toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Meledina, M.; Turner, S.; Galvita, V.V.; Poelman, H.; Marin, G.B.; Van Tendeloo, G. doi  openurl
  Title Local environment of Fe dopants in nanoscale Fe : CeO2-x oxygen storage material Type A1 Journal article
  Year 2015 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 7 Issue 7 Pages 3196-3204  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Nanoscale Fe : CeO2-x oxygen storage material for the process of chemical looping has been investigated by advanced transmission electron microscopy and electron energy-loss spectroscopy before and after a model looping procedure, consisting of redox cycles at heightened temperature. Separately, the activity of the nanomaterial has been tested in a toluene total oxidation reaction. The results show that the material consists of ceria nanoparticles, doped with single Fe atoms and small FeOx clusters. The iron ion is partially present as Fe3+ in a solid solution within the ceria lattice. Furthermore, enrichment of reduced Fe2+ species is observed in nanovoids present in the ceria nanoparticles, as well as at the ceria surface. After chemical looping, agglomeration occurs and reduced nanoclusters appear at ceria grain boundaries formed by sintering. These clusters originate from surface Fe2+ aggregation, and from bulk Fe3+, which “leaks out” in reduced state after cycling to a slightly more agglomerated form. The activity of Fe : CeO2 during the toluene total oxidation part of the chemical looping cycle is ensured by the dopant Fe in the Fe1-xCexO2 solid solution, and by surface Fe species. These measurements on a model Fe : CeO2-x oxygen storage material give a unique insight into the behavior of dopants within a nanosized ceria host, and allow to interpret a plethora of (doped) cerium oxide-based reactions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000349473200046 Publication Date 2015-01-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 17 Open Access  
  Notes Approved Most recent IF: 7.367; 2015 IF: 7.394  
  Call Number c:irua:125299 Serial 1828  
Permanent link to this record
 

 
Author Huang, S.-Z.; Jin, J.; Cai, Y.; Li, Y.; Tan, H.-Y.; Wang, H.-E.; Van Tendeloo, G.; Su, B.-L. pdf  doi
openurl 
  Title Engineering single crystalline Mn3O4 nano-octahedra with exposed highly active {011} facets for high performance lithium ion batteries Type A1 Journal article
  Year 2014 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 6 Issue 12 Pages 6819-6827  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Well shaped single crystalline Mn3O4 nano-octahedra with exposed highly active {011} facets at different particle sizes have been synthesized and used as anode materials for lithium ion batteries. The electrochemical results show that the smallest sized Mn3O4 nano-octahedra show the best cycling performance with a high initial charge capacity of 907 mA h g−1 and a 50th charge capacity of 500 mA h g−1 at a current density of 50 mA g−1 and the best rate capability with a charge capacity of 350 mA h g−1 when cycled at 500 mA g−1. In particular, the nano-octahedra samples demonstrate a much better electrochemical performance in comparison with irregular shaped Mn3O4 nanoparticles. The best electrochemical properties of the smallest Mn3O4 nano-octahedra are ascribed to the lower charge transfer resistance due to the exposed highly active {011} facets, which can facilitate the conversion reaction of Mn3O4 and Li owing to the alternating Mn and O atom layers, resulting in easy formation and decomposition of the amorphous Li2O and the multi-electron reaction. On the other hand, the best electrochemical properties of the smallest Mn3O4 nano-octahedra can also be attributed to the smallest size resulting in the highest specific surface area, which provides maximum contact with the electrolyte and facilitates the rapid Li-ion diffusion at the electrode/electrolyte interface and fast lithium-ion transportation within the particles. The synergy of the exposed {011} facets and the smallest size (and/or the highest surface area) led to the best performance for the Mn3O4 nano-octahedra. Furthermore, HRTEM observations verify the oxidation of MnO to Mn3O4 during the charging process and confirm that the Mn3O4 octahedral structure can still be partly maintained after 50 dischargecharge cycles. The high Li-ion storage capacity and excellent cycling performance suggest that Mn3O4 nano-octahedra with exposed highly active {011} facets could be excellent anode materials for high-performance lithium-ion batteries.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000337143900072 Publication Date 2014-04-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 80 Open Access  
  Notes Approved Most recent IF: 7.367; 2014 IF: 7.394  
  Call Number UA @ lucian @ c:irua:117076 Serial 1047  
Permanent link to this record
 

 
Author Mikhailova, D.; Reichel, P.; Tsirlin, A.A.; Abakumov, A.M.; Senyshyn, A.; Mogare, K.M.; Schmidt, M.; Kuo, C.Y.; Pao, C.W.; Pi, T.W.; Lee, J.F.; Hu, Z.; Tjeng, L.H.; doi  openurl
  Title Oxygen-driven competition between low-dimensional structures of Sr3CoMO6 and Sr3CoMO7-\delta with M = Ru,Ir Type A1 Journal article
  Year 2014 Publication Journal of the Chemical Society : Dalton transactions Abbreviated Journal Dalton T  
  Volume 43 Issue 37 Pages 13883-13891  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We have realized a reversible structure transformation of one-dimensional 1D K4CdCl6-type Sr3CoMO6 with the Co2+/M4+ cation ordering into the two-dimensional 2D double layered Ruddlesden-Popper structure Sr3CoMO7-delta with a random distribution of Co and M (with M = Ru, Ir) upon increasing the partial oxygen pressure. The combined soft and hard X-ray absorption spectroscopy studies show that under transformation, Co and M cations were oxidized to Co3+ and M5+. During oxidation, high-spin Co2+ in Sr3CoMO6 first transforms into high-spin Co3+ in oxygen-deficient Sr3CoMO7-delta, and then further transforms into low-spin Co3+ in fully oxidized Sr3CoMO7 upon further increasing the partial pressure of oxygen. The 1D Sr3CoMO6 compound is magnetically ordered at low temperatures with the magnetic moments lying along the c-axis. Their alignment is parallel for Sr3CoRuO6 and antiparallel for Sr3CoIrO6. The 2D compounds reveal a spin-glass-like behavior related to the random distribution of magnetic cations in the structure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000342074100009 Publication Date 2014-07-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1477-9226;1477-9234; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.029 Times cited 7 Open Access  
  Notes Approved Most recent IF: 4.029; 2014 IF: 4.197  
  Call Number UA @ lucian @ c:irua:119960 Serial 2545  
Permanent link to this record
 

 
Author Sarmadian, N.; Saniz, R.; Partoens, B.; Lamoen, D.; Volety, K.; Huyberechts, G.; Paul, J. pdf  doi
openurl 
  Title High throughput first-principles calculations of bixbyite oxides for TCO applications Type A1 Journal article
  Year 2014 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 16 Issue 33 Pages 17724-17733  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract We present a high-throughput computing scheme based on density functional theory (DFT) to generate a class of oxides and screen them with the aim of identifying those that might be electronically appropriate for transparent conducting oxide (TCO) applications. The screening criteria used are a minimum band gap to ensure sufficient transparency, a band edge alignment consistent with easy n- or p-type dopability, and a minimum thermodynamic phase stability to be experimentally synthesizable. Following this scheme we screened 23 binary and 1518 ternary bixbyite oxides in order to identify promising candidates, which can then be a subject of an in-depth study. The results for the known TCOs are in good agreement with the reported data in the literature. We suggest a list of several new potential TCOs, including both n- and p-type compounds.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000341064800041 Publication Date 2014-07-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 23 Open Access  
  Notes ; We gratefully acknowledge financial support from the IWT-Vlaanderen through the ISIMADE project (IWT-n 080023), the FWO-Vlaanderen through project G.0150.13 and a GOA fund from the University of Antwerp. This work was carried out using the HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center VSC, which is funded by the Hercules foundation and the Flemish Government (EWI Department). ; Approved Most recent IF: 4.123; 2014 IF: 4.493  
  Call Number UA @ lucian @ c:irua:118263 Serial 1469  
Permanent link to this record
 

 
Author Yin, S.; Tian, H.; Ren, Z.; Wei, X.; Chao, C.; Pei, J.; Li, X.; Xu, G.; Shen, G.; Han, G. doi  openurl
  Title Octahedral-shaped perovskite nanocrystals and their visible-light photocatalytic activity Type A1 Journal article
  Year 2014 Publication Chemical communications Abbreviated Journal Chem Commun  
  Volume 50 Issue 45 Pages 6027-6030  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Octahedral-shaped perovskite PbTiO3 nanocrystals (PT OCT) with well-defined {111} facets exposed have been successfully synthesized via a facile hydrothermal method by using LiNO3 as an ion surfactant. The Li-O bond on the surface of PT OCT nanocrystals is essential to the stability of such nanocrystals and also results in a dramatic high visible-light photocatalytic activity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000335984700022 Publication Date 2014-04-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-7345;1364-548X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.319 Times cited 19 Open Access  
  Notes Approved Most recent IF: 6.319; 2014 IF: 6.834  
  Call Number UA @ lucian @ c:irua:117690 Serial 2428  
Permanent link to this record
 

 
Author Shan, L.; Punniyakoti, S.; Van Bael, M.J.; Temst, K.; Van Bael, M.K.; Ke, X.; Bals, S.; Van Tendeloo, G.; D'Olieslaeger, M.; Wagner, P.; Haenen, K.; Boyen, H.G.; pdf  doi
openurl 
  Title Homopolymers as nanocarriers for the loading of block copolymer micelles with metal salts : a facile way to large-scale ordered arrays of transition-metal nanoparticles Type A1 Journal article
  Year 2014 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C  
  Volume 2 Issue 4 Pages 701-707  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A new and facile approach is presented for generating quasi-regular patterns of transition metal-based nanoparticles on flat substrates exploiting polystyrene-block-poly2vinyl pyridine (PS-b-P2VP) micelles as intermediate templates. Direct loading of such micellar nanoreactors by polar transition metal salts in solution usually results in nanoparticle ensembles exhibiting only short range order accompanied by broad distributions of particle size and inter-particle distance. Here, we demonstrate that the use of P2VP homopolymers of appropriate length as molecular carriers to transport precursor salts into the micellar cores can significantly increase the degree of lateral order within the final nanoparticle arrays combined with a decrease in spreading in particle size. Thus, a significantly extended range of materials is now available which can be exploited to study fundamental properties at the transition from clusters to solids by means of well-organized, well-separated, size-selected metal and metal oxide nanostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000329069900015 Publication Date 2013-11-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7526;2050-7534; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.256 Times cited 5 Open Access Not_Open_Access  
  Notes FWO projects G.0456.12; 50 G.0346.09N; Methusalem project "NANO Approved Most recent IF: 5.256; 2014 IF: 4.696  
  Call Number UA @ lucian @ c:irua:113734 Serial 1489  
Permanent link to this record
 

 
Author Reynaud, M.; Rousse, G.; Abakumov, A.M.; Sougrati, M.T.; Van Tendeloo, G.; Chotard, J.-N.; Tarascon, J.-M. doi  openurl
  Title Design of new electrode materials for Li-ion and Na-ion batteries from the bloedite mineral Na2Mg(SO4)2\cdot4H2O Type A1 Journal article
  Year 2014 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A  
  Volume 2 Issue 8 Pages 2671-2680  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Mineralogy offers a large database to search for Li- or Na-based compounds having suitable structural features for acting as electrode materials, LiFePO4 being one example. Here we further explore this avenue and report on the electrochemical properties of the bloedite type compounds Na2M(SO4)(2)center dot 4H(2)O (M = Mg, Fe, Co, Ni, Zn) and their dehydrated phases Na2M(SO4)(2) (M = Fe, Co), whose structures have been solved via complementary synchrotron X-ray diffraction, neutron powder diffraction and transmission electron microscopy. Among these compounds, the hydrated and anhydrous iron-based phases show electrochemical activity with the reversible release/uptake of 1 Na+ or 1 Li+ at high voltages of similar to 3.3 V vs. Na+/Na-0 and similar to 3.6 V vs. Li+/Li-0, respectively. Although the reversible capacities remain lower than 100 mA h g(-1), we hope this work will stress further the importance of mineralogy as a source of inspiration for designing eco-efficient electrode materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000331247500031 Publication Date 2013-11-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7488;2050-7496; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.867 Times cited 56 Open Access  
  Notes Approved Most recent IF: 8.867; 2014 IF: 7.443  
  Call Number UA @ lucian @ c:irua:115807 Serial 659  
Permanent link to this record
 

 
Author Alaria, J.; Borisov, P.; Dyer, M.S.; Manning, T.D.; Lepadatu, S.; Cain, M.G.; Mishina, E.D.; Sherstyuk, N.E.; Ilyin, N.A.; Hadermann, J.; Lederman, D.; Claridge, J.B.; Rosseinsky, M.J.; doi  openurl
  Title Engineered spatial inversion symmetry breaking in an oxide heterostructure built from isosymmetric room-temperature magnetically ordered components Type A1 Journal article
  Year 2014 Publication Chemical science Abbreviated Journal Chem Sci  
  Volume 5 Issue 4 Pages 1599-1610  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Royal Society of Chemistry Place of Publication Cambridge Editor  
  Language Wos 000332467400044 Publication Date 2014-01-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-6520;2041-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.668 Times cited 24 Open Access  
  Notes Approved Most recent IF: 8.668; 2014 IF: 9.211  
  Call Number UA @ lucian @ c:irua:117064 Serial 1045  
Permanent link to this record
 

 
Author Carraro, G.; Gasparotto, A.; Maccato, C.; Bontempi, E.; Lebedev, O.I.; Turner, S.; Sada, C.; Depero, L.E.; Van Tendeloo, G.; Barreca, D. pdf  doi
openurl 
  Title Fluorine doped Fe2O3 nanostructures by a one-pot plasma-assisted strategy Type A1 Journal article
  Year 2013 Publication RSC advances Abbreviated Journal Rsc Adv  
  Volume 3 Issue 45 Pages 23762-23768  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The present work reports on the synthesis of fluorine doped Fe2O3 nanomaterials by a single-step plasma enhanced-chemical vapor deposition (PE-CVD) strategy. In particular, Fe(hfa)2TMEDA (hfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedionate; TMEDA = N,N,N′,N′-tetramethylethylenediamine) was used as molecular source for both Fe and F in Ar/O2 plasmas. The structure, morphology and chemical composition of the synthesized nanosystems were thoroughly analyzed by two-dimensional X-ray diffraction (XRD2), field emission-scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), secondary ion mass spectrometry (SIMS) and transmission electron microscopy (TEM). A suitable choice of processing parameters enabled the selective formation of α-Fe2O3 nanomaterials, characterized by an homogeneous F doping, even at 100 °C. Interestingly, a simultaneous control of the system nanoscale organization and fluorine content could be achieved by varying the sole growth temperature. The tailored properties of the resulting materials can be favourably exploited for several technological applications, ranging from photocatalysis, to photoelectrochemical cells and gas sensing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000326395800141 Publication Date 2013-10-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.108 Times cited 23 Open Access  
  Notes Fwo Approved Most recent IF: 3.108; 2013 IF: 3.708  
  Call Number UA @ lucian @ c:irua:111091 Serial 1237  
Permanent link to this record
 

 
Author Filippousi, M.; Altantzis, T.; Stefanou, G.; Betsiou, M.; Bikiaris, D.N.; Angelakeris, M.; Pavlidou, E.; Zamboulis, D.; Van Tendeloo, G. pdf  doi
openurl 
  Title Polyhedral iron oxide coreshell nanoparticles in a biodegradable polymeric matrix : preparation, characterization and application in magnetic particle hyperthermia and drug delivery Type A1 Journal article
  Year 2013 Publication RSC advances Abbreviated Journal Rsc Adv  
  Volume 3 Issue 46 Pages 24367-24377  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Polyhedral magnetic iron oxide nanocrystals with multiple facets have been embedded in biocompatible and biodegradable polymeric matrices in order to study their structural, magnetic features and alternating-current (AC) magnetic heating efficiency. The encapsulation of iron oxide nanoparticles into a polymer matrix was confirmed by transmission electron microscopy and further corroborated by high angle annular dark field scanning transmission electron microscopy (HAADF-STEM). HAADF-STEM tomography proved that the iron oxide nanocrystals consist of well-defined polyhedral structures with multiple facets. The magnetic features were found to be in good agreement with the structural and morphological features and are maintained even after encapsulation. Furthermore, the magnetic nanoparticles inside these matrices may be considered as good candidates for biomedical applications in hyperthermia treatments because of their high heating capacity exhibited under an alternating magnetic field. The anticancer Taxol drug was encapsulated in these nanoparticles and its physical state and release rate at 37 and 42 °C was studied.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000326745100068 Publication Date 2013-10-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.108 Times cited 19 Open Access  
  Notes Countatoms; IAP Approved Most recent IF: 3.108; 2013 IF: 3.708  
  Call Number UA @ lucian @ c:irua:111395 Serial 2671  
Permanent link to this record
 

 
Author Damm, H.; Kelchtermans, A.; Bertha, A.; Van den Broeck, F.; Elen, K.; Martins, J.C.; Carleer, R.; D'Haen, J.; De Dobbelaere, C.; Hadermann, J.; Hardy, A.; Van Bael, M.K.; doi  openurl
  Title Thermal decomposition synthesis of Al-doped ZnO nanoparticles : an in-depth study Type A1 Journal article
  Year 2013 Publication RSC advances Abbreviated Journal Rsc Adv  
  Volume 3 Issue 45 Pages 23745-23754  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Al-doped ZnO nanoparticles are synthesized by means of a heating up solution based thermal decomposition method. The synthesis involves a reaction of zinc acetylacetonate hydrate, aluminium acetylacetonate and 1,2-hexadecanediol in the presence of oleic acid and oleyl amine. A proposed reaction mechanism from reagents to monomers is corroborated by analysis of the evolving gases using headspace GC-MS analysis. The Al-doped ZnO nanoparticles synthesized are dynamically stabilized by adsorbed oleate ions, after deprotonation of oleic acid by oleyl amine, as was found by NOESY proton NMR and complementary FTIR spectroscopy. Precession electron diffraction shows a simultaneous increase in lattice parameters with Al concentration. This, together with HAADF-STEM and EDX maps, indicates the incorporation of Al into the ZnO nanoparticles. By the combination of complementary characterization methods during all stages of the synthesis, it is concluded that Al is incorporated into the ZnO wurtzite lattice as a dopant.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000326395800139 Publication Date 2013-10-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.108 Times cited 10 Open Access  
  Notes Approved Most recent IF: 3.108; 2013 IF: 3.708  
  Call Number UA @ lucian @ c:irua:112753 Serial 3627  
Permanent link to this record
 

 
Author Deng, S.; Verbruggen, S.W.; He, Z.; Cott, D.J.; Vereecken, P.M.; Martens, J.A.; Bals, S.; Lenaerts, S.; Detavernier, C. doi  openurl
  Title Atomic layer deposition-based synthesis of photoactive TiO2 nanoparticle chains by using carbon nanotubes as sacrificial templates Type A1 Journal article
  Year 2014 Publication RSC advances Abbreviated Journal Rsc Adv  
  Volume 4 Issue 23 Pages 11648-11653  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Highly ordered and self supported anatase TiO2 nanoparticle chains were fabricated by calcining conformally TiO2 coated multi-walled carbon nanotubes (MWCNTs). During annealing, the thin tubular TiO2 coating that was deposited onto the MWCNTs by atomic layer deposition (ALD) was transformed into chains of TiO2 nanoparticles ([similar]12 nm diameter) with an ultrahigh surface area (137 cm2 per cm2 of substrate), while at the same time the carbon from the MWCNTs was removed. Photocatalytic tests on the degradation of acetaldehyde proved that these forests of TiO2 nanoparticle chains are highly photoactive under UV light because of their well crystallized anatase phase.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000332470000017 Publication Date 2014-02-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.108 Times cited 45 Open Access Not_Open_Access  
  Notes ; The authors wish to thank the Research Foundation – Flanders (FWO) and UGENT-GOA-01G01513 for financial support. The authors acknowledge the European Research Council for funding under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 239865-COCOON and no. 246791-COUNTATOMS. JAM acknowledges the Flemish government for long-term structural funding (Methusalem). ; Approved Most recent IF: 3.108; 2014 IF: 3.840  
  Call Number UA @ lucian @ c:irua:117298 Serial 168  
Permanent link to this record
 

 
Author Sree, S.P.; Dendooven, J.; Masschaele, K.; Hamed, H.M.; Deng, S.; Bals, S.; Detavernier, C.; Martens, J.A. pdf  doi
openurl 
  Title Synthesis of uniformly dispersed anatase nanoparticles inside mesoporous silica thin films via controlled breakup and crystallization of amorphous TiO2 deposited using atomic layer deposition Type A1 Journal article
  Year 2013 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 5 Issue 11 Pages 5001-5008  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Amorphous titanium dioxide was introduced into the pores of mesoporous silica thin films with 75% porosity and 12 nm average pore diameter via Atomic Layer Deposition (ALD) using alternating pulses of tetrakis(dimethylamino)titanium and water. Calcination provoked fragmentation of the deposited amorphous TiO2 phase and its crystallization into anatase nanoparticles inside the nanoporous film. The narrow particle size distribution of 4 ± 2 nm and the uniform dispersion of the particles over the mesoporous silica support were uniquely revealed using electron tomography. These anatase nanoparticle bearing films showed photocatalytic activity in methylene blue degradation. This new synthesis procedure of the anatase nanophase in mesoporous silica films using ALD is a convenient fabrication method of photocatalytic coatings amenable to application on very small as well as very large surfaces  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000319008700056 Publication Date 2013-04-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 22 Open Access  
  Notes Fwo; Iap-Pai; Erc Approved Most recent IF: 7.367; 2013 IF: 6.739  
  Call Number UA @ lucian @ c:irua:108774 Serial 3460  
Permanent link to this record
 

 
Author Borgatti, F.; Park, C.; Herpers, A.; Offi, F.; Egoavil, R.; Yamashita, Y.; Yang, A.; Kobata, M.; Kobayashi, K.; Verbeeck, J.; Panaccione, G.; Dittmann, R.; pdf  doi
openurl 
  Title Chemical insight into electroforming of resistive switching manganite heterostructures Type A1 Journal article
  Year 2013 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 5 Issue 9 Pages 3954-3960  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract We have investigated the role of the electroforming process in the establishment of resistive switching behaviour for Pt/Ti/Pr0.5Ca0.5MnO3/SrRuO3 layered heterostructures (Pt/Ti/PCMO/SRO) acting as non-volatile Resistance Random Access Memories (RRAMs). Electron spectroscopy measurements demonstrate that the higher resistance state resulting from electroforming of as-prepared devices is strictly correlated with the oxidation of the top electrode Ti layer through field-induced electromigration of oxygen ions. Conversely, PCMO exhibits oxygen depletion and downward change of the chemical potential for both resistive states. Impedance spectroscopy analysis, supported by the detailed knowledge of these effects, provides an accurate model description of the device resistive behaviour. The main contributions to the change of resistance from the as-prepared (low resistance) to the electroformed (high resistance) states are respectively due to reduced PCMO at the boundary with the Ti electrode and to the formation of an anisotropic np junction between the Ti and the PCMO layers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000317859400051 Publication Date 2013-03-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 40 Open Access  
  Notes Vortex; Countatoms ECASJO_; Approved Most recent IF: 7.367; 2013 IF: 6.739  
  Call Number UA @ lucian @ c:irua:108710UA @ admin @ c:irua:108710 Serial 348  
Permanent link to this record
 

 
Author Amini, M.N.; Dixit, H.; Saniz, R.; Lamoen, D.; Partoens, B. pdf  doi
openurl 
  Title The origin of p-type conductivity in ZnM2O4 (M = Co, Rh, Ir) spinels Type A1 Journal article
  Year 2014 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 16 Issue 6 Pages 2588-2596  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract ZnM2O4 (M = Co, Rh, Ir) spinels are considered as a class of potential p-type transparent conducting oxides (TCOs). We report the formation energy of acceptor-like defects using first principles calculations with an advanced hybrid exchange-correlation functional (HSE06) within density functional theory (DFT). Due to the discrepancies between the theoretically obtained band gaps with this hybrid functional and the – scattered – experimental results, we also perform GW calculations to support the validity of the description of these spinels with the HSE06 functional. The considered defects are the cation vacancy and antisite defects, which are supposed to be the leading source of disorder in the spinel structures. We also discuss the band alignments in these spinels. The calculated formation energies indicate that the antisite defects ZnM (Zn replacing M, M = Co, Rh, Ir) and VZn act as shallow acceptors in ZnCo2O4, ZnRh2O4 and ZnIr2O4, which explains the experimentally observed p-type conductivity in those systems. Moreover, our systematic study indicates that the ZnIr antisite defect has the lowest formation energy in the group and it corroborates the highest p-type conductivity reported for ZnIr2O4 among the group of ZnM2O4 spinels. To gain further insight into factors affecting the p-type conductivity, we have also investigated the formation of localized small polarons by calculating the self-trapping energy of the holes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000329926700040 Publication Date 2013-12-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 47 Open Access  
  Notes Fwo; Goa; Hercules Approved Most recent IF: 4.123; 2014 IF: 4.493  
  Call Number UA @ lucian @ c:irua:114829 Serial 2525  
Permanent link to this record
 

 
Author Hadad, C.; Ke, X.; Carraro, M.; Sartorel, A.; Bittencourt, C.; Van Tendeloo, G.; Bonchio, M.; Quintana, M.; Prato, M. pdf  doi
openurl 
  Title Positive graphene by chemical design : tuning supramolecular strategies for functional surfaces Type A1 Journal article
  Year 2014 Publication Chemical communications Abbreviated Journal Chem Commun  
  Volume 50 Issue 7 Pages 885-887  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A diazonium based-arylation reaction was efficiently used for the covalent addition of 4-amino-N,N,N-trimethylbenzene ammonium to stable dispersions of few layer graphene (FLG) yielding an innovative FLG platform with positive charges to immobilize inorganic polyanions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000328884500036 Publication Date 2013-11-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-7345;1364-548X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.319 Times cited 19 Open Access  
  Notes Approved Most recent IF: 6.319; 2014 IF: 6.834  
  Call Number UA @ lucian @ c:irua:113733 Serial 2678  
Permanent link to this record
 

 
Author Vasiliev, R.B.; Babynina, A.V.; Maslova, O.A.; Rumyantseva, M.N.; Ryabova, L.I.; Dobrovolsky, A.A.; Drozdov, K.A.; Khokhlov, D.R.; Abakumov, A.M.; Gaskov, A.M. doi  openurl
  Title Photoconductivity of nanocrystalline SnO2 sensitized with colloidal CdSe quantum dots Type A1 Journal article
  Year 2013 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C  
  Volume 1 Issue 5 Pages 1005-1010  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A highly reproducible photoresponse is observed in nanocrystalline SnO2 thick films sensitized with CdSe quantum dots. The effect of the SnO2 matrix microstructure on the photoconductivity kinetics and photoresponse amplitude is demonstrated. The photoresponse of the sensitized SnO2 thick films reaches more than two orders of magnitude under illumination with the wavelength of the excitonic transition of the quantum dots. Long-term photoconductivity kinetics and photoresponse dependence on illumination intensity reveal power-law behavior inherent to the disordered nature of SnO2. The photoconductivity of the samples rises with the coarsening of the granular structure of the SnO2 matrix. At the saturation region, the photoresponse amplitude remains stable under 10(4) pulses of illumination switching, demonstrating a remarkably high stability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000314803600016 Publication Date 2012-11-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7526;2050-7534; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.256 Times cited 13 Open Access  
  Notes Approved Most recent IF: 5.256; 2013 IF: NA  
  Call Number UA @ lucian @ c:irua:107705 Serial 2610  
Permanent link to this record
 

 
Author Lebedev, O.I.; Turner, S.; Liu, S.; Cool, P.; Van Tendeloo, G. pdf  doi
openurl 
  Title New nano-architectures of mesoporous silica spheres analyzed by advanced electron microscopy Type A1 Journal article
  Year 2012 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 4 Issue 5 Pages 1722-1727  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract Using template-containing silica microspheres as a precursor, novel ordered mesoporous silica nanoparticles with a narrow pore size distribution and high crystallinity have been synthesized by various hydrothermal merging processes. Several architectures like chains, dumbbells, triangles, squares and flowers have been discovered. The linking mechanisms of these interacting silica spheres leading to the formation of ordered nano-structures are studied by HRTEM, HAADF-STEM and electron tomography and a plausible model is presented for several merging processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000300433700051 Publication Date 2011-12-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 5 Open Access  
  Notes Fwo Approved Most recent IF: 7.367; 2012 IF: 6.233  
  Call Number UA @ lucian @ c:irua:95038 Serial 2328  
Permanent link to this record
 

 
Author Simon, Q.; Barreca, D.; Gasparotto, A.; Maccato, C.; Montini, T.; Gombac, V.; Fornasiero, P.; Lebedev, O.I.; Turner, S.; Van Tendeloo, G. pdf  doi
openurl 
  Title Vertically oriented CuO/ZnO nanorod arrays : from plasma-assisted synthesis to photocatalytic H2 production Type A1 Journal article
  Year 2012 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem  
  Volume 22 Issue 23 Pages 11739-11747  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract 1D CuO/ZnO nanocomposites were grown on Si(100) substrates by means of an original two-step synthetic strategy. ZnO nanorod (NR) arrays were initially deposited by plasma enhanced-chemical vapor deposition (PE-CVD) from an ArO2 atmosphere. Subsequently, tailored amounts of CuO were dispersed over zinc oxide matrices by radio frequency (RF)-sputtering of Cu from Ar plasmas, followed by thermal treatment in air. A thorough characterization of the obtained systems was carried out by X-ray photoelectron and X-ray excited-Auger electron spectroscopies (XPS and XE-AES), glancing incidence X-ray diffraction (GIXRD), field emission-scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDXS), atomic force microscopy (AFM), transmission electron microscopy (TEM), electron diffraction (ED) and energy filtered-TEM (EF-TEM). Pure and highly oriented CuO/ZnO NR arrays, free from ternary ZnCuO phases and characterized by a copper(II) oxide content controllable as a function of the adopted RF-power, were successfully obtained. Interestingly, the structural relationships between the two oxides at the CuO/ZnO interface were found to depend on the overall CuO loading. The obtained nanocomposites displayed promising photocatalytic performances in H2 production by reforming of ethanolwater solutions under simulated solar illumination, paving the way to the sustainable conversion of solar light into chemical energy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000304351400046 Publication Date 2012-04-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 74 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:98382 Serial 3840  
Permanent link to this record
 

 
Author Narayanan, V.; Lommens, P.; De Buysser, K.; Vanpoucke, D.E.P.; Huehne, R.; Molina, L.; Van Tendeloo, G.; van der Voort, P.; Van Driessche, I. pdf  doi
openurl 
  Title Aqueous CSD approach for the growth of novel, lattice-tuned LaxCe1-xO\delta epitaxial layers Type A1 Journal article
  Year 2012 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem  
  Volume 22 Issue 17 Pages 8476-8483  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Lanthanumcerium oxide (LCO) films were deposited on Ni-5%W substrates by chemical solution deposition (CSD) from water-based precursors. LCO films containing different ratios of lanthanum and cerium ions (from CeO2 to La2Ce2O7) were prepared. The composition of the layers was optimized towards the formation of LCO buffer layers, lattice-matched with the superconducting YBa2Cu3Oy layer, useful for the development of coated conductors. Single, crack-free LCO layers with a thickness of up to 140 nm could be obtained in a single deposition step. The crystallinity and microstructure of these lattice-matched LCO layers were studied by X-ray diffraction techniques, RHEED and SEM. We find that only layers with thickness below 100 nm show a crystalline top surface although both thick and thin layers show good biaxial texture in XRD. On the most promising layers, AFM and (S)TEM were performed to further evaluate their morphology. The overall surface roughness varies between 3.9 and 7.5 nm, while the layers appear much more dense than the frequently used La2Zr2O7 (LZO) systems, showing much smaller nanovoids (12 nm) than the latter system. Their effective buffer layer action was studied using XPS. The thin LCO layers supported the growth of superconducting YBCO deposited using PLD methods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000302367500044 Publication Date 2012-03-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 24 Open Access  
  Notes Iap Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:96960 Serial 148  
Permanent link to this record
 

 
Author Sliem, M.A.; Turner, S.; Heeskens, D.; Kalidindi, S.B.; Van Tendeloo, G.; Muhler, M.; Fischer, R.A. pdf  doi
openurl 
  Title Preparation, microstructure characterization and catalytic performance of Cu/ZnO and ZnO/Cu composite nanoparticles for liquid phase methanol synthesis Type A1 Journal article
  Year 2012 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 14 Issue 22 Pages 8170-8178  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Stearate@Cu/ZnO nanocomposite particles with molar ratios of ZnO ∶ Cu = 2 and 5 are synthesized by reduction of the metalorganic Cu precursor [Cu{(OCH(CH3)CH2N(CH3)2)}2] in the presence of stearate@ZnO nanoparticles. In the case of ZnO ∶ Cu = 5, high-angle annular dark field-scanning transmission electron microscopy (HAADF-STEM) combined with electron-energy-loss-spectroscopy (EELS) as well as attenuated total reflection Fourier transform infrared (ATR-IR) spectroscopy are used to localize the small amount of Cu deposited on the surface of 35 nm sized stearate@ZnO particles. For ZnO ∶ Cu = 2, the microstructure of the nanocomposites after catalytic activity testing is characterized by HAADF-STEM techniques. This reveals the construction of large Cu nanoparticles (2050 nm) decorated by small ZnO nanoparticles (35 nm). The catalytic activity of both composites for the synthesis of methanol from syn gas is evaluated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000304102200033 Publication Date 2012-04-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 16 Open Access  
  Notes Fwo Approved Most recent IF: 4.123; 2012 IF: 3.829  
  Call Number UA @ lucian @ c:irua:98377 Serial 2702  
Permanent link to this record
 

 
Author Kalidindi, S.B.; Wiktor, C.; Ramakrishnan, A.; Weßing, J.; Schneemann, A.; Van Tendeloo, G.; Fischer, R.A. pdf  doi
openurl 
  Title Lewis base mediated efficient synthesis and solvation-like host-guest chemistry of covalent organic framework-1 Type A1 Journal article
  Year 2013 Publication Chemical communications Abbreviated Journal Chem Commun  
  Volume 49 Issue 5 Pages 463-465  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract N-Lewis base mediated room temperature synthesis of covalent organic frameworks (COFs) starting from a solution of building blocks instead of partially soluble building blocks was developed. This protocol shifts COF synthetic chemistry from sealed tubes to open beakers. Non-conventional inclusion compounds of COF-1 were obtained by vapor phase infiltration of ferrocene and azobenzene, and solvation like effects were established.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000312193100007 Publication Date 2012-11-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-7345;1364-548X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.319 Times cited 17 Open Access  
  Notes 262348 Esmi Approved Most recent IF: 6.319; 2013 IF: 6.718  
  Call Number UA @ lucian @ c:irua:105953 Serial 1815  
Permanent link to this record
 

 
Author Quintana, M.; Grzelczak, M.; Spyrou, K.; Kooi, B.; Bals, S.; Van Tendeloo, G.; Rudolf, P.; Prato, M. pdf  doi
openurl 
  Title Production of large graphene sheets by exfoliation of graphite under high power ultrasound in the presence of tiopronin Type A1 Journal article
  Year 2012 Publication Chemical communications Abbreviated Journal Chem Commun  
  Volume 48 Issue 100 Pages 12159-12161  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Under ultrasonication, the production of high quality graphene layers by exfoliation of graphite was achieved via addition of tiopronin as an antioxidant.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000311411100003 Publication Date 2012-10-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-7345;1364-548X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.319 Times cited 39 Open Access  
  Notes This work was financially supported by the University of Trieste, INSTM, Italian Ministry of Education MIUR (cofin Prot. 20085M27SS) and by the "Graphene-based electronics'' research program of the Foundation for Fundamental Research on Matter (FOM). Part of this work was supported by funding from the ERC grant No 246791COUNTATOMS. MQ acknowledges the financial support from CONACyT CB-2011-01-166914 and FAI-UASLP. Approved Most recent IF: 6.319; 2012 IF: 6.378  
  Call Number UA @ lucian @ c:irua:105230 Serial 2724  
Permanent link to this record
 

 
Author Tikhomirov, V.K.; Vosch, T.; Fron, E.; Rodríguez, V.D.; Velázquez, J.J.; Kirilenko, D.; Van Tendeloo, G.; Hofkens, J.; Van der Auweraer, M.; Moshchalkov, V.V. pdf  doi
openurl 
  Title Luminescence of oxyfluoride glasses co-doped with Ag nanoclusters and Yb3+ ions Type A1 Journal article
  Year 2012 Publication RSC advances Abbreviated Journal Rsc Adv  
  Volume 2 Issue 4 Pages 1496-1501  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Bulk oxyfluoride glasses co-doped with Ag nanoclusters and Yb3+ ions have been prepared by a melt quenching technique. When excited in the absorption band of the Ag nanoclusters between 300 to 500 nm, these glasses emit a broad band characteristic of the Ag nanoclusters between 400 to 750 nm as well as an emission band between 900 to 1100 nm, originating from Yb3+ ions. The intensity ratio of the Yb3+/Ag emission bands increases with the Ag doping level at a fixed concentration of Yb3+, indicating the presence of energy transfer mechanism from the Ag nanoclusters to the Yb3+ ions. Comparison of time-resolved decay kinetics of the luminescence in the respectively Ag nanocluster-Yb3+ co-doped and single Ag nanocluster doped glasses, hints towards an energy transfer from the red and infrared emitting Ag nanoclusters to the Yb3+ ions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000299695300038 Publication Date 2011-12-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.108 Times cited 46 Open Access  
  Notes Fwo; Iap Approved Most recent IF: 3.108; 2012 IF: 2.562  
  Call Number UA @ lucian @ c:irua:96239 Serial 1856  
Permanent link to this record
 

 
Author Turner, S.; Lazar, S.; Freitag, B.; Egoavil, R.; Verbeeck, J.; Put, S.; Strauven, Y.; Van Tendeloo, G. pdf  doi
openurl 
  Title High resolution mapping of surface reduction in ceria nanoparticles Type A1 Journal article
  Year 2011 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 3 Issue 8 Pages 3385-3390  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Surface reduction of ceria nano octahedra with predominant {111} and {100} type surfaces is studied using a combination of aberration-corrected Transmission Electron Microscopy (TEM) and spatially resolved electron energy-loss spectroscopy (EELS) at high energy resolution and atomic spatial resolution. The valency of cerium ions at the surface of the nanoparticles is mapped using the fine structure of the Ce M4,5 edge as a fingerprint. The valency of the surface cerium ions is found to change from 4+ to 3+ owing to oxygen deficiency (vacancies) close to the surface. The thickness of this Ce3+ shell is measured using atomic-resolution Scanning Transmission Electron Microscopy (STEM)-EELS mapping over a {111} surface (the predominant facet for this ceria morphology), {111} type surface island steps and {100} terminating planes. For the {111} facets and for {111} surface islands, the reduction shell is found to extend over a single fully reduced surface plane and 12 underlying mixed valency planes. For the {100} facets the reduction shell extends over a larger area of 56 oxygen vacancy-rich planes. This finding provides a plausible explanation for the higher catalytic activity of the {100} surface facets in ceria.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000293521700057 Publication Date 2011-06-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 127 Open Access  
  Notes Fwo Approved Most recent IF: 7.367; 2011 IF: 5.914  
  Call Number UA @ lucian @ c:irua:90361UA @ admin @ c:irua:90361 Serial 1458  
Permanent link to this record
 

 
Author Esken, D.; Noei, H.; Wang, Y.; Wiktor, C.; Turner, S.; Van Tendeloo, G.; Fischer, R.A. pdf  doi
openurl 
  Title ZnO@ZIF-8 : stabilization of quantum confined ZnO nanoparticles by a zinc methylimidazolate framework and their surface structural characterization probed by CO2 adsorption Type A1 Journal article
  Year 2011 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem  
  Volume 21 Issue 16 Pages 5907-5915  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The microporous and activated zeolitic imidazolate framework (Zn(MeIM)2; MeIM = imidazolate-2-methyl; ZIF-8) was loaded with the MOCVD precursor diethyl zinc [Zn(C2H5)2]. Exposure of ZIF-8 to the vapour of the volatile organometallic molecule resulted in the formation of the inclusion compound [Zn(C2H5)2]0.38@ZIF-8 revealing two precursor molecules per cavity. In a second step the obtained material was treated with oxygen (5 vol% in argon) at various temperatures (oxidative annealing) to achieve the composite material ZnO0.35@ZIF-8. The new material was characterized with powder XRD, FT-IR, UV-vis, solid state NMR, elemental analysis, N2 sorption measurements, and transmission electron microscopy. The data give evidence for the presence of nano-sized ZnO particles stabilized by ZIF-8 showing a blue-shift of the UV-vis absorption caused by quantum size effect (QSE). The surface structure and reactivity of embedded ZnO nanoparticles were characterized via carbon dioxide adsorption at different temperatures monitored by ultra-high vacuum FTIR techniques. It was found that the surface of ZnO nanoparticles is dominated by polar OZnO and ZnZnO facets as well as by defect sites, which all exhibit high reactivity towards CO2 activation forming various adsorbed carbonate and chemisorbed CO2δ− species.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000289260000012 Publication Date 2011-03-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 76 Open Access  
  Notes Esteem 026019 Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:88641 Serial 3936  
Permanent link to this record
 

 
Author Zeng, Y.I.; Menghini, M.; Li, D.Y.; Lin, S.S.; Ye, Z.Z.; Hadermann, J.; Moorkens, T.; Seo, J.W.; Locquet, J.-P.; van Haesendonck, C. doi  openurl
  Title Unexpected optical response of single ZnO nanowires probed using controllable electrical contacts Type A1 Journal article
  Year 2011 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 13 Issue 15 Pages 6931-6935  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Relying on combined electron-beam lithography and lift-off methods Au/Ti bilayer electrical contacts were attached to individual ZnO nanowires (NWs) that were grown by a vapor phase deposition method. Reliable Schottky-type as well as ohmic contacts were obtained depending on whether or not an ion milling process was used. The response of the ZnO NWs to ultraviolet light was found to be sensitive to the type of contacts. The intrinsic electronic properties of the ZnO NWs were studied in a field-effect transistor configuration. The transfer characteristics, including gate threshold voltage, hysteresis and operational mode, were demonstrated to unexpectedly respond to visible light. The origin of this effect could be accounted for by the presence of point defects in the ZnO NWs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000288951000019 Publication Date 2011-03-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 7 Open Access  
  Notes Approved Most recent IF: 4.123; 2011 IF: 3.573  
  Call Number UA @ lucian @ c:irua:89378 Serial 3807  
Permanent link to this record
 

 
Author Quintana, M.; Montellano, A.; Esau del Rio Castillo, A.; Van Tendeloo, G.; Bittencourt, C.; Prato, M. pdf  doi
openurl 
  Title Selective organic functionalization of graphene bulk or graphene edges Type A1 Journal article
  Year 2011 Publication Chemical communications Abbreviated Journal Chem Commun  
  Volume 47 Issue 33 Pages 9330-9332  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Graphene sheets have been functionalized with a PAMAM dendron, finding that graphene can be efficiently functionalized all over the surface, or only at the edges, depending on the reactions used in the functionalization process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000293648200010 Publication Date 2011-07-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-7345;1364-548X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.319 Times cited 84 Open Access  
  Notes Approved Most recent IF: 6.319; 2011 IF: 6.169  
  Call Number UA @ lucian @ c:irua:91892 Serial 2968  
Permanent link to this record
 

 
Author Yan, L.; Niu, H.J.; Duong, G.V.; Suchomel, M.R.; Bacsa, J.; Chalker, P.R.; Hadermann, J.; Van Tendeloo, G.; Rosseinsky, M.J. doi  openurl
  Title Cation ordering within the perovskite block of a six-layer Ruddlesden-Popper oxide from layer-by-layer growth artificial interfaces in complex unit cells Type A1 Journal article
  Year 2011 Publication Chemical science Abbreviated Journal Chem Sci  
  Volume 2 Issue 2 Pages 261-272  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The (AO)(ABO3)n Ruddlesden-Popper structure is an archetypal complex oxide consisting of two distinct structural units, an (AO) rock salt layer separating an n-octahedra thick perovskite block. Conventional high-temperature oxide synthesis methods cannot access members with n > 3, but low-temperature layer-by-layer thin film methods allow the preparation of materials with thicker perovskite blocks, exploiting high surface mobility and lattice matching with the substrate. This paper describes the growth of an n = 6 member CaO[(CSMO)2(LCMO)2 (CSMO)2] in which the six unit cell perovskite block is sub-divided into two central La0.67Ca0.33MnO3 (LCMO) and two terminal Ca0.85Sm0.15MnO3 (CSMO) layers to allow stabilization of the rock salt layer and variation of the transition metal charge.  
  Address  
  Corporate Author Thesis  
  Publisher Royal Society of Chemistry Place of Publication Cambridge Editor  
  Language Wos 000286327600010 Publication Date 2010-11-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-6520;2041-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.668 Times cited 16 Open Access  
  Notes Approved Most recent IF: 8.668; 2011 IF: 7.525  
  Call Number UA @ lucian @ c:irua:88652 Serial 300  
Permanent link to this record
 

 
Author Yang, T.; Abakumov, A.M.; Hadermann, J.; Van Tendeloo, G.; Nowik, I.; Stephens, P.W.; Hamberger, J.; Tsirlin, A.A.; Ramanujachary, K.V.; Lofland, S.; Croft, M.; Ignatov, A.; Sun, J.; Greenblatt, M. pdf  doi
openurl 
  Title _BiMnFe2O6, a polysynthetically twinned hcp MO structure Type A1 Journal article
  Year 2010 Publication Chemical science Abbreviated Journal Chem Sci  
  Volume 1 Issue 6 Pages 751-762  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The most efficient use of spatial volume and the lowest potential energies in the metal oxide structures are based on cubic close packing (ccp) or hexagonal close packing (hcp) of anions with cations occupying the interstices. A promising way to tune the composition of close packed oxides and design new compounds is related to fragmenting the parent structure into modules by periodically spaced planar interfaces, such as twin planes at the unit cell scale. The unique crystal chemistry properties of cations with a lone electron pair, such as Bi3+ or Pb2+, when located at interfaces, enables them to act as chemical scissors, to help relieve configurational strain. With this approach, we synthesized a new oxide, BiMnFe2O6, where fragments of the hypothetical hcp oxygen-based MO structure (the NiAs structure type), for the first time, serve as the building modules in a complex transition metal oxide. Mn3+ and Fe3+ ions are randomly distributed in two crystallographically independent sites (M1 and M2). The structure consists of quasi two-dimensional blocks of the 2H hexagonal close packed MO structure cut along the (114) crystal plane of the hcp lattice and stacked along the c axis. The blocks are related by a mirror operation that allows BiMnFe2O6 to be considered as a polysynthetically twinned 2H hcp MO structure. The transition to an AFM state with an incommensurate spin configuration at [similar] 212 K is established by 57Fe Mössbauer spectroscopy, magnetic susceptibility, specific heat and low temperature powder neutron diffraction.  
  Address  
  Corporate Author Thesis  
  Publisher Royal Society of Chemistry Place of Publication Cambridge Editor  
  Language Wos 000283939200013 Publication Date 2010-10-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-6520;2041-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.668 Times cited 12 Open Access  
  Notes Approved Most recent IF: 8.668; 2010 IF: NA  
  Call Number UA @ lucian @ c:irua:85823 Serial 3517  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: