toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Cotte, M.; Genty-Vincent, A.; Janssens, K.; Susini, J. url  doi
openurl 
  Title Applications of synchrotron X-ray nano-probes in the field of cultural heritage Type A1 Journal article
  Year 2018 Publication Comptes rendus : physique Abbreviated Journal Cr Phys  
  Volume 19 Issue 7 Pages 575-588  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Synchrotron-based techniques are increasingly used in the field of cultural heritage, and this review focuses notably on the application of nano-beams to access high-spatial-resolution information on fragments sampled in historical or model artworks. Depending on the targeted information, various nano-analytical techniques can be applied, providing both identification and localization of the various components. More precisely, nano-X-ray fluorescence probes elements, nano-X-ray diffraction identify crystalline phases, and nano X-ray absorption spectroscopy is sensitive to speciation. Furthermore, computed tomography-based techniques can provide useful information about the morphology and in particular the porosity of materials. (C) 2018 Academie des sciences. Published by Elsevier Masson SAS.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000451631400006 Publication Date 2018-08-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1631-0705; 1878-1535 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.048 Times cited 3 Open Access  
  Notes ; ; Approved Most recent IF: 2.048  
  Call Number UA @ admin @ c:irua:156320 Serial 5476  
Permanent link to this record
 

 
Author Pardoen, T.; Colla, M.-S.; Idrissi, H.; Amin-Ahmadi, B.; Wang, B.; Schryvers, D.; Bhaskar, U.K.; Raskin, J.-P. pdf  url
doi  openurl
  Title A versatile lab-on-chip test platform to characterize elementary deformation mechanisms and electromechanical couplings in nanoscopic objects Type A1 Journal article
  Year 2016 Publication Comptes rendus : physique Abbreviated Journal Cr Phys  
  Volume 17 Issue 17 Pages 485-495  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A nanomechanical on-chip test platform has recently been developed to deform under a variety of loading conditions freestanding thin films, ribbons and nanowires involving submicron dimensions. The lab-on-chip involves thousands of elementary test structures from which the elastic modulus, strength, strain hardening, fracture, creep properties can be extracted. The technique is amenable to in situ transmission electron microscopy (TEM) investigations to unravel the fundamental underlying deformation and fracture mechanisms that often lead to size-dependent effects in small-scale samples. The method allows addressing electrical and magnetic couplings as well in order to evaluate the impact of large mechanical stress levels on different solid-state physics phenomena. We had the chance to present this technique in details to Jacques Friedel in 2012 who, unsurprisingly, made a series of critical and very relevant suggestions. In the spirit of his legacy, the paper will address both mechanics of materials related phenomena and couplings with solids state physics issues.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000373524300020 Publication Date 2015-12-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1631-0705 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.048 Times cited 7 Open Access  
  Notes This research has been performed with the financial support of the “Politique scientifique fédérale” under the framework of the interuniversity attraction poles program, IAP7/21, as well as with the support of the “Communauté française de Belgique” under the program “Actions de recherche concertées” ARC 05/10-330 and ARC Convention No. 11/16-037. The support of the “Fonds belge pour la recherche dans l'industrie et l'agriculture (FRIA)” for M.-S. Colla is also gratefully acknowledged as are the FWO research projects G012012N “Understanding nanocrystalline mechanical behavior from structural investigations” for B. Amin-Ahmadi. Approved Most recent IF: 2.048  
  Call Number c:irua:129995 Serial 4014  
Permanent link to this record
 

 
Author Bals, S.; Goris, B.; Altantzis, T.; Heidari, H.; Van Aert, S.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Seeing and measuring in 3D with electrons Type A1 Journal article
  Year 2014 Publication Comptes rendus : physique Abbreviated Journal Cr Phys  
  Volume 15 Issue 2-3 Pages 140-150  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Modern TEM enables the investigation of nanostructures at the atomic scale. However, TEM images are only two-dimensional (2D) projections of a three-dimensional (3D) object. Electron tomography can overcome this limitation. The technique is increasingly focused towards quantitative measurements and reaching atomic resolution in 3D has been the ultimate goal for many years. Therefore, one needs to optimize the acquisition of the data, the 3D reconstruction techniques as well as the quantification methods. Here, we will review a broad range of methodologies and examples. Finally, we will provide an outlook and will describe future challenges in the field of electron tomography.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Paris Editor  
  Language Wos 000334013600005 Publication Date 2014-01-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1631-0705; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.048 Times cited 15 Open Access OpenAccess  
  Notes (FWO;Belgium); European Research Council under the 7th Framework Program (FP7); ERC grant No.246791 – COUNTATOMS; ERC grant No.335078 – COLOURATOMS; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 2.048; 2014 IF: 2.035  
  Call Number UA @ lucian @ c:irua:113855 Serial 2960  
Permanent link to this record
 

 
Author Verbeeck, J.; Guzzinati, G.; Clark, L.; Juchtmans, R.; Van Boxem, R.; Tian, H.; Béché, A.; Lubk, A.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Shaping electron beams for the generation of innovative measurements in the (S)TEM Type A1 Journal article
  Year 2014 Publication Comptes rendus : physique Abbreviated Journal Cr Phys  
  Volume 15 Issue 2-3 Pages 190-199  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In TEM, a typical goal consists of making a small electron probe in the sample plane in order to obtain high spatial resolution in scanning transmission electron microscopy. In order to do so, the phase of the electron wave is corrected to resemble a spherical wave compensating for aberrations in the magnetic lenses. In this contribution, we discuss the advantage of changing the phase of an electron wave in a specific way in order to obtain fundamentally different electron probes opening up new applications in the (S)TEM. We focus on electron vortex states as a specific family of waves with an azimuthal phase signature and discuss their properties, production and applications. The concepts presented here are rather general and also different classes of probes can be obtained in a similar fashion, showing that electron probes can be tuned to optimize a specific measurement or interaction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Paris Editor  
  Language Wos 000334013600009 Publication Date 2014-02-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1631-0705; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.048 Times cited 22 Open Access  
  Notes Vortex ECASJO_; Approved Most recent IF: 2.048; 2014 IF: 2.035  
  Call Number UA @ lucian @ c:irua:116946UA @ admin @ c:irua:116946 Serial 2992  
Permanent link to this record
 

 
Author Dabaghmanesh, S.; Neek-Amal, M.; Partoens, B.; Neyts, E.C. pdf  url
doi  openurl
  Title The formation of Cr2O3 nanoclusters over graphene sheet and carbon nanotubes Type A1 Journal article
  Year 2017 Publication Chemical physics letters Abbreviated Journal Chem Phys Lett  
  Volume 687 Issue Pages 188-193  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000412453700030 Publication Date 2017-09-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0009-2614 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.815 Times cited 2 Open Access Not_Open_Access: Available from 01.11.2019  
  Notes ; This work was supported by SIM vzw, Technologiepark 935, BE-9052 Zwijnaarde, Belgium, within the InterPoCo project of the H-INT-S horizontal program. The computational resources and services used in this work were provided by the Vlaams Supercomputer Centrum (VSC) and the HPC infrastructure of the University of Antwerp. ; Approved Most recent IF: 1.815  
  Call Number UA @ lucian @ c:irua:146646 Serial 4795  
Permanent link to this record
 

 
Author Arsoski, V.V.; Čukarić, N.A.; Tadic, M.Z.; Peeters, F.M. pdf  url
doi  openurl
  Title An efficient finite-difference scheme for computation of electron states in free-standing and core-shell quantum wires Type A1 Journal article
  Year 2015 Publication Computer physics communications Abbreviated Journal Comput Phys Commun  
  Volume 197 Issue 197 Pages 17-26  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The electron states in axially symmetric quantum wires are computed by means of the effective-mass Schrodinger equation, which is written in cylindrical coordinates phi, rho, and z. We show that a direct discretization of the Schrodinger equation by central finite differences leads to a non-symmetric Hamiltonian matrix. Because diagonalization of such matrices is more complex it is advantageous to transform it in a symmetric form. This can be done by the Liouville-like transformation proposed by Rizea et al. (2008), which replaces the wave function psi(rho) with the function F(rho) = psi(rho)root rho and transforms the Hamiltonian accordingly. Even though a symmetric Hamiltonian matrix is produced by this procedure, the computed wave functions are found to be inaccurate near the origin, and the accuracy of the energy levels is not very high. In order to improve on this, we devised a finite-difference scheme which discretizes the Schrodinger equation in the first step, and then applies the Liouville-like transformation to the difference equation. Such a procedure gives a symmetric Hamiltonian matrix, resulting in an accuracy comparable to the one obtained with the finite element method. The superior efficiency of the new finite-difference scheme (FDM) is demonstrated for a few p-dependent one-dimensional potentials which are usually employed to model the electron states in free-standing and core shell quantum wires. The new scheme is compared with the other FDM schemes for solving the effective-mass Schrodinger equation, and is found to deliver energy levels with much smaller numerical error for all the analyzed potentials. It also gives more accurate results than the scheme of Rizea et al., except for the ground state of an infinite rectangular potential in freestanding quantum wires. Moreover, the PT symmetry is invoked to explain similarities and differences between the considered FDM schemes. (C) 2015 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000362919500003 Publication Date 2015-08-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0010-4655 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.936 Times cited 4 Open Access  
  Notes ; This work was supported by the Ministry of Education, Science, and Technological Development of Serbia (project III 45003) and the Fonds Wetenschappelijk Onderzoek (Belgium). ; Approved Most recent IF: 3.936; 2015 IF: 3.112  
  Call Number UA @ lucian @ c:irua:129412 Serial 4139  
Permanent link to this record
 

 
Author Tang, T.; Strokal, M.; van Vliet, M.T.H.; Seuntjens, P.; Burek, P.; Kroeze, C.; Langan, S.; Wada, Y. url  doi
openurl 
  Title Bridging global, basin and local-scale water quality modeling towards enhancing water quality management worldwide Type A1 Journal article
  Year 2019 Publication Current Opinion in Environmental Sustainability Abbreviated Journal  
  Volume 36 Issue Pages 39-48  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Global water quality (WQ) modeling is an emerging field. In this article, we identify the missing linkages between global and basin/local-scale WQ models, and discuss the possibilities to fill these gaps. We argue that WQ models need stronger linkages across spatial scales. This would help to identify effective scale-specific WQ management options and contribute to future development of global WQ models. Two directions are proposed to improve the linkages: nested multiscale WQ modeling towards enhanced water management, and development of next-generation global WQ models based-on basin/local-scale mechanistic understanding. We highlight the need for better collaboration among WQ modelers and policy-makers in order to deliver responsive water policies and management strategies across scales.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000460234600006 Publication Date 2018-11-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1877-3435 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:158643 Serial 7568  
Permanent link to this record
 

 
Author Idrissi, H.; Carrez, P.; Cordier, P. url  doi
openurl 
  Title On amorphization as a deformation mechanism under high stresses Type A1 Journal article
  Year 2022 Publication Current opinion in solid state and materials science Abbreviated Journal Curr Opin Solid St M  
  Volume 26 Issue 1 Pages 100976-17  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In this paper we review the work related to amorphization under mechanical stress. Beyond pressure, we highlight the role of deviatoric or shear stresses. We show that the most recent works make amorphization appear as a deformation mechanism in its own right, in particular under extreme conditions (shocks, deformations under high stresses, high strain-rates).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000779433300002 Publication Date 2022-01-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-0286 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 11  
  Call Number UA @ admin @ c:irua:188014 Serial 7064  
Permanent link to this record
 

 
Author Charalampopoulou, E.; Delville, R.; Verwerft, M.; Lambrinou, K.; Schryvers, D. pdf  url
doi  openurl
  Title Transmission electron microscopy study of complex oxide scales on DIN 1.4970 steel exposed to liquid Pb-Bi eutectic Type A1 Journal article
  Year 2019 Publication Corrosion science Abbreviated Journal Corrosion Science  
  Volume 147 Issue Pages 22-31  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The deployment of Gen-IV lead-cooled fast reactors requires a good compatibility between the selected structural/cladding steels and the inherently corrosive heavy liquid metal coolant. An effective liquid metal corrosion mitigation strategy involves the in-situ steel passivation in contact with the oxygen-containing Pb-alloy coolant. Transmission electron microscopy was used in this work to study the multi-layered oxide scales forming on an austenitic stainless steel fuel cladding exposed to oxygen-containing (CO ≈ 10−6 mass%) static liquid leadbismuth eutectic (LBE) for 1000 h between 400 and 500 °C. The oxide scale constituents were analyzed, including the intertwined phases comprising the innermost biphasic layer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000456902100003 Publication Date 2018-10-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0010938X ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 5 Open Access OpenAccess  
  Notes The authors would like to thank J. Joris for the technical support during corrosion testing and J. Lim for the manufacturing and calibration of the oxygen sensors and oxygen pumps used in this work. E. Charalampopoulou personally thanks H. Heidari, S. Pourbabak, A. Orekhov (EMAT) and N. Cautaerts (EMAT, SCK•CEN), for their valuable help with the training of the FEI Tecnai Osiris S/TEM and Jeol 3000 S/ TEM, respectively, as well as S. Van den Broeck (EMAT), J. Pakarinen (SCK•CEN) and W. Van Renterghem (SCK•CEN) for FIB sample preparation. Moreover, the authors gratefully acknowledge the funding provided in the framework of the ongoing development of the MYRRHA irradiation facility. The research leading to these results falls within the framework of the European Energy Research Alliance Joint Programme on Nuclear Materials (EERA JPNM). Approved Most recent IF: NA  
  Call Number EMAT @ emat @UA @ admin @ c:irua:157541 Serial 5164  
Permanent link to this record
 

 
Author Gong, X.; Marmy, P.; Volodin, A.; Amin-Ahmadi, B.; Qin, L.; Schryvers, D.; Gavrilov, S.; Stergar, E.; Verlinden, B.; Wevers, M.; Seefeldt, M. pdf  url
doi  openurl
  Title Multiscale investigation of quasi-brittle fracture characteristics in a 9Cr–1Mo ferritic–martensitic steel embrittled by liquid lead–bismuth under low cycle fatigue Type A1 Journal article
  Year 2016 Publication Corrosion science Abbreviated Journal  
  Volume 102 Issue 102 Pages 137-152  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Liquid metal embrittlement (LME) induced quasi-brittle fracture characteristics of a 9Cr–1Mo ferritic–martensitic steel (T91) after fatigue cracking in lead–bismuth eutectic (LBE) have been investigated at various length scales. The results show that the LME fracture morphology is primarily characterized by quasi-brittle translath flat regions partially covered by nanodimples, shallow secondary cracks propagating along the martensitic lath boundaries as well as tear ridges covered by micro dimples. These diverse LME fracture features likely indicate a LME mechanism involving multiple physical processes, such as weakening induced interatomic decohesion at the crack tip and plastic shearing induced nano/micro voiding in the plastic zone.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000367275700014 Publication Date 2015-10-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0010938X ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 16 Open Access  
  Notes The work is financially supported by the MYRRHA project,SCK•CEN, Belgium and partly funded by the European AtomicEnergy Community’s (Euratom) Seventh Framework ProgrammeFP7/2007-2013 under grant agreement No. 604862 (MatISSEproject) and in the framework of the EERA (European EnergyResearch Alliance) Joint Programme on Nuclear Materials. Dr. TomVan der Donck (KU Leuven) is acknowledged for the EBSD mea-surements. The authors are grateful to Dr. Van Renterghem Wouter(SCK•CEN) for fruitful discussion of the TEM results. Xing Gongsincerely acknowledges valuable suggestions from Dr. S.P. Lynch(Defence Science and Technology Organisation and Monash Uni-versity, Melbourne, Australia). Approved Most recent IF: NA  
  Call Number c:irua:129997 Serial 4013  
Permanent link to this record
 

 
Author Pankratova, G.; Bollella, P.; Pankratov, D.; Gorton, L. url  doi
openurl 
  Title Supercapacitive biofuel cells Type A1 Journal article
  Year 2022 Publication Current opinion in biotechnology Abbreviated Journal  
  Volume 73 Issue Pages 179-187  
  Keywords A1 Journal article; Engineering sciences. Technology; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Supercapacitive biofuel cells' (SBFCs) most recent advancements are herein disclosed. In conventional SBFCs the biocomponent is employed as the pseudocapacitive component, while in self-charging biodevices it also works as the biocatalyst. The performance of different types of SBFCs are summarized according to the categorization based on the biocatalyst employed: supercapacitive microbial fuel cells (sMFCs), supercapacitive biophotovoltaics (SBPV) and supercapacitive enzymatic fuel cells (s-EFCs). SBFCs could be considered as promising 'alternative' energy devices (low-cost, environmentally friendly, and technically undemanding electric power sources etc.) being suitable for powering a new generation of miniaturized electronic applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000760339100024 Publication Date 2021-09-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0958-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:187287 Serial 8937  
Permanent link to this record
 

 
Author Agrawal, S.; Seuntjens, D.; De Cocker, P.; Lackner, S.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Success of mainstream partial nitritation/anammox demands integration of engineering, microbiome and modeling insights Type A1 Journal article
  Year 2018 Publication Current opinion in biotechnology Abbreviated Journal  
  Volume 50 Issue Pages 214-221  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Twenty years ago, mainstream partial nitritation/anammox (PN/A) was conceptually proposed as pivotal for a more sustainable treatment of municipal wastewater. Its economic potential spurred research, yet practice awaits a comprehensive recipe for microbial resource management. Implementing mainstream PN/A requires transferable and operable ways to steer microbial competition as to meet discharge requirements on a year-round basis at satisfactory conversion rates. In essence, the competition for nitrogen, organic carbon and oxygen is grouped into ON/OFF (suppression/promotion) and IN/OUT (wash-out/retention and seeding) strategies, selecting for desirable conversions and microbes. Some insights need mechanistic understanding, while empirical observations suffice elsewhere. The provided methodological R&D framework integrates insights in engineering, microbiome and modeling. Such synergism should catalyze the implementation of energy-positive sewage treatment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000430903400028 Publication Date 2018-02-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0958-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:149977 Serial 8616  
Permanent link to this record
 

 
Author Omranian, S.R.; Geluykens, M.; Van Hal, M.; Hasheminejad, N.; Rocha Segundo, I.; Pipintakos, G.; Denys, S.; Tytgat, T.; Fraga Freitas, E.; Carneiro, J.; Verbruggen, S.; Vuye, C. pdf  url
doi  openurl
  Title Assessing the potential of application of titanium dioxide for photocatalytic degradation of deposited soot on asphalt pavement surfaces Type A1 Journal article
  Year 2022 Publication Construction and building materials Abbreviated Journal Constr Build Mater  
  Volume 350 Issue Pages 128859-13  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract It is known that pollutants and their irreparable influence can considerably jeopardize the environment and human health. Such disastrous, growing, hazardous particles urged researchers to find effective ways and diminish their destructive impacts and preserve our planet. This study evaluates the potential of incorporating Titanium Dioxide (TiO2) semiconductor nanoparticles on asphalt pavements to degrade pollutants without compromising bitumen performance. Accordingly, the Response Surface Method (RSM) was employed to develop an experimental matrix based on the central composite design. Image Analysis (IA) was used to determine the rate of soot degradation (as pollutant representative) using MATLAB and ImageJ software. Confocal Laser Scanning Microscopy (CLSM), Fourier Transform Infrared spectroscopy (FTIR), and Dynamic Shear Rheometer (DSR) were finally carried out to estimate the effects of adding different percentages of TiO2 on the micro -structural features and dispersion of the TiO2, chemical fingerprinting, and rheological performance of the bituminous binder. The results showed a promising potential of TiO2 to degrade soot (over 50%) during the conducted experiments. In addition, the RSM outcomes showed that applying a higher amount of TiO2 is more efficient for pollutant degradation. Finally, no negative impact was observed, neither on the rheological behavior nor on the aging susceptibility of the bitumen, even though the homogenous dispersion of the TiO2 was clearly captured via CLSM.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000848227000001 Publication Date 2022-08-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0950-0618 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 7.4  
  Call Number UA @ admin @ c:irua:189820 Serial 7128  
Permanent link to this record
 

 
Author Zhao, L.; Ding, L.; Soete, J.; Idrissi, H.; Kerckhofs, G.; Simar, A. pdf  url
doi  openurl
  Title Fostering crack deviation via local internal stresses in Al/NiTi composites and its correlation with fracture toughness Type A1 Journal article
  Year 2019 Publication Composites: part A: applied science and manufacturing Abbreviated Journal Compos Part A-Appl S  
  Volume 126 Issue 126 Pages 105617  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In the framework of metal matrix composites, a research gap exists regarding tailoring damage mechanisms. The present work aims at developing an Al/NiTi composite incorporating internal stresses in the vicinity of reinforcements. The composite is manufactured by friction stir processing which allows a homogenous NiTi distribution and a good Al/NiTi interface bonding. The internal stresses are introduced via shape memory effect of the embedded NiTi particles. The induced internal strain field is confirmed by digital image correlation and the corresponding stress field is evaluated by finite element simulation. It is found that the damage mechanism is modified in the presence of internal stresses. The consequent enhancement of fracture toughness arises by the fact that the internal stresses foster discrete damages shifted from the fracture ligament line. These damages release the stress concentration at the main crack tip and lead to a deviated crack path when coalescing to accommodate fracture propagation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000489350600025 Publication Date 2019-09-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-835x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.075 Times cited Open Access  
  Notes ; This research work has been exclusively supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement no 716678). The X-ray computed,tomography facilities of the Department of Materials Engineering of the KU Leuven are financed by the Hercules Foundation. H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSR-FNRS). The authors acknowledge Professor F. Delannay from UCLouvain for fruitful discussions. ; Approved Most recent IF: 4.075  
  Call Number UA @ admin @ c:irua:163706 Serial 5387  
Permanent link to this record
 

 
Author Oliveira, M.C.; Yusupov, M.; Cordeiro, R.M.; Bogaerts, A. pdf  url
doi  openurl
  Title Unraveling the permeation of reactive species across nitrated membranes by computer simulations Type A1 Journal Article;Reactive oxygen and nitrogen species
  Year 2021 Publication Computers In Biology And Medicine Abbreviated Journal Comput Biol Med  
  Volume 136 Issue Pages 104768  
  Keywords A1 Journal Article;Reactive oxygen and nitrogen species; Nitro-oxidative stress; Molecular dynamics simulations; Nitrated membranes; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Reactive oxygen and nitrogen species (RONS) are involved in many biochemical processes, including nitrooxidative stress that causes cancer cell death, observed in cancer therapies such as photodynamic therapy and cold atmospheric plasma. However, their mechanisms of action and selectivity still remain elusive due to the complexity of biological cells. For example, it is not well known how RONS generated by cancer therapies permeate the cell membrane to cause nitro-oxidative damage. There are many studies dedicated to the perme­ation of RONS across native and oxidized membranes, but not across nitrated membranes, another lipid product also generated during nitro-oxidative stress. Herein, we performed molecular dynamics (MD) simulations to calculate the free energy barrier of RONS permeation across nitrated membranes. Our results show that hy­drophilic RONS, such as hydroperoxyl radical (HO2) and peroxynitrous acid (ONOOH), have relatively low barriers compared to hydrogen peroxide (H2O2) and hydroxyl radical (HO), and are more prone to permeate the membrane than for the native or peroxidized membranes, and similar to aldehyde-oxidized membranes. Hy­drophobic RONS like molecular oxygen (O2), nitrogen dioxide (NO2) and nitric oxide (NO) even have insignif­icant barriers for permeation. Compared to native and peroxidized membranes, nitrated membranes are more permeable, suggesting that we must not only consider oxidized membranes during nitro-oxidative stress, but also nitrated membranes, and their role in cancer therapies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000696938800003 Publication Date 2021-08-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0010-4825 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.836 Times cited Open Access OpenAccess  
  Notes We thank University of Antwerp and Coordination of Superior Level Staff Improvement (CAPES, Brazil) for the scholarship granted and for providing the computational resources needed for completion of this work. M. Yusupov acknowledges the Flanders Research Foundation (grant 1200219N) for financial support. Approved Most recent IF: 1.836  
  Call Number PLASMANT @ plasmant @c:irua:181082 Serial 6807  
Permanent link to this record
 

 
Author Ranjbar, S.; Shahmansouri, M.; Attri, P.; Bogaerts, A. pdf  url
doi  openurl
  Title Effect of plasma-induced oxidative stress on the glycolysis pathway of Escherichia coli Type A1 Journal article
  Year 2020 Publication Computers In Biology And Medicine Abbreviated Journal Comput Biol Med  
  Volume 127 Issue Pages 104064  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Antibiotic resistance is one of the world’s most urgent public health problems. Due to its antibacterial properties, cold atmospheric plasma (CAP) may serve as an alternative method to antibiotics. It is claimed that oxidative stress caused by CAP is the main reason of bacteria inactivation. In this work, we computationally investigated the effect of plasma-induced oxidation on various glycolysis metabolites, by monitoring the production of the biomass. We observed that in addition to the significant reduction in biomass production, the rate of some re­actions has increased. These reactions produce anti-oxidant products, showing the bacterial defense mechanism to escape the oxidative damage. Nevertheless, the simulations show that the plasma-induced oxidation effect is much stronger than the defense mechanism, causing killing of the bacteria.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000603362700001 Publication Date 2020-11-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0010-4825 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.7 Times cited Open Access  
  Notes Ministry of Science and Technology of Iran; Hercules Foundation; Flemish Government; EWI; S. R. acknowledges funding from the Ministry of Science and Tech­nology of Iran. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Ant­werpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (depart­ment EWI) and the universitteit Antwerpen. We also would like to thank Dr. Charlotta Bengtson for her suggestions in writing this paper. Approved Most recent IF: 7.7; 2020 IF: 1.836  
  Call Number PLASMANT @ plasmant @c:irua:173860 Serial 6437  
Permanent link to this record
 

 
Author Fukuhara, S.; Bal, K.M.; Neyts, E.C.; Shibuta, Y. pdf  url
doi  openurl
  Title Accelerated molecular dynamics simulation of large systems with parallel collective variable-driven hyperdynamics Type A1 Journal article
  Year 2020 Publication Computational Materials Science Abbreviated Journal Comp Mater Sci  
  Volume 177 Issue Pages 109581  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The limitation in time and length scale is a major issue of molecular dynamics (MD) simulation. Although several methods have been developed to extend the MD time scale, their performance usually deteriorates with increasing system size. Therefore, an acceleration method which is applicable to large systems is required to bridge the gap between the MD simulations and target phenomena. In this study, an accelerated MD method for large system is developed based on the collective variable-driven hyperdynamics (CVHD) method [K.M. Bal and E.C. Neyts, 2015]. The key idea is to run CVHD in parallel with rate control and accelerate multiple possible events simultaneously. Using this novel method, carbon diffusion in bcc-iron bicrystal with grain boundary is examined as an application for practical materials. Carbon atoms reaching at the grain boundary are trapped whereas carbon atoms in the bulk region diffuse randomly, and both dynamic regimes can be simultaneously accelerated with the parallel CVHD technique.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000519576300001 Publication Date 2020-02-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-0256 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.3 Times cited Open Access  
  Notes JSPS, J22727 ; Japan Society for the Promotion of Science; This work was supported by Grant-in-Aid for Scientific Research (B) (No.19H02415) and Grant-in-Aid for JSPS Research Fellow (No.18J22727) from Japan Society for the Promotion of Science (JSPS), Japan. S.F. was supported by JSPS through the Program for Leading Graduate Schools (MERIT). Data availability The data required to reproduce these findings are available from the corresponding authors upon reasonable request. Approved Most recent IF: 3.3; 2020 IF: 2.292  
  Call Number PLASMANT @ plasmant @c:irua:166773 Serial 6333  
Permanent link to this record
 

 
Author Huygh, S.; Bogaerts, A.; van Duin, A.C.T.; Neyts, E.C. pdf  url
doi  openurl
  Title Development of a ReaxFF reactive force field for intrinsic point defects in titanium dioxide Type A1 Journal article
  Year 2014 Publication Computational materials science Abbreviated Journal Comp Mater Sci  
  Volume 95 Issue Pages 579-591  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A reactive ReaxFF force field is developed for studying the influence of intrinsic point defects on the chemistry with TiO2 condensed phases. The force field parameters are optimized to ab initio data for the equations of state, relative phase stabilities for titanium and titanium dioxide, potential energy differences for (TiO2)n-clusters (n = 116). Also data for intrinsic point defects in anatase were added. These data contain formation energies for interstitial titanium and oxygen vacancies, diffusion barriers of the oxygen vacancies and molecular oxygen adsorption on a reduced anatase (101) surface. Employing the resulting force field, we study the influence of concentration of oxygen vacancies and expansion or compression of an anatase surface on the diffusion of the oxygen vacancies. Also the barrier for oxygen diffusion in the subsurface region is evaluated using this force field. This diffusion barrier of 27.7 kcal/mol indicates that the lateral redistribution of oxygen vacancies on the surface and in the subsurface will be dominated by their diffusion in the subsurface, since both this barrier as well as the barriers for diffusion from the surface to the subsurface and vice versa (17.07 kcal/mol and 21.91 kcal/mol, respectively, as calculated with DFT), are significantly lower than for diffusion on the surface (61.12 kcal/mol as calculated with DFT).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000343781700077 Publication Date 2014-09-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-0256; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.292 Times cited 15 Open Access  
  Notes Approved Most recent IF: 2.292; 2014 IF: 2.131  
  Call Number UA @ lucian @ c:irua:119409 Serial 682  
Permanent link to this record
 

 
Author Borah, R.; Verbruggen, S.W. pdf  url
doi  openurl
  Title Effect of size distribution, skewness and roughness on the optical properties of colloidal plasmonic nanoparticles Type A1 Journal article
  Year 2022 Publication Colloids and surfaces: A: physicochemical and engineering aspects Abbreviated Journal Colloid Surface A  
  Volume 640 Issue Pages 128521  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract It is a generally accepted idea that the particle size distribution strongly affects the optical spectra of colloidal plasmonic nanoparticles. It is often quoted as one of the main reasons while explaining the mismatch between the theoretical and experimental optical spectra of such nanoparticles. In this work, these aspects are critically analyzed by means of a bottom up statistical approach that considers variables such as mean, standard deviation and skewness of the nanoparticle size distribution independently from one another. By assuming normal and log-normal distributions of the particle size, the effect of the statistical parameters on the Mie analytical optical spectra of colloidal nanoparticles was studied. The effect of morphology was also studied numerically in order to understand to what extent it can play a role. It is our finding that the particle polydispersity, skewness and surface morphology in fact only weakly impact the optical spectra. While, the selection of suitable optical constants with regard to the crystallinity of the nanoparticles is a far more influential factor for correctly predicting both the plasmon band position and the plasmon bandwidth in theoretical simulations of the optical spectra. It is shown that the mean particle size can be correctly estimated directly from the plasmon band position, as it is the mean that determines the resonance wavelength. The standard deviation can on the other hand be estimated from the intensity distribution data obtained from dynamic light scattering experiments. The results reported herein clear the ambiguity around particle size distribution and optical response of colloidal plasmonic nanoparticles.  
  Address  
  Corporate Author Thesis  
  Publisher Elservier Place of Publication Editor  
  Language Wos 000765946900002 Publication Date 2022-02-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-7757 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.2 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.2  
  Call Number DuEL @ duel @c:irua:185704 Serial 6908  
Permanent link to this record
 

 
Author Perreault, P.; Van Hoecke, L.; Pourfallah, H.; Kummamuru, N.B.; Boruntea, C.-R.; Preuster, P. pdf  url
doi  openurl
  Title Critical challenges towards the commercial rollouts of a LOHC-based H2 economy Type A1 Journal article
  Year 2023 Publication Current opinion in green and sustainable chemistry Abbreviated Journal  
  Volume 41 Issue Pages 100836-100838  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract This short review discusses recent developments related to the storage and release of hydrogen from liquid organic hydrogen carriers (LOHCs). It focusses on three areas of recent literature: the application and development of novel, alternative LOHC systems, process development and process integration in the storage and release of hydrogen from LOHCs, and the electrochemical conversion of LOHCs. For the novel LOHC systems, we briefly focus on reaction enthalpy and storage capacity as main KPIs for the comparison of those systems and discuss the technical availability on a relevant scale. In the field of process- and reactor development our emphasis lies on the power density of the chemical conversion units. The LOHC technology still requires further development to reach the necessary energy efficiency, flexibility and overall research maturity for market competitivity and commercial impact.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001019180100001 Publication Date 2023-05-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2452-2236 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.3 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 9.3; 2023 IF: NA  
  Call Number UA @ admin @ c:irua:196520 Serial 8845  
Permanent link to this record
 

 
Author Baetens, D.; Schoofs, K.; Somers, N.; Denys, S. pdf  url
doi  openurl
  Title A brief review on Multiphysics modelling of the various physical and chemical phenomena occurring in active oxidation reactors Type A1 Journal article
  Year 2023 Publication Current opinion in green and sustainable chemistry Abbreviated Journal  
  Volume 40 Issue Pages 100764-100766  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Heterogeneous photocatalysis can be used as an advanced oxidation technology frequently studied for application in photoreactors for air and water treatment. Extensive experimental investigation entails high costs and is also time consuming. Multiphysics modelling, a relatively new numerical method, provides a cost-effective and valuable alternative. By reconstructing the reactor geometry in dedicated software, meshing it and solving for occurring physical and chemical phenomena, Multiphysics models can be used to evaluate the performance of different reactor designs, increase insight into the occurring phenomena and study the influence of operational parameters on reactor performance. Finally, Multiphysics models are also developed for various applications like optimising the operational parameters, creating the ideal reactor design or scaling up a lab-scale reactor to a realistic prototype.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000947344000001 Publication Date 2023-02-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2452-2236 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 9.3 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 9.3; 2023 IF: NA  
  Call Number UA @ admin @ c:irua:195208 Serial 7278  
Permanent link to this record
 

 
Author Moro, G.; De Wael, K.; Moretto, L.M. pdf  url
doi  openurl
  Title Challenges in the electrochemical (bio)sensing of non-electroactive food and environmental contaminants Type A1 Journal article
  Year 2019 Publication Current opinion in electrochemistry Abbreviated Journal  
  Volume 16 Issue 16 Pages 57-65  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The electrochemical detection of non-electroactive contaminants can be successfully faced via the use of indirect detection strategies. These strategies can provide sensitive and selective responses often coupled with portable and user-friendly analytical tools. Indirect detection strategies are usually based on the change in the signal of an electroactive probe, induced by the presence of the target molecule at a modified electrode. This critical review aims at addressing the developments in indirect electro-sensing strategies for non-electroactive contaminants in food and environmental analysis in the last years (2017-2019). Emphasis is given to the strategy design, the electrode modifiers used and the feasibility of technological transfer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000485814400010 Publication Date 2019-04-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2451-9103; 2451-9111 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 4 Open Access  
  Notes ; ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:159574 Serial 5498  
Permanent link to this record
 

 
Author Florea, A.; De Jong, M.; De Wael, K. pdf  url
doi  openurl
  Title Electrochemical strategies for the detection of forensic drugs Type A1 Journal article
  Year 2018 Publication Current opinion in electrochemistry Abbreviated Journal  
  Volume 11 Issue 11 Pages 34-40  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Illicit drugs consumption and trafficking is spread worldwide and remains an increasing challenge for local authorities. Forensic drugs and their metabolites are released into wastewaters due to human excretion after illegal consumption of drugs and occasionally due to disposal of clandestine laboratory wastes into sewage systems, being recently classified as the latest group of emerging pollutants. Hence, it is essential to have efficient and accurate methods to detect these type of compounds in seized street samples, biological fluids and wastewaters in order to reduce and prevent trafficking and consumption and negative effects on aquatic systems. Electrochemical strategies offer a fast, portable, low-cost and accurate alternative to chromatographic and spectrometric methods, for the analysis of forensic drugs and metabolites in different matrices. Recent electrochemical strategies applied to the detection of illicit drugs in wastewaters, biological fluids and street samples are presented in this review, together with the impact of drug consumption on the environment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000453710900007 Publication Date 2018-07-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2451-9103; 2451-9111 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 7 Open Access  
  Notes ; This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 753223 Narcoreader. The authors also acknowledge financial support from BELSPO, IOF-SBO and UAntwerp. ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:152366 Serial 5597  
Permanent link to this record
 

 
Author Perreault, P.; Kummamuru, N.B.; Gonzalez Quiroga, A.; Lenaerts, S. pdf  url
doi  openurl
  Title CO2 capture initiatives : are governments, society, industry and the financial sector ready? Type A1 Journal article
  Year 2022 Publication Current Opinion in Chemical Engineering Abbreviated Journal Curr Opin Chem Eng  
  Volume 38 Issue Pages 100874  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The deployment of CCUS plants does not match the enormous requirements to meet the CO2 emission reductions fixed during the Paris agreement, and we must ask ourselves what is refraining the technology deployment, especially in light of the recent high CO2 prices. Owing to the higher costs than their fossil counterparts, Carbon Capture & Utilization represents a long-term solution. In addition to a gigantic scale-up effort even for the most mature Carbon Capture & Storage (CCS) technologies, various factors are responsible for the slow roll-out of CCS projects. Luckily, the financial sector and governments are playing their role. Support from the public is however key, and an open communication is required to convert social tolerance into social acceptance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000885329800001 Publication Date 2022-10-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2211-3398 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.6 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 6.6  
  Call Number UA @ admin @ c:irua:191272 Serial 7137  
Permanent link to this record
 

 
Author Van Everbroeck, T.; Wu, J.; Arenas-Esteban, D.; Ciocarlan, R.-G.; Mertens, M.; Bals, S.; Dujardin, C.; Granger, P.; Seftel, E.M.; Cool, P. url  doi
openurl 
  Title ZnAl layered double hydroxide based catalysts (with Cu, Mn, Ti) used as noble metal-free three-way catalysts Type A1 Journal article
  Year 2022 Publication Applied clay science Abbreviated Journal Appl Clay Sci  
  Volume 217 Issue Pages 106390  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000795870100004 Publication Date 2022-01-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-1317 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.6 Times cited 6 Open Access OpenAccess  
  Notes The authors acknowledge financial support by theEuropean Union’s Horizon 2020 Project Partial-PGMs (H2020-NMP-686086). R-G C. and P.C. acknowledge the FWO-Flanders (project no. G038215N) for financial support. S⋅B and D.A.E thank the financial support of the European Research Council (ERC-CoG-2019 815128). The authors are grateful to Johnson Matthey, UK, for supplying the commercial benchmark catalysts; realnano; sygmaSB Approved Most recent IF: 5.6  
  Call Number EMAT @ emat @c:irua:186956 Serial 6955  
Permanent link to this record
 

 
Author Pauwels, D.; Geboes, B.; Hereijgers, J.; Choukroun, D.; De Wael, K.; Breugelmans, T. pdf  url
doi  openurl
  Title The application of an electrochemical microflow reactor for the electrosynthetic aldol reaction of acetone to diacetone alcohol Type A1 Journal article
  Year 2017 Publication Chemical engineering research and design Abbreviated Journal Chem Eng Res Des  
  Volume 128 Issue Pages 205-213  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Laboratory Experimental Medicine and Pediatrics (LEMP); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract The design and application of an electrochemical micro-flow reactor for the aldol reaction of acetone to diacetone alcohol (DAA) is reported. The modular reactor could be readily disassembled and reassembled to change the electrodes, incorporate a membrane and remove possible obstructions. The productivity and efficiency was quantified. Using a platinum deposit as electrocatalyst or an inert glassy carbon electrode as working electrode, the maximum obtainable equilibrium concentration of ±15 m% was reached after a single pass up to a flow rate of 8 ml min−1, yielding 0.57 g min−1 DAA (3.46 mmol cm−3 min−1) at an efficiency of 0.33 g C−1 on platinum and 0.50 g min−1 (3.04 mmol cm−3 min−1) at 1.20 g C−1 on glassy carbon. Note that no optimisation studies have been made in the present paper.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000424736500018 Publication Date 2017-10-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0263-8762 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.538 Times cited 2 Open Access  
  Notes ; The authors would like to thank Bert De Mot for assisting with the measurements. Jonas Hereijgers greatly acknowledges the Research Foundation – Flanders (FWO) for support through a Post-Doctoral grant (12Q8817N). ; Approved Most recent IF: 2.538  
  Call Number UA @ admin @ c:irua:146943 Serial 5871  
Permanent link to this record
 

 
Author Kelly, S.; Verheyen, C.; Cowley, A.; Bogaerts, A. pdf  url
doi  openurl
  Title Producing oxygen and fertilizer with the Martian atmosphere by using microwave plasma Type A1 Journal article
  Year 2022 Publication Chem Abbreviated Journal Chem  
  Volume 8 Issue 10 Pages 2797-2816  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We explorethepotentialofmicrowave(MW)-plasma-based in situ

utilizationoftheMartianatmospherewithafocusonthenovelpos-

sibilityoffixingN2 forfertilizerproduction. Conversioninasimulant

plasma (i.e., 96% CO2, 2% N2, and 2% Ar),performedunderen-

ergyconditionssimilartothoseoftheMarsOxygen In Situ Resource

UtilizationExperiment(MOXIE),currentlyonboardNASA’sPerse-

verancerover,demonstratesthatO/O2 formedthroughCO2 dissociation

facilitatesthefixationoftheN2 fractionviaoxidationtoNOx.

PromisingproductionratesforO2, CO,andNOx of 47.0,76.1,and

1.25g/h,respectively,arerecordedwithcorrespondingenergy

costs of0.021,0.013,and0.79kWh/g,respectively.Notably,O2

productionratesare 30 timeshigherthanthosedemonstrated

by MOXIE,whiletheNOx production raterepresentsan 7% fixa-

tionoftheN2 fraction presentintheMartian atmosphere.MW-

plasma-basedconversionthereforeshowsgreatpotentialasan in

situ resourceutilization(ISRU)technologyonMarsinthatitsimulta-

neouslyfixesN2 and producesO2.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000875346600005 Publication Date 2022-08-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2451-9294 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 23.5 Times cited Open Access OpenAccess  
  Notes the Euro- pean Marie Skłodowska-Curie Individual Fellowship ‘‘PENFIX’’ within Horizon 2020 (grant no. 838181), the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Program (grant no. 810182; SCOPE ERC Synergy project), and the Excellence of Science FWO-FNRS project (FWO grant no. GoF9618n and EOS no. 30505023). C.V. was supported by a FWO aspirant PhD fellowship (grant no. 1184820N). The calculations were per- formed with the Turing HPC infrastructure at the CalcUA core facility of the Univer- siteit Antwerpen (Uantwerpen), a division of the Flemish Supercomputer Centre VSC, funded by the Hercules Foundation, the Flemish government (department EWI), and Uantwerpen. Approved Most recent IF: 23.5  
  Call Number PLASMANT @ plasmant @c:irua:192174 Serial 7243  
Permanent link to this record
 

 
Author Van Winckel, T.; Ngo, N.; Sturm, B.; Al-Omari, A.; Wett, B.; Bott, C.; Vlaeminck, S.E.; De Clippeleir, H. pdf  url
doi  openurl
  Title Enhancing bioflocculation in high-rate activated sludge improves effluent quality yet increases sensitivity to surface overflow rate Type A1 Journal article
  Year 2022 Publication Chemosphere Abbreviated Journal Chemosphere  
  Volume 308 Issue 2 Pages 136294-11  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract High-rate activated sludge (HRAS) relies on good bioflocculation and subsequent solid-liquid separation to maximize the capture of organics. However, full-scale applications often suffer from poor and unpredictable effluent suspended solids (ESS). While the biological aspects of bioflocculation are thoroughly investigated, the effects of fines (settling velocity < 0.6 m3/m2/h), shear and surface overflow rate (SOR) are unclear. This work tackled the impact of fines, shear, and SOR on the ESS in absence of settleable influent solids. This was assessed on a full-scale HRAS step-feed (SF) and pilot-scale HRAS contact-stabilization (CS) configuration using batch settling tests, controlled clarifier experiments, and continuous operation of reactors. Fines contributed up to 25% of the ESS in the full-scale SF configuration. ESS decreased up to 30 mg TSS/L when bioflocculation was enhanced with the CS configuration. The feast-famine regime applied in CS promoted the production of high-quality extracellular polymeric substances (EPS). However, this resulted in a narrow and unfavorable settling velocity distribution, with 50% ± 5% of the sludge mass settling between 0.6 and 1.5 m3/m2/h, thus increasing sensitivity towards SOR changes. A low shear environment (20 s−1) before the clarifier for at least one min was enough to ensure the best possible settling velocity distribution, regardless of prior shear conditions. Overall, this paper provides a more complete view on the drivers of ESS in HRAS systems, creating the foundation for the design of effective HRAS clarifiers. Tangible recommendations are given on how to manage fines and establish the optimal settling velocity of the sludge.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000863979600006 Publication Date 2022-09-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0045-6535; 1879-1298 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 8.8 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 8.8  
  Call Number UA @ admin @ c:irua:190187 Serial 7154  
Permanent link to this record
 

 
Author Van Winckel, T.; Liu, X.; Vlaeminck, S.E.; Takács, I.; Al-Omari, A.; Sturm, B.; Kjellerup, B.V.; Murthy, S.N.; De Clippeleir, H. pdf  url
doi  openurl
  Title Overcoming floc formation limitations in high-rate activated sludge systems Type A1 Journal article
  Year 2019 Publication Chemosphere Abbreviated Journal  
  Volume 215 Issue Pages 342-352  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract High-rate activated sludge (HRAS) is an essential cornerstone of the pursuit towards energy positive sewage treatment through maximizing capture of organics. The capture efficiency heavily relies on the degree of solid separation achieved in the clarifiers. Limitations in the floc formation process commonly emerge in HRAS systems, with detrimental consequences for the capture of organics. This study pinpointed and overcame floc formation limitations present in full-scale HRAS reactors. Orthokinetic flocculation tests were performed with varying shear, sludge concentration, and coagulant or flocculant addition. These were analyzed with traditional and novel settling parameters and extracellular polymeric substances (EPS) measurements. HRAS was limited by insufficient collision efficiency and occurred because the solids retention time (SRT) was short and colloid loading was high. The limitation was predominantly caused by impaired flocculation rather than coagulation. In addition, the collision efficiency limitation was driven by EPS composition (low protein over polysaccharide ratio) instead of total EPS amount. Collision efficiency limitation was successfully overcome by bio-augmenting sludge from a biological nutrient removal reactor operating at long SRT which did not show any floc formation limitations. However, this action brought up a floc strength limitation. The latter was not correlated with EPS composition, but rather EPS amount and hindered settling parameters, which determined floc morphology. With this, an analysis toolkit was proposed that will enable design engineers and operators to tackle activated solid separation challenges found in HRAS systems and maximize the recovery potential of the process. (C) 2018 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000450383400038 Publication Date 2018-10-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0045-6535; 1879-1298 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:153978 Serial 8350  
Permanent link to this record
 

 
Author Castanheiro, A.; Joos, P.; Wuyts, K.; De Wael, K.; Samson, R. pdf  url
doi  openurl
  Title Leaf-deposited semi-volatile organic compounds (SVOCs) : an exploratory study using GCxGC-TOFMS on leaf washing solutions Type A1 Journal article
  Year 2019 Publication Chemosphere Abbreviated Journal Chemosphere  
  Volume 214 Issue 214 Pages 103-110  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Airborne particulate matter (PM) includes semi-volatile organic compounds (SVOCs), which can be deposited on vegetation matrices such as plant leaves. In alternative to air-point measurements or artificial passive substrates, leaf monitoring offers a cost-effective, time-integrating means of assessing local air quality. In this study, leaf washing solutions from ivy (Hedera hibernica) leaves exposed during one-month at different land use classes were explored via comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (GCxGC-TOFMS). The composition of leaf-deposited SVOCs, corrected for those of unexposed leaves, was compared against routinely monitored pollutants concentrations (PM10, PM2.5, O3, NO2, SO2) measured at co-located air monitoring stations. The first study on leaf-deposited SVOCs retrieved from washing solutions, herein reported, delivered a total of 911 detected compounds. While no significant land use (rural, urban, industrial, traffic, mixed) effects were observed, increasing exposure time (from one to 28 days) resulted in a higher number and diversity of SVOCs, suggesting cumulative time-integration to be more relevant than local source variations between sites. After one day, leaf-deposited SVOCs were mainly due to alcohols, N-containing compounds, carboxylic acids, esters and lactones, while ketones, diketones and hydrocarbons compounds gained relevance after one week, and phenol compounds after one month. As leaf-deposited SVOCs became overall more oxidized throughout exposure time, SVOCs transformation or degradation at the leaf surface is suggested to be an important phenomenon. This study confirmed the applicability of GCxGC-TOFMS to analyze SVOCs from leaf washing solutions, further research should include validation of the methodology and comparison with atmospheric organic pollutants.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000449891300013 Publication Date 2018-09-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0045-6535; 1879-1298 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.208 Times cited Open Access  
  Notes ; The authors thank the Flemish Environment Agency (VMM) for their collaboration and air quality data; Sam Dekkers and Jonathan Van Waeyenbergh for their help with sample collection. The study was performed using a study set-up funded by the Special Research Fund of the University of Antwerp (KPBOF 2014, no. FFB 140090 'Tree leaf surface properties as dynamic drivers of particulate matter-leaf interaction and phyllosphere microbial communities'). A.C. acknowledges the Research Foundation Flanders (FWO) for her SB PhD fellowship. ; Approved Most recent IF: 4.208  
  Call Number UA @ admin @ c:irua:153509 Serial 5692  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: