cation exchange. During heating of PbSe-CdSe nanodumbbells inside a transmission electron microscope (TEM), we observed that PbSe nanocrystals grew epitaxially at the expense of CdSe nanodomains driven by evaporation of Cd. Analysis of atomic-resolution TEM observations and detailed atomistic simulations reveals that the growth process is mediated by vacancies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington Editor  
  Language Wos (up) 000337337100106 Publication Date 2014-05-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 42 Open Access OpenAccess  
  Notes 262348 Esmi; Fwo; 246791 Countatoms; 335078 Colouratom; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 12.712; 2014 IF: 13.592  
  Call Number UA @ lucian @ c:irua:117027 Serial 179  
Permanent link to this record
 

 
Author Boneschanscher, M.P.; Evers, W.H.; Geuchies, J.J.; Altantzis, T.; Goris, B.; Rabouw, F.T.; van Rossum, S.A.P.; van der Zant, H.S.J.; Siebbeles, L.D.A.; Van Tendeloo, G.; Swart, I.; Hilhorst, J.; Petukhov, A.V.; Bals, S.; Vanmaekelbergh, D.; pdf  url
doi  openurl
  Title Long-range orientation and atomic attachment of nanocrystals in 2D honeycomb superlattices Type A1 Journal article
  Year 2014 Publication Science Abbreviated Journal Science  
  Volume 344 Issue 6190 Pages 1377-1380  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Oriented attachment of synthetic semiconductor nanocrystals is emerging as a route for obtaining new semiconductors that can have Dirac-type electronic bands like graphene, but also strong spin-orbit coupling. The two-dimensional assembly geometry will require both atomic coherence and long-range periodicity of the superlattices. We show how the interfacial self-assembly and oriented attachment of nanocrystals results in two-dimensional (2D) metal chalcogenide semiconductors with a honeycomb superlattice. We present an extensive atomic and nanoscale characterization of these systems using direct imaging and wave scattering methods. The honeycomb superlattices are atomically coherent, and have an octahedral symmetry that is buckled; the nanocrystals occupy two parallel planes. Considerable necking and large-scale atomic motion occurred during the attachment process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos (up) 000337531700035 Publication Date 2014-05-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0036-8075;1095-9203; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 37.205 Times cited 304 Open Access OpenAccess  
  Notes Fwo; 262348 Esmi; 246791 Countatoms; 335078 Colouratom; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 37.205; 2014 IF: 33.611  
  Call Number UA @ lucian @ c:irua:117095 Serial 1840  
Permanent link to this record
 

 
Author Rehor, I.; Mackova, H.; Filippov, S.K.; Kucka, J.; Proks, V.; Slegerova, J.; Turner, S.; Van Tendeloo, G.; Ledvina, M.; Hruby, M.; Cigler, P.; pdf  doi
openurl 
  Title Fluorescent nanodiamonds with bioorthogonally reactive protein-resistant polymeric coatings Type A1 Journal article
  Year 2014 Publication ChemPlusChem Abbreviated Journal Chempluschem  
  Volume 79 Issue 1 Pages 21-24  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The novel synthesis of a polymeric interface grown from the surface of bright fluorescent nanodiamonds is reported. The polymer enables bioorthogonal attachment of various molecules by click chemistry; the particles are resistant to nonspecific protein adsorption and show outstanding colloidal stability in buffers and biological media. The coating fully preserves the unique optical properties of the nitrogen-vacancy centers that are crucial for bioimaging and sensoric applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000337974900002 Publication Date 2013-12-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2192-6506; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.797 Times cited 34 Open Access  
  Notes EU 7FP Program (no.262348); European Soft Matter Infrastructure; ESMI; ERC (grant no.246791)-COUNTATOMS; FWO Approved Most recent IF: 2.797; 2014 IF: 2.997  
  Call Number UA @ lucian @ c:irua:113088 Serial 1235  
Permanent link to this record
 

 
Author Kerkhofs, S.; Leroux, F.; Allouche, L.; Mellaerts, R.; Jammaer, J.; Aerts, A.; Kirschhock, C.E.A.; Magusin, P.C.M.M.; Taulelle, F.; Bals, S.; Van Tendeloo, G.; Martens, J.A.; url  doi
openurl 
  Title Single-step alcohol-free synthesis of coreshell nanoparticles of \gamma-casein micelles and silica Type A1 Journal article
  Year 2014 Publication RSC advances Abbreviated Journal Rsc Adv  
  Volume 4 Issue 49 Pages 25650-25657  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A new, single-step protocol for wrapping individual nanosized β-casein micelles with silica is presented. This biomolecule-friendly synthesis proceeds at low protein concentration at almost neutral pH, and makes use of sodium silicate instead of the common silicon alkoxides. This way, formation of potentially protein-denaturizing alcohols can be avoided. The pH of the citrate-buffered synthesis medium is close to the isoelectric point of β-casein, which favours micelle formation. A limited amount of sodium silicate is added to the protein micelle suspension, to form a thin silica coating around the β-casein micelles. The size distribution of the resulting proteinsilica structures was characterized using DLS and SAXS, as well as 1H NMR DOSY with a dedicated pulsed-field gradient cryo-probehead to cope with the low protein concentration. The degree of silica-condensation was investigated by 29Si MAS NMR, and the nanostructure was revealed by advanced electron microscopy techniques such as ESEM and HAADF-STEM. As indicated by the combined characterization results, a silica shell of 2 nm is formed around individual β-casein micelles giving rise to separate protein coresilica shell nanoparticles of 17 nm diameter. This alcohol-free method at mild temperature and pH is potentially suited for packing protein molecules into bio-compatible silica nanocapsules for a variety of applications in biosensing, therapeutic protein delivery and biocatalysis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000338434500025 Publication Date 2014-05-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.108 Times cited 3 Open Access OpenAccess  
  Notes Fwo; 262348 Esmi; 335078 Colouratom; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:can); Approved Most recent IF: 3.108; 2014 IF: 3.840  
  Call Number UA @ lucian @ c:irua:125382 Serial 3027  
Permanent link to this record
 

 
Author Goris, B.; Guzzinati, G.; Fernández-López, C.; Pérez-Juste, J.; Liz-Marzán, L.M.; Trügler, A.; Hohenester, U.; Verbeeck, J.; Bals, S.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Plasmon mapping in Au@Ag nanocube assemblies Type A1 Journal article
  Year 2014 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 118 Issue 28 Pages 15356-15362  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Surface plasmon modes in metallic nanostructures largely determine their optoelectronic properties. Such plasmon modes can be manipulated by changing the morphology of the nanoparticles or by bringing plasmonic nanoparticle building blocks close to each other within organized assemblies. We report the EELS mapping of such plasmon modes in pure Ag nanocubes, Au@Ag coreshell nanocubes, and arrays of Au@Ag nanocubes. We show that these arrays enable the creation of interesting plasmonic structures starting from elementary building blocks. Special attention will be dedicated to the plasmon modes in a triangular array formed by three nanocubes. Because of hybridization, a combination of such nanotriangles is shown to provide an antenna effect, resulting in strong electrical field enhancement at the narrow gap between the nanotriangles.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos (up) 000339368700031 Publication Date 2014-06-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 41 Open Access OpenAccess  
  Notes Fwo; 246791 Countatoms; 278510 Vortex; 335078 Colouratom; 262348 Esmi ECASJO;; ECASSara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 4.536; 2014 IF: 4.772  
  Call Number UA @ lucian @ c:irua:118099UA @ admin @ c:irua:118099 Serial 2644  
Permanent link to this record
 

 
Author Mai, H.H.; Kaydashev, V.E.; Tikhomirov, V.K.; Janssens, E.; Shestakov, M.V.; Meledina, M.; Turner, S.; Van Tendeloo, G.; Moshchalkov, V.V.; Lievens, P. pdf  url
doi  openurl
  Title Nonlinear optical properties of Ag nanoclusters and nanoparticles dispersed in a glass host Type A1 Journal article
  Year 2014 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 118 Issue 29 Pages 15995-16002  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The nonlinear absorption of Ag atomic clusters and nanoparticles dispersed in a transparent oxyfluoride glass host has been studied. The as-prepared glass, containing 0.15 atom % Ag, shows an absorption band in the UV/violet attributed to the presence of amorphous Ag atomic nanoclusters with an average size of 1.2 nm. Upon heat treatment the Ag nanoclusters coalesce into larger nanoparticles that show a surface plasmon absorption band in the visible. Open aperture z-scan experiments using 480 nm nanosecond laser pulses demonstrated nonsaturated and saturated nonlinear absorption with large nonlinear absorption indices for the Ag nanoclusters and nanoparticles, respectively. These properties are promising, e.g., for applications in optical limiting and objects contrast enhancement.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos (up) 000339540700049 Publication Date 2014-07-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 43 Open Access  
  Notes FWO; Methusalem; funding from the European Research Council under the seventh Framework Program (FP7); ERC Grant 246791 COUNTATOMS and the EC project IFOX. Approved Most recent IF: 4.536; 2014 IF: 4.772  
  Call Number UA @ lucian @ c:irua:118626 Serial 2353  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: