|   | 
Details
   web
Records
Author Shanenko, A.A.; Croitoru, M.D.; Peeters, F.M.
Title Superconducting nanofilms: Andreev-type states induced by quantum confinement Type (up) A1 Journal article
Year 2008 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B
Volume 78 Issue 5 Pages 054505,1-054505,8
Keywords A1 Journal article; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)
Abstract Quantum confinement of the transverse electron motion is the major effect governing the superconducting properties of high-quality metallic nanofilms, leading to a nonuniform transverse distribution of the superconducting condensate. In this case the order parameter can exhibit significant local enhancements due to these quantum-size effects and, consequently, quasiparticles have lower energies when they avoid the local enhancements of the pair condensate. Such excitations can be considered as new Andreev-type quasiparticles but now induced by quantum confinement. By numerically solving the Bogoliubovde Gennes equations and using Anderson's approximate solution to these equations, we: (a) formulate a criterion for such new Andreev-type states (NATS) and (b) study their effect on the superconducting characteristics in metallic nanofilms. We also argue that nanofilms made of low-carrier-density materials, e.g., of superconducting semiconductors, can be a more optimal choice for the observations of NATS and other quantum-size superconducting effects.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000259368200109 Publication Date 2008-08-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 14 Open Access
Notes Approved Most recent IF: 3.836; 2008 IF: 3.322
Call Number UA @ lucian @ c:irua:76526 Serial 3356
Permanent link to this record
 

 
Author Chen, Y.; Shanenko, A.A.; Perali, A.; Peeters, F.M.
Title Superconducting nanofilms : molecule-like pairing induced by quantum confinement Type (up) A1 Journal article
Year 2012 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 24 Issue 18 Pages 185701-185701,8
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Quantum confinement of the perpendicular motion of electrons in single-crystalline metallic superconducting nanofilms splits the conduction band into a series of single-electron subbands. A distinctive feature of such a nanoscale multi-band superconductor is that the energetic position of each subband can vary significantly with changing nanofilm thickness, substrate material, protective cover and other details of the fabrication process. It can occur that the bottom of one of the available subbands is situated in the vicinity of the Fermi level. We demonstrate that the character of the superconducting pairing in such a subband changes dramatically and exhibits a clear molecule-like trend, which is very similar to the well-known crossover from the Bardeen-Cooper-Schrieffer regime to Bose-Einstein condensation (BCS-BEC) observed in trapped ultracold fermions. For Pb nanofilms with thicknesses of 4 and 5 monolayers (MLs) this will lead to a spectacular scenario: up to half of all the Cooper pairs nearly collapse, shrinking in the lateral size (parallel to the nanofilm) down to a few nanometers. As a result, the superconducting condensate will be a coherent mixture of almost molecule-like fermionic pairs with ordinary, extended Cooper pairs.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000303500900018 Publication Date 2012-04-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 26 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl). AAS thanks A Bianconi, M D Croitoru and A V Vagov for useful discussions. AAS acknowledges the hospitality and fruitful interactions with G C Strinati, P Pieri and D Neilson during his visit to the University of Camerino, supported by the School of Advanced Studies of the University of Camerino. ; Approved Most recent IF: 2.649; 2012 IF: 2.355
Call Number UA @ lucian @ c:irua:98223 Serial 3357
Permanent link to this record
 

 
Author Croitoru, M.D.; Shanenko, A.A.; Kaun, C.C.; Peeters, F.M.
Title Superconducting nanowires: interplay of discrete transverse modes with supercurrent Type (up) A1 Journal article
Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B
Volume 80 Issue 2 Pages 024513,1-024513,11
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract From a numerical solution of the Bogoliubov-de Gennes equations, we investigate an interplay of the transverse discrete modes with a longitudinal supercurrent in a metallic cylindrical superconducting nanowire. The superconductor-to-normal transition induced by a longitudinal superflow of electrons is found to occur as a cascade of jumps in the order parameter (supercurrent and superfluid density) as a function of the superfluid velocity for diameters d<1015 nm (for Al parameters) and sufficiently low temperatures T<0.30.4Tc, with Tc the critical temperature. When approaching Tc, the jumps are smoothed into steplike but continuous drops. A similar picture occurs for d>1520 nm. Only when the diameter exceeds 5070 nm the quantum-size cascades are fully washed out, and we arrive at the mesoscopic regime. Below this regime the critical current density jc exhibits the quantum-size oscillations with pronounced resonant enhancements: the smaller the diameter, the more significant is the enhancement. Thickness fluctuations of real samples will smooth out such oscillations into an overall growth of jc with decreasing nanowire diameter.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000268617500092 Publication Date 2009-07-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 21 Open Access
Notes Approved Most recent IF: 3.836; 2009 IF: 3.475
Call Number UA @ lucian @ c:irua:77949 Serial 3358
Permanent link to this record
 

 
Author Chen, Y.; Croitoru, M.D.; Shanenko, A.A.; Peeters, F.M.
Title Superconducting nanowires: quantum confinement and spatially dependent Hartree-Fock potential Type (up) A1 Journal article
Year 2009 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 21 Issue 43 Pages 435701,1-435701,7
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract It is well known that, in bulk, the solution of the Bogoliubovde Gennes equations is the same whether or not the HartreeFock term is included. Here the HartreeFock potential is position independent and so gives the same contribution to both the single-electron energies and the Fermi level (the chemical potential). Thus, the single-electron energies measured from the Fermi level (they control the solution) stay the same. This is not the case for nanostructured superconductors, where quantum confinement breaks the translational symmetry and results in a position-dependent HartreeFock potential. In this case its contribution to the single-electron energies depends on the relevant quantum numbers. We numerically solved the Bogoliubovde Gennes equations with the HartreeFock term for a clean superconducting nanocylinder and found a shift of the curve representing the thickness-dependent oscillations of the critical superconducting temperature to larger diameters.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000270642700012 Publication Date 2009-10-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 12 Open Access
Notes Approved Most recent IF: 2.649; 2009 IF: 1.964
Call Number UA @ lucian @ c:irua:79162 Serial 3360
Permanent link to this record
 

 
Author Roditchev, D.; Brun, C.; Serrier-Garcia, L.; Cuevas, J.C.; Bessa, V.H.L.; Milošević, M.V.; Debontridder, F.; Stolyarov, V.; Cren, T.
Title Direct observation of Josephson vortex cores Type (up) A1 Journal article
Year 2015 Publication Nature physics Abbreviated Journal Nat Phys
Volume 11 Issue 11 Pages 332-337
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Superconducting correlations may propagate between two superconductors separated by a tiny insulating or metallic barrier, allowing a dissipationless electric current to flow(1,2). In the presence of a magnetic field, the maximum supercurrent oscillates(3) and each oscillation corresponding to the entry of one Josephson vortex into the barrier(4). Josephson vortices are conceptual blocks of advanced quantum devices such as coherent terahertz generators(5) or qubits for quantum computing(6), in which on-demand generation and control is crucial. Here, we map superconducting correlations inside proximity Josephson junctions(7) using scanning tunnelling microscopy. Unexpectedly, we find that such Josephson vortices have real cores, in which the proximity gap is locally suppressed and the normal state recovered. By following the Josephson vortex formation and evolution we demonstrate that they originate from quantum interference of Andreev quasiparticles(8), and that the phase portraits of the two superconducting quantum condensates at edges of the junction decide their generation, shape, spatial extent and arrangement. Our observation opens a pathway towards the generation and control of Josephson vortices by applying supercurrents through the superconducting leads of the junctions, that is, by purely electrical means without any need for a magnetic field, which is a crucial step towards high-density on-chip integration of superconducting quantum devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000352163100016 Publication Date 2015-02-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1745-2473;1745-2481; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 22.806 Times cited 102 Open Access
Notes T.C., C.B., F.D., V.S. and D.R. acknowledge financial support from the French ANR project and the French-Russian program PICS-CNRS/RAS. The authors also thank V. Cherkez for assistance during experiments and V. Vinokur (Argonne National Laboratory, Illinois USA) and A. Buzdin (University of Bordeaux 1, France) for stimulating discussions. J.C.C. acknowledges financial support from the Spanish MICINN (Contract No. FIS2011-28851-C1). V.H.L.B. acknowledges support from CNPq Brazil and productive discussions with Prof. A. Chaves (UFC, Brazil). M.V.M. acknowledges support from Research Foundation Flanders (FWO-Vlaanderen) and CAPES Brazil (PVE project BEX1392/11-5). Approved Most recent IF: 22.806; 2015 IF: 20.147
Call Number c:irua:132524 c:irua:132524 Serial 3943
Permanent link to this record
 

 
Author Croitoru, M.D.; Shanenko, A.A.; Peeters, F.M.
Title Superconducting nanowires: quantum-confinement effect on the critical magnetic field and supercurrent Type (up) A1 Journal article
Year 2009 Publication International journal of modern physics: B: condensed matter physics, statistical physics, applied physics T2 – 32nd International Workshop on Condensed Matter Theories, Aug 12-19, 2008, Loughborough Univ, Loughborough, England Abbreviated Journal Int J Mod Phys B
Volume 23 Issue 20-21 Pages 4257-4268
Keywords A1 Journal article; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)
Abstract We study the effect of electron confinement on the superconducting-to-normal phase transition driven by a magnetic field and/or on the current-carrying state of the superconducting condensate in nanowires. Our investigation is based on a self-consistent numerical solution of the Bogoliubov-de Gennes equations. We show that in a parallel magnetic field and/or in the presence of supercurrent the transition from superconducting to normal phase occurs as a cascade of discontinuous jumps in the superconducting order parameter for diameters D < 10 divided by 15 nm at T = 0. The critical magnetic field exhibits quantum-size oscillations with pronounced resonant enhancements.
Address
Corporate Author Thesis
Publisher World scientific Place of Publication Singapore Editor
Language Wos 000274525500026 Publication Date 2009-09-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0217-9792;1793-6578; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.736 Times cited 1 Open Access
Notes Approved Most recent IF: 0.736; 2009 IF: 0.408
Call Number UA @ lucian @ c:irua:95673 Serial 3362
Permanent link to this record
 

 
Author Baelus, B.J.; Yampolskii, S.V.; Peeters, F.M.; Montevecchi, E.; Indekeu, J.O.
Title Superconducting properties of mesoscopic cylinders with enhanced surface superconductivity Type (up) A1 Journal article
Year 2002 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 65 Issue 2 Pages 024510-10
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The superconducting state of an infinitely long superconducting cylinder surrounded by a medium which enhances its superconductivity near the boundary is studied within the nonlinear Ginzburg-Landau theory. This enhancement can be due to the proximity of another superconductor or due to surface treatment. Quantities such as the free energy, the magnetization and the Cooper-pair density are calculated. Phase diagrams are obtained to investigate how the critical field and the critical temperature depend on this surface enhancement for different values of the Ginzburg-Landau parameter kappa. Increasing the superconductivity near the surface leads to higher critical fields and critical temperatures. For small cylinder diameters only giant vortex states nucleate, while for larger cylinders multivortices can nucleate. The stability of these multivortex states also depends on the surface enhancement. For type-I superconductors we found the remarkable result that for a range of values of the surface extrapolation length the superconductor can transit from the Meissner state into superconducting states with vorticity L > 1. Such a behavior is not found for the case of large kappa, i.e., type-II superconductivity,
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000173213100099 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 13 Open Access
Notes Approved Most recent IF: 3.836; 2002 IF: NA
Call Number UA @ lucian @ c:irua:103890 Serial 3363
Permanent link to this record
 

 
Author Covaci, L.; Peeters, F.M.
Title Superconducting proximity effect in graphene under inhomogeneous strain Type (up) A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 84 Issue 24 Pages 241401-241401,4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The interplay between quantum Hall states and Cooper pairs is usually hindered by the suppression of the superconducting state due to the strong magnetic fields needed to observe the quantum Hall effect. From this point of view, graphene is special since it allows the creation of strong pseudomagnetic fields due to strain. We show that in a Josephson junction made of strained graphene, Cooper pairs will diffuse into the strained region. The pair correlation function will be sublattice polarized due to the polarization of the local density of states in the zero pseudo-Landau level. We uncover two regimes: (1) one in which the cyclotron radius is larger than the junction length, in which case the supercurrent will be enhanced, and (2) the long junction regime where the supercurrent is strongly suppressed because the junction becomes an insulator. In the latter case quantized Hall states form and Andreev scattering at the normal/superconducting interface will induce edge states. Our numerical calculation has become possible due to an extension of the Chebyshev-Bogoliubovde Gennes method to computations on video cards (GPUs).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000297766600003 Publication Date 2011-12-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 27 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Euro GRAPHENE project CONGRAN. Discussions with Andrey Chaves are gratefully acknowledged. ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:93962 Serial 3364
Permanent link to this record
 

 
Author Vodolazov, D.Y.; Peeters, F.M.
Title Superconducting rectifier based on the asymmetric surface barrier effect Type (up) A1 Journal article
Year 2005 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 72 Issue 17 Pages 172508,1-4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000233603500030 Publication Date 2005-11-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 32 Open Access
Notes Approved Most recent IF: 3.836; 2005 IF: 3.185
Call Number UA @ lucian @ c:irua:56049 Serial 3365
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Baelus, B.J.; Milošević, M.V.; Peeters, F.M.
Title The superconducting state in square mesoscopic samples with two and four antidots Type (up) A1 Journal article
Year 2004 Publication Physica: C : superconductivity Abbreviated Journal Physica C
Volume 404 Issue Pages 56-60
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000221211500012 Publication Date 2004-02-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.404 Times cited 3 Open Access
Notes Approved Most recent IF: 1.404; 2004 IF: 1.072
Call Number UA @ lucian @ c:irua:44978 Serial 3367
Permanent link to this record
 

 
Author Chen, Y.; Shanenko, A.A.; Peeters, F.M.
Title Superconducting transition temperature of Pb nanofilms : impact of thickness-dependent oscillations of the phonon-mediated electron-electron coupling Type (up) A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 85 Issue 22 Pages 224517-224517,6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract To date, several experimental groups reported measurements of the thickness dependence of T-c of atomically uniform single-crystalline Pb nanofilms. The reported amplitude of the T-c oscillations varies significantly from one experiment to another. Here we propose that the reason for this unresolved issue is an interplay of the quantum-size variations in the single-electron density of states with thickness-dependent oscillations in the phonon-mediated electron-electron coupling. Such oscillations in the coupling depend on the substrate material, the quality of the interface, the protection cover, and other details of the fabrication process, changing from one experiment to another. This explains why the available data do not exhibit one-voice consistency about the amplitude of the T-c oscillations. Our analyses are based on a numerical solution of the Bogoliubov-de Gennes equations for a superconducting slab.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000305251300006 Publication Date 2012-06-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 24 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:99076 Serial 3368
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Milošević, M.V.; Baelus, B.J.; Peeters, F.M.
Title Superconducting vortex state in a mesoscopic disk containing a blind hole Type (up) A1 Journal article
Year 2004 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 70 Issue Pages 024508,1-15
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000222996600068 Publication Date 2004-07-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 39 Open Access
Notes Approved Most recent IF: 3.836; 2004 IF: 3.075
Call Number UA @ lucian @ c:irua:57250 Serial 3369
Permanent link to this record
 

 
Author Milošević, M.V.; Peeters, F.M.
Title Superconducting Wigner vortex molecule near a magnetic disk Type (up) A1 Journal article
Year 2003 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 68 Issue Pages 024509,1-4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000185229500079 Publication Date 2003-07-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 69 Open Access
Notes Approved Most recent IF: 3.836; 2003 IF: NA
Call Number UA @ lucian @ c:irua:44983 Serial 3370
Permanent link to this record
 

 
Author Nikolaev, A.V.; Michel, K.H.
Title Superexchange and electron correlations in alkali fullerides AC60, A=K, Rb, Cs Type (up) A1 Journal article
Year 2005 Publication The journal of chemical physics Abbreviated Journal J Chem Phys
Volume 122 Issue 6 Pages 064310-64314
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Superexchange interactions in alkali fullerides AC(60) are derived for C-60 molecular ions separated by interstitial alkali-metal ions. We use a multiconfiguration approach which comprises the lowest molecular orbital states of the C-60 molecule and the excited s and d states of the alkali-metal atom A. Interactions are described by the valence bond (Heitler-London) method for a complex (C-60 – A – C-60) – with two valence electrons. The electronic charge transfer between the alkali-metal atom and a neighboring C-60 molecule is not complete. The occupation probability of excited d and s states of the alkali atom is not negligible. In correspondence with the relative positions of the C-60 molecules and A atoms in the polymer crystal, we consider 180degrees and 90degrees (angle) superexchange pathways. For the former case the ground state is found to be a spin singlet separated from a triplet at similar to20 K. For T < 20 K there appear strong spin correlations for the 180degrees superexchange pathway. The results are related to spin lattice relaxation experiments on CsC60 in the polymerized and in the quenched cubic phase. (C) 2005 American Institute of Physics.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000226918100018 Publication Date 2005-02-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-9606; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.965 Times cited 11 Open Access
Notes Approved Most recent IF: 2.965; 2005 IF: 3.138
Call Number UA @ lucian @ c:irua:102740 Serial 3377
Permanent link to this record
 

 
Author Toledano-Luque, M.; Matagne, P.; Sibaja-Hernandez, A.; Chiarella, T.; Ragnarsson, L.-A.; Sorée, B.; Cho, M.; Mocuta, A.; Thean, A.
Title Superior reliability of junctionless pFinFETs by reduced oxide electric field Type (up) A1 Journal article
Year 2014 Publication IEEE electron device letters Abbreviated Journal Ieee Electr Device L
Volume 35 Issue 12 Pages 1179-1181
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Superior reliability of junctionless (JL) compared with inversion-mode field-effect transistors (FETs) is experimentally demonstrated on bulk FinFET wafers. The reduced negative bias temperature instability (NBTI) of JL pFETs outperforms the previously reported best NBTI reliability data obtained with Si channel devices and guarantees 10-year lifetime at typical operating voltages and high temperature. This behavior is understood through the reduced oxide electric field and lessened interaction between charge carriers and oxide traps during device operation. These findings encourage the investigation of JL devices with alternative channels as a promising alternative for 7-nm technology nodes meeting reliability targets.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000345575400006 Publication Date 2014-10-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0741-3106;1558-0563; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.048 Times cited 13 Open Access
Notes ; This work was supported by the imec's Core Partner Program. The review of this letter was arranged by Editor J. Schmitz. ; Approved Most recent IF: 3.048; 2014 IF: 2.754
Call Number UA @ lucian @ c:irua:122192 Serial 3378
Permanent link to this record
 

 
Author Michel, K.H.; Verberck, B.; Hulman, M.; Kuzmany, H.; Krause, M.
Title Superposition of quantum and classical rotational motions in Sc2C2@C84 fullerite Type (up) A1 Journal article
Year 2007 Publication The journal of chemical physics Abbreviated Journal J Chem Phys
Volume 126 Issue 6 Pages 064304,1-15
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000244250200008 Publication Date 2007-02-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-9606; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.965 Times cited 14 Open Access
Notes Approved Most recent IF: 2.965; 2007 IF: 3.044
Call Number UA @ lucian @ c:irua:63628 Serial 3381
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Cabral, L.R.E.; Peeters, F.M.
Title Surface barrier for flux entry and exit in mesoscopic superconducting systems Type (up) A1 Journal article
Year 2005 Publication Journal of mathematical physics Abbreviated Journal J Math Phys
Volume 46 Issue 9 Pages 095105
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The energy barrier which has to be overcome for a single vortex to enter or exit the sample is studied for thin superconducting disks, rings, and squares using the nonlinear Ginzburg-Landau theory. The shape and the height of the nucleation barrier is investigated for different sample radii and thicknesses and for different values of the Ginzburg-Landau parameter kappa. It is shown that the London theory considerably overestimates (underestimates) the energy barrier for vortex expulsion (penetration). (c) 2005 American Institute of Physics.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000232206700005 Publication Date 2005-09-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2488; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.077 Times cited 18 Open Access
Notes Approved Most recent IF: 1.077; 2005 IF: 1.192
Call Number UA @ lucian @ c:irua:103142 Serial 3393
Permanent link to this record
 

 
Author Nasr Esfahani, D.; Covaci, L.; Peeters, F.M.
Title Surface correlation effects in two-band strongly correlated slabs Type (up) A1 Journal article
Year 2014 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 26 Issue 7 Pages 075601-75609
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using an extension of the Gutzwiller approximation for an inhomogeneous system, we study the two-band Hubbard model with unequal band widths for a slab geometry. The aim is to investigate the mutual effect of individual bands on the spatial distribution of quasi-particle weight and charge density, especially near the surface of the slab. The main effect of the difference in band width is the presence of two different length scales corresponding to the quasi-particle profile of each band. This is enhanced in the vicinity of the critical interaction of the narrow band where an orbitally selective Mott transition occurs and a surface dead layer forms for the narrow band. For the doped case, two different regimes of charge transfer between the surface and the bulk of the slab are revealed. The charge transfer from surface/ center to center/ surface depends on both the doping level and the average relative charge accumulated in each band. Such effects could also be of importance when describing the accumulation of charges at the interface between structures made of multi-band strongly correlated materials.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000330719500009 Publication Date 2014-01-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 1 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program of the Flemish government. One of us (LC) is a postdoctoral fellow of the FWO-Vl. ; Approved Most recent IF: 2.649; 2014 IF: 2.346
Call Number UA @ lucian @ c:irua:115723 Serial 3395
Permanent link to this record
 

 
Author Vodolazov, D.Y.; Peeters, F.M.
Title Symmetric and asymmetric states in a mesoscopic superconducting wire in the voltage-driven regime Type (up) A1 Journal article
Year 2007 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 75 Issue 10 Pages 104515,1-4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000245329100092 Publication Date 2007-03-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 6 Open Access
Notes Approved Most recent IF: 3.836; 2007 IF: 3.172
Call Number UA @ lucian @ c:irua:64274 Serial 3400
Permanent link to this record
 

 
Author Geurts, R.; Milošević, M.V.; Peeters, F.M.
Title Symmetric and asymmetric vortex-antivortex molecules in a fourfold superconducting geometry Type (up) A1 Journal article
Year 2006 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 97 Issue 13 Pages 1-4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000240872700054 Publication Date 2006-09-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 54 Open Access
Notes Approved Most recent IF: 8.462; 2006 IF: 7.072
Call Number UA @ lucian @ c:irua:60997 Serial 3401
Permanent link to this record
 

 
Author Verberck, B.
Title Symmetry-adapted rotator functions for molecules in cylindrical confinement Type (up) A1 Journal article
Year 2011 Publication International journal of molecular sciences Abbreviated Journal Int J Mol Sci
Volume 12 Issue 1 Pages 317-333
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We present a general description of the formalism of symmetry-adapted rotator functions (SARFs) for molecules in cylindrical confinement. Molecules are considered as clusters of interaction centers (ICs), can have any symmetry, and can display different types of ICs. Cylindrical confinement can be realized by encapsulation in a carbon nanotube (CNT). The potential energy of a molecule surrounded by a CNT can be calculated by evaluating a limited number of terms of an expansion into SARFs, which offers a significant reduction of the computation time. Optimal molecular orientations can be deduced from the resulting potential energy landscape. Examples, including the case of a molecule with cubic symmetry inside a CNT, are discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000286583400017 Publication Date 2011-01-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1422-0067; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.226 Times cited 1 Open Access
Notes ; ; Approved Most recent IF: 3.226; 2011 IF: NA
Call Number UA @ lucian @ c:irua:88048 Serial 3402
Permanent link to this record
 

 
Author Sommerfeld, P.K.H.; van der Heijden, R.W.; Peeters, F.M.
Title Symmetry breaking of the admittance of a classical two-dimensional electron system in a magnetic field Type (up) A1 Journal article
Year 1996 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 53 Issue Pages R13250-R13253
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos A1996UN90900008 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.736 Times cited 7 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:15795 Serial 3404
Permanent link to this record
 

 
Author Nikolaev, A.V.; Michel, K.H.
Title Symmetry lowering at the structural phase transitions in NpO2 and UO2 Type (up) A1 Journal article
Year 2003 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 68 Issue 5 Pages 054112-054112,7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The structural phase transitions with electric-quadrupole long-range order in NpO2 (Fm (3) over barm-->Pn (3) over barm) and UO2 (Fm (3) over barm-->Pa (3) over bar) are analyzed from a group theoretical point of view. In both cases, the symmetry lowering involves three quadrupolar components belonging to the irreducible representation T-2g (Gamma(5)) of O-h and condensing in a triple-q structure at the X point of the Brillouin zone. The Pa (3) over bar structure is close to Pn (3) over barm, but allows for oxygen displacements. The Pa (3) over bar ordering leads to an effective electrostatic attraction between electronic quadrupoles while the Pn (3) over barm ordering results in a repulsion between them. It is concluded that the Pn (3) over barm structure can be stabilized only through some additional process such as strengthening of the chemical bonding between Np and O. We also derive the relevant structure-factor amplitudes for Pn (3) over barm and Pa (3) over bar, and the effect of domains on resonant x-ray scattering experiments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000185240100038 Publication Date 2003-08-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 15 Open Access
Notes Approved Most recent IF: 3.836; 2003 IF: NA
Call Number UA @ lucian @ c:irua:94847 Serial 3405
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Savel'ev, S.E.; Milošević, M.V.; Kusmartsev, F.V.; Peeters, F.M.
Title Synchronized dynamics of Josephson vortices in artificial stacks of SNS Josephson junctions under both dc and ac bias currents Type (up) A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue 18 Pages 184510-184519
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Nonlinear dynamics of Josephson vortices (fluxons) in artificial stacks of superconducting-normal-superconducting Josephson junctions under simultaneously applied time-periodic ac and constant biasing dc currents is studied using the time dependent Ginzburg-Landau formalism with a Lawrence-Doniach extension. At zero external magnetic field and dc biasing current the resistive state of the system is characterized by periodic nucleation and annihilation of fluxon-antifluxon pairs, relative positions of which are determined by the state of neighboring junctions. Due to the mutual repulsive interaction, fluxons in different junctions move out of phase. Their collective motion can be synchronized by adding a small ac component to the biasing dc current. Coherent motion of fluxons is observed for a broad frequency range of the applied drive. In the coherent state the maximal output voltage, which is proportional to the number of junctions in the stack, is observed near the characteristic frequency of the system determined by the crossing of the fluxons across the sample. However, in this frequency range the dynamically synchronized state has an alternative-a less ordered state with smaller amplitude of the output voltage. Collective behavior of the junctions is strongly affected by the sloped sidewalls of the stack. Synchronization is observed only for weakly trapezoidal cross sections, whereas irregular motion of fluxons is observed for larger slopes of the sample edge.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000319653400007 Publication Date 2013-05-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 10 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-VI) and by EU Marie Curie (Project No. 253057). ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:109643 Serial 3406
Permanent link to this record
 

 
Author Katti, G.; Stucchi, M.; Velenis, D.; Sorée, B.; de Meyer, K.; Dehaene, W.
Title Temperature-dependent modeling and characterization of through-silicon via capacitance Type (up) A1 Journal article
Year 2011 Publication IEEE electron device letters Abbreviated Journal Ieee Electr Device L
Volume 32 Issue 4 Pages 563-565
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract A semianalytical model of the through-silicon via (TSV) capacitance for elevated operating temperatures is derived and verified with electrical measurements. The effect of temperature on the increase in TSV capacitance over different technology parameters is explored, and it is shown that higher oxide thickness reduces the impact of temperature rise on TSV capacitance, while with low doped substrates, which are instrumental for reducing the TSV capacitance, the sensitivity of TSV capacitance to temperature is large and cannot be ignored.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000288664800045 Publication Date 2011-03-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0741-3106;1558-0563; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.048 Times cited 27 Open Access
Notes ; ; Approved Most recent IF: 3.048; 2011 IF: 2.849
Call Number UA @ lucian @ c:irua:89402 Serial 3498
Permanent link to this record
 

 
Author Vodolazov, D.Y.; Peeters, F.M.
Title Temporary cooling of quasiparticles and delay in voltage response of superconducting bridges after abruptly switching on the supercritical current Type (up) A1 Journal article
Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 90 Issue 9 Pages 094504
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We revisit the problem of the dynamic response of a superconducting bridge after abruptly switching on the supercritical current. In contrast to previous theoretical works we take into account spatial gradients and use both the local temperature approach and the kinetic equation for the distribution function of quasiparticles. We find that the temperature dependence of the finite delay time t(d) in the voltage response is model dependent and relatively large t(d) is connected with temporary cooling of quasiparticles during decay of superconducting order parameter vertical bar Delta vertical bar in time. It turns out that the presence of even small inhomogeneities in the bridge or finite length of the homogenous bridge favors a local suppression of vertical bar Delta vertical bar during the dynamic response. It results in a decrease of the delay time, in comparison with the spatially uniform model, due to the diffusion of nonequilibrium quasiparticles from the region with locally suppressed vertical bar Delta vertical bar. In the case when the current density is maximal near the edge of a not very wide bridge the delay time is mainly connected with the time needed for the nucleation (entrance) of the first vortex and t(d) could be tuned by a weak external magnetic field. We also find that a short alternating current pulse (sinusoidlike) with zero time average may result in a nonzero time- averaged voltage response where its sign depends on the phase of the ac current.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000342103600002 Publication Date 2014-09-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 2 Open Access
Notes ; This work was partially supported by the Russian Foundation for Basic Research (Project No. 12-02-00509), by the Ministry of Education and Science of the Russian Federation (the agreement of August 27, 2013, No. 02.B.49.21.0003, between The Ministry of Education and Science of the Russian Federation and Lobachevsky State University of Nizhni Novgorod) and by the European Science Foundation (ESF) within the framework of the activity entitled “Exploring the Physics of Small Devices (EPSD)” (Project No. 4327). ; Approved Most recent IF: 3.836; 2014 IF: 3.736
Call Number UA @ lucian @ c:irua:119908 Serial 3504
Permanent link to this record
 

 
Author Kao, K.-H.; Verhulst, A.S.; Van de Put, M.; Vandenberghe, W.G.; Sorée, B.; Magnus, W.; De Meyer, K.
Title Tensile strained Ge tunnel field-effect transistors: k\cdot p material modeling and numerical device simulation Type (up) A1 Journal article
Year 2014 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 115 Issue 4 Pages 044505-44508
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Group IV based tunnel field-effect transistors generally show lower on-current than III-V based devices because of the weaker phonon-assisted tunneling transitions in the group IV indirect bandgap materials. Direct tunneling in Ge, however, can be enhanced by strain engineering. In this work, we use a 30-band k.p method to calculate the band structure of biaxial tensile strained Ge and then extract the bandgaps and effective masses at Gamma and L symmetry points in k-space, from which the parameters for the direct and indirect band-to-band tunneling (BTBT) models are determined. While transitions from the heavy and light hole valence bands to the conduction band edge at the L point are always bridged by phonon scattering, we highlight a new finding that only the light-holelike valence band is strongly coupling to the conduction band at the Gamma point even in the presence of strain based on the 30-band k.p analysis. By utilizing a Technology Computer Aided Design simulator equipped with the calculated band-to-band tunneling BTBT models, the electrical characteristics of tensile strained Ge point and line tunneling devices are self-consistently computed considering multiple dynamic nonlocal tunnel paths. The influence of field-induced quantum confinement on the tunneling onset is included. Our simulation predicts that an on-current up to 160 (260) mu A/mu m can be achieved along with on/off ratio > 10(6) for V-DD = 0.5V by the n-type (p-type) line tunneling device made of 2.5% biaxial tensile strained Ge. (C) 2014 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000331210800113 Publication Date 2014-01-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979;1089-7550; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 26 Open Access
Notes ; Authors would like to thank Dr. Mohammad Ali Pourghaderi for useful discussions on the nonparabolicity. Authors would also like to thank Professor Eddy Simoen and Dr. Yosuke Shimura for useful discussions about the validity of modeled bandgaps and effective masses. This work was also supported by IMEC's Industrial Affiliation Program. ; Approved Most recent IF: 2.068; 2014 IF: 2.183
Call Number UA @ lucian @ c:irua:115800 Serial 3505
Permanent link to this record
 

 
Author Zhao, C.X.; Xu, W.; Li, L.L.; Zhang, C.; Peeters, F.M.
Title Terahertz plasmon-polariton modes in graphene driven by electric field inside a Fabry-Perot cavity Type (up) A1 Journal article
Year 2015 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 117 Issue 117 Pages 223104
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We present a theoretical study on plasmon-polariton modes in graphene placed inside an optical cavity and driven by a source-to-drain electric field. The electron velocity and electron temperature are determined by solving self-consistently the momentum-and energy-balance equations in which electron interactions with impurities, acoustic-, and optic-phonons are included. Based on many-body self-consistent field theory, we develop a tractable approach to study plasmon-polariton in an electron gas system. We find that when graphene is placed inside a Fabry-Perot cavity, two branches of the plasmon-polariton modes can be observed and these modes are very much optic-or plasmon-like. The frequencies of these modes depend markedly on driving electric field especially at higher resonant frequency regime. Moreover, the plasmon-polariton frequency in graphene is in terahertz (THz) bandwidth and can be tuned by changing the cavity length, gate voltage, and driving electric field. This work is pertinent to the application of graphene-based structures as tunable THz plasmonic devices. (C) 2015 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000356176100004 Publication Date 2015-06-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979;1089-7550; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 13 Open Access
Notes ; This work was supported by the Ministry of Science and Technology of China (Grant No. 2011YQ130018), Department of Science and Technology of Yunnan Province, and by the Chinese Academy of Sciences. F.M.P. was a specially appointed Professor for foreign expert at the Chinese Academy of Sciences. ; Approved Most recent IF: 2.068; 2015 IF: 2.183
Call Number c:irua:127076 Serial 3507
Permanent link to this record
 

 
Author Cao, L.-H.; Yu, W.; Xu, H.; Zheng, C.-Y.; Liu, Z.-J.; Li, B.; Bogaerts, A.
Title Terahertz radiation from oscillating electrons in laser-induced wake fields Type (up) A1 Journal article
Year 2004 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E
Volume 70 Issue Pages 046408,1-7
Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Strong terahertz (1THz=1012Hz) radiation can be generated by the electron oscillation in fs-laser-induced wake fields. The interaction of a fs-laser pulse with a low-density plasma layer is studied in detail using numerical simulations. The spatial distribution and temporal evolution of terahertz electron current developed in a low-density plasma layer are presented, which enables us to calculate the intensity distribution of THz radiation. It is shown that laser and plasma parameters, such as laser intensity, pulse width, and background plasma density, are of key importance to the process. The optimum condition for wake-field excitation and terahertz emission is discussed upon the simulation results. Radiation peaked at 6.4 THz, with 900 fs duration and 9% bandwidth, can be generated in a plasma of density 5×1017cm−3. It turns out that the maximum radiation intensity scales as n03a04 when wake field is resonantly excited, where n0 and a0 are, respectively, the plasma density and the normalized field amplitude of the laser pulse.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000225689600086 Publication Date 2004-10-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 9 Open Access
Notes Approved Most recent IF: 2.366; 2004 IF: NA
Call Number UA @ lucian @ c:irua:49818 Serial 3509
Permanent link to this record
 

 
Author Verberck, B.; Michel, K.H.; Nikolaev, A.V.
Title The C60 molecules in (C60)N@SWCNT peapods: crystal field, intermolecular interactions and dynamics Type (up) A1 Journal article
Year 2006 Publication Fullerenes, nanotubes, and carbon nanostructures Abbreviated Journal Fuller Nanotub Car N
Volume 14 Issue 2/3 Pages 171-178
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000238762900006 Publication Date 2006-06-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1536-383X;1536-4046; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.35 Times cited 10 Open Access
Notes Approved Most recent IF: 1.35; 2006 IF: 0.462
Call Number UA @ lucian @ c:irua:60025 Serial 3518
Permanent link to this record