toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links (up)
Author de Backer, J.W.; Vanderveken, O.M.; Vos, W.G.; Devolder, A.; Verhulst, S.L.; Verbraecken, J.A.; Parizel, P.M.; Braem, M.J.; van de Heyning, P.H.; de Backer, W.A. doi  openurl
  Title Functional imaging using computational fluid dynamics to predict treatment success of mandibular advancement devices in sleep-disordered breathing Type A1 Journal article
  Year 2007 Publication Journal of biomechanics Abbreviated Journal J Biomech  
  Volume 40 Issue 16 Pages 3708-3714  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Antwerp Surgical Training, Anatomy and Research Centre (ASTARC); Laboratory Experimental Medicine and Pediatrics (LEMP); Translational Neurosciences (TNW)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000251845100020 Publication Date 2007-08-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9290; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.664 Times cited 66 Open Access  
  Notes Approved Most recent IF: 2.664; 2007 IF: 2.897  
  Call Number UA @ lucian @ c:irua:64860 Serial 1299  
Permanent link to this record
 

 
Author Vos, W.; de Backer, J.; Devolder, A.; Vanderveken, O.; Verhulst, S.; Salgado, R.; Germonpré, P.; Partoens, B.; Wuyts, F.; Parizel, P.; de Backer, W. doi  openurl
  Title Correlation between severity of sleep apnea and upper airway morphology based on advanced anatomical and functional imaging Type A1 Journal article
  Year 2007 Publication Journal of biomechanics Abbreviated Journal J Biomech  
  Volume 40 Issue 10 Pages 2207-2213  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Antwerp Surgical Training, Anatomy and Research Centre (ASTARC); Laboratory Experimental Medicine and Pediatrics (LEMP); Translational Neurosciences (TNW)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000248468000011 Publication Date 2006-12-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9290; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.664 Times cited 86 Open Access  
  Notes Approved Most recent IF: 2.664; 2007 IF: 2.897  
  Call Number UA @ lucian @ c:irua:62425 Serial 523  
Permanent link to this record
 

 
Author Khalil-Allafi, J.; Amin-Ahmadi, B. pdf  doi
openurl 
  Title The effect of chemical composition on enthalpy and entropy changes of martensitic transformations in binary NiTi shape memory alloys Type P3 Proceeding
  Year 2009 Publication Journal Of Alloys And Compounds Abbreviated Journal J Alloy Compd  
  Volume 487 Issue Pages 363-366  
  Keywords P3 Proceeding; Condensed Matter Theory (CMT)  
  Abstract In the present research work the binary NiTi alloys with various compositions in the range of 50.351 at.% Ni were used. Samples have been annealed at 850 °C for 15 min and then quenched in water. In order to characterize transformation temperatures and enthalpy changes of the forward and the reverse martensitic transformation, Differential Scanning Calorimetric (DSC) experiments were performed. The enthalpy and entropy changes as a function of Ni atomic content have been thermodynamically investigated. Results show that enthalpy and entropy changes of martensitic transformation decrease when Ni atomic content increases. The variation of enthalpy and entropy of martensitic transformation with Ni content in binary NiTi alloys were explained by thermodynamic parameters and electron concentration of alloy (e/a) respectively.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000272521900073 Publication Date 2009-07-31  
  Series Editor Series Title Abbreviated Series Title Proceedings of the 22nd International Conference on the Physics of Semiconductors  
  Series Volume Series Issue Edition  
  ISSN 0925-8388; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.133 Times cited 30 Open Access  
  Notes Approved Most recent IF: 3.133; 2009 IF: 2.135  
  Call Number UA @ lucian @ c:irua:122040 Serial 804  
Permanent link to this record
 

 
Author Nakhaee, M.; Ketabi, S.A.; Peeters, F.M. pdf  doi
openurl 
  Title Tight-binding studio : a technical software package to find the parameters of tight-binding Hamiltonian Type A1 Journal article
  Year 2020 Publication Computer Physics Communications Abbreviated Journal Comput Phys Commun  
  Volume 254 Issue Pages 107379-10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We present the Tight-Binding Studio (TB Studio) software package that calculates the different parameters of a tight-binding Hamiltonian from a set of Bloch energy bands obtained from first principle theories such as density functional theory, Hartree-Fock calculations or semi-empirical band-structure theory. This will be helpful for scientists who are interested in studying electronic and optical properties of structures using Green's function theory within the tight-binding approximation. TB Studio is a cross-platform application written in C++ with a graphical user interface design that is user-friendly and easy to work with. This software is powered by Linear Algebra Package C interface library for solving the eigenvalue problems and the standard high performance OpenGL graphic library for real time plotting. TB Studio and its examples together with the tutorials are available for download from tight-binding.com. Program summary Program Title: Tight-Binding Studio Program Files doi:http://dx.doi.org/10.17632/j6x5mwzm2d.1 Licensing provisions: LGPL Programming language: C++ External routines: BLAS, LAPACK, LAPACKE, wxWidgets, OpenGL, MathGL Nature of problem: Obtaining Tight-Binding Hamiltonian from a set of Bloch energy bands obtained from first-principles calculations. Solution method: Starting from the simplified LCAO method, a tight-binding model in the two-center approximation is constructed. The Slater and Koster (SK) approach is used to calculate the parameters of the TB Hamiltonian. By using non-linear fitting approaches the optimal values of the SK parameters are obtained such that the TB energy eigenvalues are as close as possible to those from first-principles calculations. We obtain the expression for the Hamiltonian and the overlap matrix elements between the different orbitals of the different atoms in an orthogonal or non-orthogonal basis set. (C) 2020 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000541251200030 Publication Date 2020-05-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0010-4655 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.3 Times cited 14 Open Access  
  Notes ; This work was supported by the Methusalem program of the Flemish government, Belgium and M. Nakhaee was supported by a BOF-fellowship (UAntwerpen), Belgium. ; Approved Most recent IF: 6.3; 2020 IF: 3.936  
  Call Number UA @ admin @ c:irua:170149 Serial 6630  
Permanent link to this record
 

 
Author Dixit, H.; Saniz, R.; Lamoen, D.; Partoens, B. doi  openurl
  Title Accurate pseudopotential description of the GW bandstructure of ZnO Type A1 Journal article
  Year 2011 Publication Computer physics communications Abbreviated Journal Comput Phys Commun  
  Volume 182 Issue 9 Pages 2029-2031  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract We present the GW band structure of ZnO in its wurtzite (WZ), zincblende (ZB) and rocksalt (RS) phases at the Γ point, calculated within the GW approximation. We have used a Zn20+ pseudopotential which is essential for the adequate treatment of the exchange interaction in the self-energy. The accuracy of the pseudopotential used is also discussed. The effect of the pd hybridization on the GW corrections to the band gap is correlated by comparing the ZB and RS phase.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000292675100062 Publication Date 2011-02-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0010-4655; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.936 Times cited 18 Open Access  
  Notes ; ; Approved Most recent IF: 3.936; 2011 IF: 3.268  
  Call Number UA @ lucian @ c:irua:90761 Serial 51  
Permanent link to this record
 

 
Author Hassani, N.; Yagmurcukardes, M.; Peeters, F.M.; Neek-Amal, M. pdf  doi
openurl 
  Title Chlorinated phosphorene for energy application Type A1 Journal article
  Year 2024 Publication Computational materials science Abbreviated Journal  
  Volume 231 Issue Pages 112625-112628  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The influence of decoration with impurities and the composition dependent band gap in 2D materials has been the subject of debate for a long time. Here, by using Density Functional Theory (DFT) calculations, we systematically disclose physical properties of chlorinated phosphorene having the stoichiometry of PmCln. By analyzing the adsorption energy, charge density, migration energy barrier, structural, vibrational, and electronic properties of chlorinated phosphorene, we found that (I) the Cl-P bonds are strong with binding energy Eb =-1.61 eV, decreases with increasing n. (II) Cl atoms on phosphorene have anionic feature, (III) the migration path of Cl on phosphorene is anisotropic with an energy barrier of 0.38 eV, (IV) the phonon band dispersion reveal that chlorinated phosphorenes are stable when r <= 0.25 where r = m/n, (V) chlorinated phosphorenes is found to be a photonic crystal in the frequency range of 280 cm-1 to 325 cm-1, (VI) electronic band structure of chlorinated phosphorenes exhibits quasi-flat bands emerging around the Fermi level with widths in the range of 22 meV to 580 meV, and (VII) Cl adsorption causes a semiconducting to metallic/semi-metallic transition which makes it suitable for application as an electroactive material. To elucidate this application, we investigated the change in binding energy (Eb), specific capacity, and open-circuit voltage as a function of the density of adsorbed Cl. The theoretical storage capacity of the chlorinated phosphorene is found to be 168.19 mA h g-1with a large average voltage (similar to 2.08 V) which is ideal number as a cathode in chloride-ion batteries.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001110003400001 Publication Date 2023-11-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-0256 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:202125 Serial 9008  
Permanent link to this record
 

 
Author Gonzalez-Garcia, A.; Lopez-Perez, W.; Rivera-Julio, J.; Peeters, F.M.; Mendoza-Estrada, V.; Gonzalez-Hernandez, R. pdf  doi
openurl 
  Title Structural, mechanical and electronic properties of two-dimensional structure of III-arsenide (111) binary compounds: An ab-initio study Type A1 Journal article
  Year 2018 Publication Computational materials science Abbreviated Journal Comp Mater Sci  
  Volume 144 Issue 144 Pages 285-293  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Structural, mechanical and electronic properties of two-dimensional single-layer hexagonal structures in the (111) crystal plane of IIIAs-ZnS systems (III = B, Ga and In) are studied by first-principles calculations based on density functional theory (DFT). Elastic and phonon dispersion relation display that 2D h-IIIAs systems (III = B, Ga and In) are both mechanical and dynamically stable. Electronic structures analysis show that the semiconducting nature of the 3D-IIIAs compounds is retained by their 2D single layer counterpart. Furthermore, density of states reveals the influence of sigma and pi bonding in the most stable geometry (planar or buckled) for 2D h-IIIAs systems. Calculations of elastic constants show that the Young's modulus, bulk modulus and shear modulus decrease for 2D h-IIIAs binary compounds as we move down on the group of elements of the periodic table. In addition, as the bond length between the neighboring cation-anion atoms increases, the 2D h-IIIAs binary compounds display less stiffness and more plasticity. Our findings can be used to understand the contribution of the r and p bonding in the most stable geometry (planar or buckled) for 2D h-IIIAs systems. Structural and electronic properties of h-IIIAs systems as a function of the number of layers have been also studied. It is shown that h-BAs keeps its planar geometry while both h-GAs and h-InAs retained their buckled ones obtained by their single layers. Bilayer h-IIIAs present the same bandgap nature of their counterpart in 3D. As the number of layers increase from 2 to 4, the bandgap width for layered h-IIIAs decreases until they become semimetal or metal. Interestingly, these results are different to those found for layered h-GaN. The results presented in this study for single and few-layer h-IIIAs structures could give some physical insights for further theoretical and experimental studies of 2D h-IIIV-like systems. (C) 2017 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000424902300036 Publication Date 2017-12-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-0256 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.292 Times cited 3 Open Access  
  Notes ; This work has been carried out by the financial support of Universidad del Norte and Colciencias (Administrative Department of Science, Technology and Research of Colombia) under Convocatoria 712 – Convocatoria para proyectos de investigacion en Ciencias Basicas, ano 2015, Cod: 121571250192, Contrato 110-216. ; Approved Most recent IF: 2.292  
  Call Number UA @ lucian @ c:irua:149897UA @ admin @ c:irua:149897 Serial 4949  
Permanent link to this record
 

 
Author Mobaraki, A.; Kandemir, A.; Yapicioglu, H.; Gulseren, O.; Sevik, C. doi  openurl
  Title Validation of inter-atomic potential for WS2 and WSe2 crystals through assessment of thermal transport properties Type A1 Journal article
  Year 2018 Publication Computational materials science Abbreviated Journal  
  Volume 144 Issue Pages 92-98  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In recent years, transition metal dichalcogenides (TMDs) displaying astonishing properties are emerged as a new class of two-dimensional layered materials. The understanding and characterization of thermal transport in these materials are crucial for efficient engineering of 2D TMD materials for applications such as thermoelectric devices or overcoming general overheating issues. In this work, we obtain accurate Stillinger-Weber type empirical potential parameter sets for single-layer WS2 and WSe2 crystals by utilizing particle swarm optimization, a stochastic search algorithm. For both systems, our results are quite consistent with first-principles calculations in terms of bond distances, lattice parameters, elastic constants and vibrational properties. Using the generated potentials, we investigate the effect of temperature on phonon energies and phonon linewidth by employing spectral energy density analysis. We compare the calculated frequency shift with respect to temperature with corresponding experimental data, clearly demonstrating the accuracy of the generated inter-atomic potentials in this study. Also, we evaluate the lattice thermal conductivities of these materials by means of classical molecular dynamics simulations. The predicted thermal properties are in very good agreement with the ones calculated from first-principles. (C) 2017 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000424902300013 Publication Date 2017-12-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-0256 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:193774 Serial 8729  
Permanent link to this record
 

 
Author Bafekry, A.; Ghergherehchi, M.; Shayesteh, S.F.; Peeters, F.M. pdf  doi
openurl 
  Title Adsorption of molecules on C3N nanosheet : a first-principles calculations Type A1 Journal article
  Year 2019 Publication Chemical physics Abbreviated Journal Chem Phys  
  Volume 526 Issue 526 Pages 110442  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using first-principles calculations we investigate the interaction of various molecules, including H-2, N-2, CO, CO2, H2O, H2S, NH3, CH4 with a C3N nanosheet. Due to the weaker interaction between H-2, N-2, CO, CO2, H2O, H2S, NH3, and CH4 molecules with C3N, the adsorption energy is small and does not yield any significant distortion of the C3N lattice and the molecules are physisorbed. Calculated charge transfer shows that these molecules act as weak donors. However, adsorption of O-2, NO, NO2 and SO2 molecules are chemisorbed, they receive electrons from C3N and act as a strong acceptor. They interact strongly through hybridizing its frontier orbitals with the p-orbital of C3N, modifying the electronic structure of C3N. Our theoretical studies indicate that C3N-based sensor has a high potential for O-2, NO, NO2 and SO2 molecules detection.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000481606000006 Publication Date 2019-07-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0301-0104 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.767 Times cited 46 Open Access  
  Notes ; This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2017R1A2B2011989). In addition, this work was supported by the FLAG-ERA project 2DTRANS and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 1.767  
  Call Number UA @ admin @ c:irua:161779 Serial 5405  
Permanent link to this record
 

 
Author Marazzi, E.; Ghojavand, A.; Pirard, J.; Petretto, G.; Charlier, J.-C.; Rignanese, G.-M. pdf  doi
openurl 
  Title Modeling symmetric and defect-free carbon schwarzites into various zeolite templates Type A1 Journal article
  Year 2023 Publication Carbon Abbreviated Journal  
  Volume 215 Issue Pages 118385-118389  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Recently, a process has been proposed for generating negatively-curved carbon schwarzites via zeolite-templating (Braun et al., 2018). However, the proposed process leads to atomistic models which are not very symmetric and often rather defective. In the present work, an improved generation approach is developed, by imposing symmetry constraints, which systematically leads to defect-free, hence more stable, schwarzites. The stability of the newly predicted symmetric schwarzites is also compared to that of other carbon nanostructures (in particular carbon nanotubes – CNTs), which could also be accommodated within the same templates. Our results suggest that only a few of these (such as FAU, SBT and SBS) can fit schwarzites more stable than CNTs. Our predictions could help experimentalists in the crucial choice of the template for the challenging synthesis of schwarzites. Furthermore, being highly symmetric and stable phases, the models could also be synthesized by means of other experimental procedures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001078649800001 Publication Date 2023-09-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:200314 Serial 9057  
Permanent link to this record
 

 
Author Mirzakhani, M.; Myoung, N.; Peeters, F.M.; Park, H.C. pdf  doi
openurl 
  Title Electronic Mach-Zehnder interference in a bipolar hybrid monolayer-bilayer graphene junction Type A1 Journal article
  Year 2023 Publication Carbon Abbreviated Journal  
  Volume 201 Issue Pages 734-744  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Graphene matter in a strong magnetic field, realizing one-dimensional quantum Hall channels, provides a unique platform for studying electron interference. Here, using the Landauer-Buttiker formalism along with the tightbinding model, we investigate the quantum Hall (QH) effects in unipolar and bipolar monolayer-bilayer graphene (MLG-BLG) junctions. We find that a Hall bar made of an armchair MLG-BLG junction in the bipolar regime results in valley-polarized edgechannel interferences and can operate a fully tunable Mach-Zehnder (MZ) interferometer device. Investigation of the bar-width and magnetic-field dependence of the conductance oscillations shows that the MZ interference in such structures can be drastically affected by the type of (zigzag) edge termination of the second layer in the BLG region [composed of vertical dimer or non-dimer atoms]. Our findings reveal that both interfaces exhibit a double set of Aharonov-Bohm interferences, with the one between two oppositely valley-polarized edge channels dominating and causing a large amplitude conductance oscillation ranging from 0 to 2e2/h. We explain and analyze our findings by analytically solving the Dirac-Weyl equation for a gated semi-infinite MLG-BLG junction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000868911500004 Publication Date 2022-09-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 10.9 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 10.9; 2023 IF: 6.337  
  Call Number UA @ admin @ c:irua:191516 Serial 7302  
Permanent link to this record
 

 
Author Dehdast, M.; Valiollahi, Z.; Neek-Amal, M.; Van Duppen, B.; Peeters, F.M.; Pourfath, M. pdf  doi
openurl 
  Title Tunable natural terahertz and mid-infrared hyperbolic plasmons in carbon phosphide Type A1 Journal article
  Year 2021 Publication Carbon Abbreviated Journal Carbon  
  Volume 178 Issue Pages 625-631  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Hyperbolic polaritons in ultra thin materials such as few layers of van derWaals heterostructures provide a unique control over light-matter interaction at the nanoscale and with various applications in flat optics. Natural hyperbolic surface plasmons have been observed on thin films of WTe2 in the light wavelength range of 16-23 mu m (similar or equal to 13-18 THz) [Nat. Commun. 11, 1158 (2020)]. Using time-dependent density functional theory, it is found that carbon doped monolayer phosphorene (beta-allotrope of carbon phosphide monolayer) exhibits natural hyperbolic plasmons at frequencies above similar or equal to 5 THz which is not observed in its parent materials, i.e. monolayer of black phosphorous and graphene. Furthermore, we found that by electrostatic doping the plasmonic frequency range can be extended to the mid-infrared. (C) 2021 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000648729800057 Publication Date 2021-03-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 6 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 6.337  
  Call Number UA @ admin @ c:irua:179033 Serial 7039  
Permanent link to this record
 

 
Author Bafekry, A.; Yagmurcukardes, M.; Shahrokhi, M.; Ghergherehchi, M. pdf  doi
openurl 
  Title Electro-optical properties of monolayer and bilayer boron-doped C₃N: Tunable electronic structure via strain engineering and electric field Type A1 Journal article
  Year 2020 Publication Carbon Abbreviated Journal Carbon  
  Volume 168 Issue Pages 220-229  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In this work, the structural, electronic and optical properties of monolayer and bilayer of boron doped C3N are investigated by means of density functional theory-based first-principles calculations. Our results show that with increasing the B dopant concentration from 3.1% to 12.5% in the hexagonal pattern, an indirect-to-direct band gap (0.8 eV) transition occurs. Furthermore, we study the effect of electric field and strain on the B doped C3N bilayer (B-C3N@2L). It is shown that by increasing E-field strength from 0.1 to 0.6V/angstrom, the band gap displays almost a linear decreasing trend, while for the > 0.6V/angstrom, we find dual narrow band gap with of 50 meV (in parallel E-field) and 0.4 eV (in antiparallel E-field). Our results reveal that in-plane and out-of-plane strains can modulate the band gap and band edge positions of the B-C3N@2L. Overall, we predict that B-C3N@2L is a new platform for the study of novel physical properties in layered two-dimensional materials (2DM) which may provide new opportunities to realize high-speed low-dissipation devices. (C) 2020 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000565900900008 Publication Date 2020-07-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 10.9 Times cited 21 Open Access  
  Notes ; This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government(MSIT) (NRF-2017R1A2B2011989). M. Yagmurcukardes acknowledges Flemish Science Foundation (FWO-VI) by a postdoctoral fellowship. ; Approved Most recent IF: 10.9; 2020 IF: 6.337  
  Call Number UA @ admin @ c:irua:171914 Serial 6500  
Permanent link to this record
 

 
Author Li, L.; Kong, X.; Peeters, F.M. pdf  doi
openurl 
  Title New nanoporous graphyne monolayer as nodal line semimetal : double Dirac points with an ultrahigh Fermi velocity Type A1 Journal article
  Year 2019 Publication Carbon Abbreviated Journal Carbon  
  Volume 141 Issue 141 Pages 712-718  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Two-dimensional (2D) carbon materials play an important role in nanomaterials. We propose a new carbon monolayer, named hexagonal-4,4,4-graphyne (H-4,H-4,H-4-graphyne), which is a nanoporous structure composed of rectangular carbon rings and triple bonds of carbon. Using first-principles calculations, we systematically studied the structure, stability, and band structure of this new material. We found that its total energy is lower than that of experimentally synthesized beta-graphdiyne and it is stable at least up to 1500 K. In contrast to the single Dirac point band structure of other 2D carbon monolayers, the band structure of H-4,H-4,H-4-graphyne exhibits double Dirac points along the high-symmetry points and the corresponding Fermi velocities (1.04-1.27 x 10(6) m/s) are asymmetric and higher than that of graphene. The origin of these double Dirac points is traced back to the nodal line states, which can be well explained by a tight-binding model. The H-4,H-4,H-4-graphyne forms a moire superstructure when placed on top of a hexagonal boron nitride substrate. These properties make H-4,H-4,H-4-graphyne a promising semimetal material for applications in high-speed electronic devices. (C) 2018 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000450312600072 Publication Date 2018-10-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 38 Open Access  
  Notes ; This work was supported by the Fonds voor Wetenschappelijk Onderzoek (FWO-Vl), and the FLAG-ERA project TRANS2DTMD. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation – Flanders (FWO) and the Flemish Government -department EWI. ; Approved Most recent IF: 6.337  
  Call Number UA @ admin @ c:irua:155364 Serial 5222  
Permanent link to this record
 

 
Author Li, L.; Kong, X.; Leenaerts, O.; Chen, X.; Sanyal, B.; Peeters, F.M. pdf  doi
openurl 
  Title Carbon-rich carbon nitride monolayers with Dirac cones : Dumbbell C4N Type A1 Journal article
  Year 2017 Publication Carbon Abbreviated Journal Carbon  
  Volume 118 Issue 118 Pages 285-290  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Two-dimensional (2D) carbon nitride materials play an important role in energy-harvesting, energy-storage and environmental applications. Recently, a new carbon nitride, 2D polyaniline (C3N) was proposed [PNAS 113 (2016) 7414-7419]. Based on the structure model of this C3N monolayer, we propose two new carbon nitride monolayers, named dumbbell (DB) C4N-I and C4N-II. Using first-principles calculations, we systematically study the structure, stability, and band structure of these two materials. In contrast to other carbon nitride monolayers, the orbital hybridization of the C/N atoms in the DB C4N monolayers is sp(3). Remarkably, the band structures of the two DB C4N monolayers have a Dirac cone at the K point and their Fermi velocities (2.6/2.4 x 10(5) m/s) are comparable to that of graphene. This makes them promising materials for applications in high-speed electronic devices. Using a tight-binding model, we explain the origin of the Dirac cone. (C) 2017 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000401120800033 Publication Date 2017-03-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 36 Open Access  
  Notes Approved Most recent IF: 6.337  
  Call Number UA @ lucian @ c:irua:143726 Serial 4588  
Permanent link to this record
 

 
Author Xu, P.; Qi, D.; Schoelz, J.K.; Thompson, J.; Thibado, P.M.; Wheeler, V.D.; Nyakiti, L.O.; Myers-Ward, R.L.; Eddy, C.R.; Gaskill, D.K.; Neek-Amal, M.; Peeters, F.M.; doi  openurl
  Title Multilayer graphene, Moire patterns, grain boundaries and defects identified by scanning tunneling microscopy on the m-plane, non-polar surface of SiC Type A1 Journal article
  Year 2014 Publication Carbon Abbreviated Journal Carbon  
  Volume 80 Issue Pages 75-81  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Epitaxial graphene is grown on a non-polar n(+) 6H-SiC m-plane substrate and studied using atomic scale scanning tunneling microscopy. Multilayer graphene is found throughout the surface and exhibits rotational disorder. Moire patterns of different spatial periodicities are found, and we found that as the wavelength increases, so does the amplitude of the modulations. This relationship reveals information about the interplay between the energy required to bend graphene and the interaction energy, i.e. van der Waals energy, with the graphene layer below. Our experiments are supported by theoretical calculations which predict that the membrane topographical amplitude scales with the Moire pattern wavelength, L as L-1 + alpha L-2. (C) 2014 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000344132400009 Publication Date 2014-08-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 14 Open Access  
  Notes ; P.X. and P.M.T. gratefully acknowledge the financial support of ONR under grant N00014-10-1-0181 and NSF under grant DMR-0855358. L.O.N. acknowledges the support of American Society for Engineering Education and Naval Research Laboratory Postdoctoral Fellow Program. Work at the U.S. Naval Research Laboratory is supported by the Office of Naval Research. This work was supported by the Flemish Science Foundation (FWO-Vl), the Methusalem Foundation of the Flemish Government, and the EUROgraphene project CONGRAN. M.N.-A was supported by the EU-Marie Curie IIF postdoc Fellowship 299855. ; Approved Most recent IF: 6.337; 2014 IF: 6.196  
  Call Number UA @ lucian @ c:irua:121194 Serial 2221  
Permanent link to this record
 

 
Author da Costa, D.R.; Zarenia, M.; Chaves, A.; Farias, G.A.; Peeters, F.M. pdf  doi
openurl 
  Title Analytical study of the energy levels in bilayer graphene quantum dots Type A1 Journal article
  Year 2014 Publication Carbon Abbreviated Journal Carbon  
  Volume 78 Issue Pages 392-400  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using the four-band continuum model we derive a general expression for the infinite-mass boundary condition in bilayer graphene. Applying this new boundary condition we analytically calculate the confined states and the corresponding wave functions in a bilayer graphene quantum dot in the absence and presence of a perpendicular magnetic field. Our results for the energy spectrum show an energy gap between the electron and hole states at small magnetic fields. Furthermore the electron (e) and hole (h) energy levels corresponding to the K and K' valleys exhibit the E-K(e(h)) (m) = E-K'(e(h)) (m) symmetry, where m is the angular momentum quantum number. (C) 2014 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000341463900042 Publication Date 2014-07-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 35 Open Access  
  Notes ; This work was financially supported by CNPq, under contract NanoBioEstruturas 555183/2005-0, PRONEX/FUNCAP, CAPES Foundation under the process number BEX 7178/13-1, the Flemish Science Foundation (FWO-Vl), the European Science Foundation (ESF) under the EUROCORES program Euro-GRAPHENE (project CONGRAN), the Bilateral programme between CNPq and FWO-Vl, and the Brazilian Program Science Without Borders (CsF). We thank M. Ramezani Masir and M. Grujic for helpful comments and discussions. ; Approved Most recent IF: 6.337; 2014 IF: 6.196  
  Call Number UA @ lucian @ c:irua:119280 Serial 109  
Permanent link to this record
 

 
Author Dzhurakhalov, A.A.; Peeters, F.M. pdf  doi
openurl 
  Title Structure and energetics of hydrogen chemisorbed on a single graphene layer to produce graphane Type A1 Journal article
  Year 2011 Publication Carbon Abbreviated Journal Carbon  
  Volume 49 Issue 10 Pages 3258-3266  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Integrated Molecular Plant Physiology Research (IMPRES)  
  Abstract Chemisorption of hydrogen on graphene is studied using atomistic simulations with the second generation of reactive empirical bond order Brenner inter-atomic potential. The lowest energy adsorption sites and the most important metastable sites are determined. The H concentration is varied from a single H atom, to clusters of H atoms up to full coverage. We found that when two or more H atoms are present, the most stable configurations of H chemisorption on a single graphene layer are ortho hydrogen pairs adsorbed on one side or on both sides of the graphene sheet. The latter has the highest hydrogen binding energy. The next stable configuration is the orthopara pair combination, and then para hydrogen pairs. The structural changes of graphene caused by chemisorbed hydrogen are discussed and are compared with existing experimental data and other theoretical calculations. The obtained results will be useful for nanoengineering of graphene by hydrogenation and for hydrogen storage.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000291959300014 Publication Date 2011-04-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 46 Open Access  
  Notes ; A.D. thanks M.W. Zhao for a useful correspondence. This work was supported by the Belgian Science Policy (IAP) and the Flemish Science Foundation (FWO-VI). ; Approved Most recent IF: 6.337; 2011 IF: 5.378  
  Call Number UA @ lucian @ c:irua:90877 Serial 3275  
Permanent link to this record
 

 
Author Verberck, B.; Cambedouzou, J.; Vliegenthart, G.A.; Gompper, G.; Launois, P. doi  openurl
  Title A Monte Carlo study of C70 molecular motion in C70@SWCNT peapods Type A1 Journal article
  Year 2011 Publication Carbon Abbreviated Journal Carbon  
  Volume 49 Issue 6 Pages 2007-2021  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We present Monte Carlo simulations of chains of C70 molecules encapsulated in a single-walled carbon nanotube (SWCNT). For various tube radii R (6.5 Å less-than-or-equals, slant R less-than-or-equals, slant 7.5 Å), we analyze rotational and translational motion of the C70 molecules, as a function of temperature. Apart from reproducing the experimentally well-established lying and standing molecular orientations for small and large tube radii, respectively, we observe, depending on the tube diameter, a variety of molecular motions, orientational flipping of lying molecules, and the migration of molecules resulting in a continual rearrangement of the C70 molecules in clusters of varying lengths. With increasing temperature, the evolution of the pair correlation functions reveals a transition from linear harmonic chain behavior to a hard-sphere liquid, making C70@SWCNT peapods tunable physical realizations of two well-known one-dimensional model systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000288689900025 Publication Date 2011-01-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 10 Open Access  
  Notes ; Helpful discussions with K.H. Michel, P.-A. Albouy and C. Bousige are greatly acknowledged. This work was financially supported by the Research Foundation – Flanders (FWO-Vl). B.V. is a Postdoctoral Fellow of the Research Foundation Flanders (FWO-VI). ; Approved Most recent IF: 6.337; 2011 IF: 5.378  
  Call Number UA @ lucian @ c:irua:89660 Serial 2201  
Permanent link to this record
 

 
Author Launois, P.; Chorro, M.; Verberck, B.; Albouy, P.-A.; Rouzière, S.; Colson, D.; Forget, A.; Noé, L.; Kataura, H.; Monthioux, M.; Cambedouzou, J. pdf  doi
openurl 
  Title Transformation of C70 peapods into double walled carbon nanotubes Type A1 Journal article
  Year 2010 Publication Carbon Abbreviated Journal Carbon  
  Volume 48 Issue 1 Pages 89-98  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract X-ray diffraction studies comparing the transformation of C(60) and C(70) peapods into double walled carbon nanotubes are presented. The structures of the as-formed DWCNTs are strikingly similar, showing that they are not dependent on the nature of the fullerene precursor. High temperature X-ray diffraction measurements of C(70) peapods below the coalescence temperature show that confined C(70) molecules in large tubes undergo an orientational. transition to free rotations. Fast re-orientations of C(70) molecules allow cyclo-addition between adjacent fullerenes to form, in good agreement with the mechanism of coalescence proposed in the literature for C(60) molecules. (C) 2009 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000272018800012 Publication Date 2009-08-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 27 Open Access  
  Notes ; ; Approved Most recent IF: 6.337; 2010 IF: 4.896  
  Call Number UA @ lucian @ c:irua:94389 Serial 3696  
Permanent link to this record
 

 
Author Yayak, Y.O.; Sozen, Y.; Tan, F.; Gungen, D.; Gao, Q.; Kang, J.; Yagmurcukardes, M.; Sahin, H. pdf  doi
openurl 
  Title First-principles investigation of structural, Raman and electronic characteristics of single layer Ge3N4 Type A1 Journal article
  Year 2022 Publication Applied surface science Abbreviated Journal Appl Surf Sci  
  Volume 572 Issue Pages 151361  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract By means of density functional theory-based first-principle calculations, the structural, vibrational and electronic properties of single-layer Ge3N4 are investigated. Structural optimizations and phonon band dispersions reveal that single-layer ultrathin form of Ge3N4 possesses a dynamically stable buckled structure with large hexagonal holes. Predicted Raman spectrum of single-layer Ge3N4 indicates that the buckled holey structure of the material exhibits distinctive vibrational features. Electronic band dispersion calculations indicate the indirect band gap semiconducting nature of single-layer Ge3N4. It is also proposed that single-layer Ge3N4 forms type-II vertical heterostructures with various planar and puckered 2D materials except for single-layer GeSe which gives rise to a type-I band alignment. Moreover, the electronic properties of single-layer Ge3N4 are investigated under applied external in-plane strain. It is shown that while the indirect gap behavior of Ge3N4 is unchanged by the applied strain, the energy band gap increases (decreases) with tensile (compressive) strain.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000723664000006 Publication Date 2021-10-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.7 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 6.7  
  Call Number UA @ admin @ c:irua:184752 Serial 6993  
Permanent link to this record
 

 
Author Bafekry, A.; Faraji, M.; Fadlallah, M.M.; Ziabari, A.A.; Khatibani, A.B.; Feghhi, S.A.H.; Ghergherehchi, M.; Gogova, D. pdf  doi
openurl 
  Title Adsorption of habitat and industry-relevant molecules on the MoSi₂N₄ monolayer Type A1 Journal article
  Year 2021 Publication Applied Surface Science Abbreviated Journal Appl Surf Sci  
  Volume 564 Issue Pages 150326  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The adsorption of various environmental gas molecules, including H-2, N-2, CO, CO2, O-2, NO, NO2, SO2 H2O, H2S, NH3 and CH4, on the surface of the recently synthesized two dimensional MoSi2N4 (MSN) monolayer has been investigated by means of spin-polarized first-principles calculations. The most stable adsorption configuration, adsorption energy, and charge transfer have been computed. Due to the weak interaction between molecules studied with the MSN monolayer surface, the adsorption energy is small and does not yield any significant distortion of the MSN lattice, i.e., the interaction between the molecules and MSN monolayer surface is physisorption. We find that all molecules are physisorbed on the MSM surface with small charge transfer, acting as either charge acceptors or donors. The MSN monolayer is a semiconductor with an indirect band gap of 1.79 eV. Our theoretical estimations reveal that upon adsorption of H-2, N-2, CO, CO2, NO, H2O, H2S, NH3 and CH4 molecules, the semiconducting character of MSN monolayer is preserved and the band gap value is decreased to similar to 1.5 eV. However, the electronic properties of the MSN monolayer can be significantly altered by adsorption of O-2, NO and SO2, and a spin polarization with magnetic moments of 2, 1, 2 mu(B), respectively, can be introduced. Furthermore, we demonstrate that the band gap and the magnetic moment of adsorbed MSN monolayer can be significantly modulated by the concentration of NO and SO2 molecules. As the concentration of NO2 molecule increases, the magnetic moment increase from 1 mu(B) to 2 and 3 mu(B). In the case of the SO2 molecule with increasing of concentration, the band gap decreases from 1.2 eV to 1.1 and 0.9 eV. Obviously, our theoretical studies indicate that MSN monolayer-based sensor has a high application potential for O-2, NO, NO2 and SO2 detection.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000675534500002 Publication Date 2021-06-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.387 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 3.387  
  Call Number UA @ admin @ c:irua:180421 Serial 6970  
Permanent link to this record
 

 
Author Bafekry, A.; Yagmurcukardes, M.; Shahrokhi, M.; Ghergherehchi, M.; Kim, D.; Mortazavi, B. pdf  doi
openurl 
  Title Electro-optical and mechanical properties of Zinc antimonide (ZnSb) monolayer and bilayer : a first-principles study Type A1 Journal article
  Year 2021 Publication Applied Surface Science Abbreviated Journal Appl Surf Sci  
  Volume 540 Issue 1 Pages 148289  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Latest synthesis of ZnSb monolayer, encouraged us to conduct density functional theory (DFT) simulations in order to study the structural, magnetic, electronic/optical and mechanical features of the sp2-hybridized honeycomb ZnSb monolayer (ML-ZnSb) and bilayer (BL-ZnSb). Our structural optimizations reveal that ML-ZnSb is an anisotropic hexagonal structure while BL-ZnSb is composed of shifted ZnSb layers which are covalently binded. ML-ZnSb is found to be a ferromagnetic metal, in contrast BL-ZnSb has a non-magnetic indirect band gap semiconducting ground state. For the in-plane polarization, first absorption peak of ML-ZnSb and BL-ZnSb confirm the absorbance of the light within the infrared domain wand visible range, respectively. Moreover, our results reveal that the layer-layer chemical bonding in BL-ZnSb significantly enhances the mechanical response of ML-ZnSb whose in-plane stiness is the smallest among all 2D materials (2DM). Notably, the strong in-plane anisotropy of ML-ZnSb in its stiness reduces in BL-ZnSb.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000599883200005 Publication Date 2020-11-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.387 Times cited 1 Open Access Not_Open_Access  
  Notes ; This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2017R1A2B2011989). Computational resources were provided by the Flemish Supercomputer Center (VSC). M.Y. is supported by the Flemish Science Foundation (FWO-Vl) by a postdoctoral fellowship. B.M. and X. Z. appreciate the funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germanys Excellence Strategy within the Cluster of Excellence PhoenixD (EXC 2122, Project ID 390833453). ; Approved Most recent IF: 3.387  
  Call Number UA @ admin @ c:irua:174956 Serial 6688  
Permanent link to this record
 

 
Author Kahraman, Z.; Baskurt, M.; Yagmurcukardes, M.; Chaves, A.; Sahin, H. pdf  doi
openurl 
  Title Stable Janus TaSe₂ single-layers via surface functionalization Type A1 Journal article
  Year 2021 Publication Applied Surface Science Abbreviated Journal Appl Surf Sci  
  Volume 538 Issue Pages 148064  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract First-principles calculations are performed in order to investigate the formation of Janus structures of single layer TaSe2. The structural optimizations and phonon band dispersions reveal that the formation and stability of hydrogenated (HTaSe2), fluorinated (FTaSe2), and the one-side hydrogenated and one-side fluorinated (Janus-HTaSe2F) single-layers are feasible in terms of their phonon band dispersions. It is shown that bare metallic single-layer TaSe2 can be turned into a semiconductor as only one of its surface is functionalized while it remains as a metal via its two surfaces functionalization. In addition, the semiconducting nature of single-layers HTaSe2 and FTaSe2 and the metallic behavior of Janus TaSe2 are found to be robust under applied uniaxal strains. Further analysis on piezoelectric properties of the predicted single-layers reveal the enhanced in-plane and out of-plane piezoelectricity via formed Janus-HTaSe2F. Our study indicates that single-layer TaSe2 is a suitable host material for surface functionalization via fluorination and hydrogenation which exhibit distinctive electronic and vibrational properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000595860900001 Publication Date 2020-10-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.387 Times cited Open Access Not_Open_Access  
  Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid eInfrastructure). HS acknowledges support from Turkiye Bilimler Akademisi -Turkish Academy of Sciences under the GEBIP program. This work was supported by the Flemish Science Foundation (FWO-Vl) by a postdoctoral fellowship (M.Y.). ; Approved Most recent IF: 3.387  
  Call Number UA @ admin @ c:irua:174964 Serial 6699  
Permanent link to this record
 

 
Author Foumani, A.A.; Forster, D.J.; Ghorbanfekr, H.; Weber, R.; Graf, T.; Niknam, A.R. pdf  doi
openurl 
  Title Atomistic simulation of ultra-short pulsed laser ablation of metals with single and double pulses : an investigation of the re-deposition phenomenon Type A1 Journal article
  Year 2021 Publication Applied Surface Science Abbreviated Journal Appl Surf Sci  
  Volume 537 Issue Pages 147775  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The demand for higher throughput in the processing of materials with ultra-short pulsed lasers has motivated studies on the use of double pulses (DP). It has been observed in such studies that at relatively high time delays between the two pulses, the ablated volume is lower than that for a single pulse (SP). This has been attributed to the shielding of the second pulse and the re-deposition of the material removed by the first pulse. The investigation of re-deposition in copper with the aid of atomistic simulations is the main objective of this study. Nevertheless, a computational investigation of SP-ablation and experimental measurement of the SP-ablation depths and threshold fluence are also covered. The applied computational apparatus comprises a combination of molecular dynamics with the two-temperature model and the Helmholtz wave equation. The analysis of the simulation results shows that the derived quantities like the SP-ablation threshold fluence and the ratio of DP ablation depth to SP-ablation depth are in agreement with the experimental values. An important finding of this study is that the characteristics of the re-deposition process are highly dependent on the fluence.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000582798700006 Publication Date 2020-09-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.387 Times cited 2 Open Access Not_Open_Access  
  Notes ; The authors thank the Center for High-Performance Computing at Shahid Beheshti University of Iran (SARMAD) for making available the computational resources required for this work. ; Approved Most recent IF: 3.387  
  Call Number UA @ admin @ c:irua:174299 Serial 6683  
Permanent link to this record
 

 
Author Obeid, M.M.; Bafekry, A.; Rehman, S.U.; Nguyen, C., V. pdf  doi
openurl 
  Title A type-II GaSe/HfS₂ van der Waals heterostructure as promising photocatalyst with high carrier mobility Type A1 Journal article
  Year 2020 Publication Applied Surface Science Abbreviated Journal Appl Surf Sci  
  Volume 534 Issue Pages 147607  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In this paper, the electronic, optical, and photocatalytic properties of GaSe/HfS2 heterostructure are studied via first-principles calculations. The stability of the vertically stacked heterobilayers is validated by the binding energy, phonon spectrum, and ab initio molecular dynamics simulation. The results reveal that the most stable GaSe/HfS2 heterobilayer retains a type-II alignment with an indirect bandgap 1.40 eV. As well, the results also show strong optical absorption intensity in the studied heterostructure (1.8 x 10(5) cm(-1)). The calculated hole mobility is 1376 cm(2) V-1 s(-1), while electron mobility reaches 911 cm(2) V-1 s(-1) along the armchair and zigzag directions. By applying an external electric field, the bandgap and band offset of the designed heterostructure can be effectively modified. Remarkably, a stronger external electric field can create nearly free electron states in the vicinity of the bottom of the conduction band, which induces indirect-to-direct bandgap transition as well as a semiconductor-to-metal transition. In contrast, the electronic properties of GaSe/HfS2 heterostructure are predicted to be insensitive to biaxial strain. The current work reveals that GaSe/HfS2 heterostructure is a promising candidate as a novel photocatalytic material for hydrogen generation in the visible range.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000582367700045 Publication Date 2020-08-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.7 Times cited 4 Open Access  
  Notes ; ; Approved Most recent IF: 6.7; 2020 IF: 3.387  
  Call Number UA @ admin @ c:irua:174301 Serial 6682  
Permanent link to this record
 

 
Author Baskurt, M.; Eren, I.; Yagmurcukardes, M.; Sahin, H. pdf  doi
openurl 
  Title Vanadium dopant- and strain-dependent magnetic properties of single-layer VI₃ Type A1 Journal article
  Year 2020 Publication Applied Surface Science Abbreviated Journal Appl Surf Sci  
  Volume 508 Issue Pages 144937-6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Motivated by the recent synthesis of two-dimensional VI3 [Kong et al. Adv. Mater. 31, 1808074 (2019)], we investigate the effect of V doping on the magnetic and electronic properties of monolayer VI3 by means of first-principles calculations. The dynamically stable semiconducting ferromagnetic (FM) and antiferromagnetic (AFM) phases of monolayer VI3 are found to display distinctive vibrational features that the magnetic state can be distinguished by Raman spectroscopy. In order to clarify the effect of experimentally observed excessive V atoms, the magnetic and electronic properties of the V-doped VI3 structures are analyzed. Our findings indicate that partially doped VI3 structures display FM ground state while the fully-doped structure exhibits AFM ground state. The fully-doped monolayer VI3 is found to be a semiconductor with a relatively larger band gap than its pristine structure. In addition, strain-dependent electronic and magnetic properties of fully- and partially-doped VI3 structures reveal that pristine monolayer displays a FM-to-AFM phase transition with robust semiconducting nature for 5% of compressive strain, while fully-doped monolayer VI3 structure possesses AFM-to-FM semiconducting transition at tensile strains larger than 4%. In contrast, the partially-doped VI3 monolayers are found to display robust FM ground state under biaxial strain. Its dopant and strain tunable electronic and magnetic nature makes monolayer VI3 a promising material for applications in nanoscale spintronic devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000516818700040 Publication Date 2019-12-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.7 Times cited 10 Open Access  
  Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. Acknowledges financial support from the TUBITAK under the project number 117F095. H.S. acknowledges support from Turkish Academy of Sciences under the GEBIP program. This work is supported by the Flemish Science Foundation (FWO-Vl) by a postdoctoral fellowship (M.Y.). ; Approved Most recent IF: 6.7; 2020 IF: 3.387  
  Call Number UA @ admin @ c:irua:168595 Serial 6652  
Permanent link to this record
 

 
Author Siriwardane, E.M.D.; Karki, P.; Sevik, C.; Cakir, D. doi  openurl
  Title Electronic and mechanical properties of stiff rhenium carbide monolayers: A first-principles investigation Type A1 Journal article
  Year 2018 Publication Applied surface science Abbreviated Journal  
  Volume 458 Issue Pages 762-768  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In this study, we predicted two new stable metallic Re-C based monolayer structures with a rectangular (r-ReC2) and a hexagonal (h-Re2C) crystal symmetry using first-principle calculations based on density functional theory. Our results obtained from mechanical and phonon calculations and high-temperature molecular dynamic simulations clearly proved the stability of these two-dimensional (2D) crystals. Interestingly, Re-C monolayers in common transition metal carbide structures (i.e. MXenes) were found to be unstable, contrary to expectations. We found that the stable structures, i.e. r-ReC2 and h-Re2C, display superior mechanical properties over the well-known 2D materials. The Young's modulus for r-ReC2 and h-Re2C are extremely high and were calculated as 351 (1310) and 617 (804) N/m (GPa), respectively. Both materials have larger Young's modulus values than the most of the well-known 2D materials. We showed that the combination of the short strong directional p-d bonds, the high coordination number of atoms in the unit-cell and high valence electron density result in strong mechanical properties. Due to its crystal structure, the r-ReC2 monolayer has anisotropic mechanical properties and the crystallographic direction parallel to the C-2 dimers is stiffer compared to perpendicular direction due to strong covalent bonding within C-2 dimers. h-Re2C was derived from the corresponding bulk structure for which we determined the critical thickness for the dynamically stable bulk-derived monolayer structures. In addition, we also investigated the electronic of these two stable structures. Both exhibit metallic behavior and Re-5d orbitals dominate the states around the Fermi level. Due to their ultra high mechanical stability and stiffness, these novel Re-C monolayers can be exploited in various engineering applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000441400000088 Publication Date 2018-07-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:193776 Serial 7875  
Permanent link to this record
 

 
Author Aydin, H.; Bacaksiz, C.; Yagmurcukardes, N.; Karakaya, C.; Mermer, O.; Can, M.; Senger, R.T.; Sahin, H.; Selamet, Y. doi  openurl
  Title Experimental and computational investigation of graphene/SAMs/n-Si Schottky diodes Type A1 Journal article
  Year 2018 Publication Applied Surface Science Abbreviated Journal Appl Surf Sci  
  Volume 428 Issue 428 Pages 1010-1017  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We have investigated the effect of two different self-assembled monolayers (SAMs) on electrical characteristics of bilayer graphene (BLG)/n-Si Schottky diodes. Novel 4“bis(diphenylamino)-1, 1':3”-terpheny1-5' carboxylic acids (TPA) and 4,4-di-9H-carbazol-9-y1-1,1':3'1'-terpheny1-5' carboxylic acid (CAR) aromatic SAMs have been used to modify n-Si surfaces. Cyclic voltammetry (CV) and Kelvin probe force microscopy (KPFM) results have been evaluated to verify the modification of n-Si surface. The current-voltage (I-V) characteristics of bare and SAMs modified devices show rectification behaviour verifying a Schottky junction at the interface. The ideality factors (n) from ln(I)-V dependences were determined as 2.13,1.96 and 2.07 for BLG/n-Si, BLG/TPA/n-Si and BLG/CAR/n-Si Schottky diodes, respectively. In addition, Schottky barrier height (SBH) and series resistance (Rs) of SAMs modified diodes were decreased compared to bare diode due to the formation of a compatible interface between graphene and Si as well as n-n interaction between aromatic SAMs and graphene. The CAR-based device exhibits better diode characteristic compared to the TPA-based device. Computational simulations show that the BLG/CAR system exhibits smaller energy-level-differences than the BLG/TPA, which supports the experimental findings of a lower Schottky barrier and series resistance in BLG/CAR diode. (C) 2017 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000415227000128 Publication Date 2017-09-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.387 Times cited 2 Open Access  
  Notes ; This work was supported by TUBITAK (The Scientific and Technical Research Council of Turkey) with project number 112T946. We also thank AQuReC (Applied Quantum Research Center) for Raman measurements. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. acknowledges support from Bilim Akademisi The Science Academy, Turkey under the BAGEP program. ; Approved Most recent IF: 3.387  
  Call Number UA @ lucian @ c:irua:154608UA @ admin @ c:irua:154608 Serial 5101  
Permanent link to this record
 

 
Author Peeters, F.M.; Matulis, A.; Ibrahim, I.S. doi  openurl
  Title Two-dimensional electrons in modulated magnetic fields Type A1 Journal article
  Year 1996 Publication Physica: B : condensed matter Abbreviated Journal Physica B  
  Volume 227 Issue Pages 131-137  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos A1996VR71500035 Publication Date 2003-05-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4526; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.319 Times cited 17 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:15811 Serial 3774  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: