toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Pizzochero, M.; Leenaerts, O.; Partoens, B.; Martinazzo, R.; Peeters, F.M. pdf  url
doi  openurl
  Title Hydrogen adsorption on nitrogen and boron doped graphene Type A1 Journal article
  Year 2015 Publication (up) Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 27 Issue 27 Pages 425502  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Hydrogen adsorption on boron and nitrogen doped graphene is investigated in detail by means of first-principles calculations. A comprehensive study is performed of the structural, electronic, and magnetic properties of chemisorbed hydrogen atoms and atom pairs near the dopant sites. The main effect of the substitutional atoms is charge doping which is found to greatly affect the adsorption process by increasing the binding energy at the sites closest to the substitutional species. It is also found that doping does not induce magnetism despite the odd number of electrons per atom introduced by the foreign species, and that it quenches the paramagnetic response of chemisorbed H atoms on graphene. Overall, the effects are similar for B and N doping, with only minor differences in the adsorption energetics due to different sizes of the dopant atoms and the accompanying lattice distortions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000362573500008 Publication Date 2015-10-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 20 Open Access  
  Notes This work was supported by the Flemish Science Foundation (FWO-Vl). MP gratefully acknowledges the Condensed Matter Theory group at Universiteit Antwerpen for the hospitality during his stay. Approved Most recent IF: 2.649; 2015 IF: 2.346  
  Call Number c:irua:128759 Serial 3971  
Permanent link to this record
 

 
Author Tomecka, D.M.; Kamieniarz, G.; Partoens, B.; Peeters, F.M. doi  openurl
  Title Ground state configurations and melting of two-dimensional non-uniformly charged classical clusters Type A1 Journal article
  Year 2009 Publication (up) Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 21 Issue 15 Pages 155301,1-155301,7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We consider classical two-dimensional (2D) Coulomb clusters consisting of two species containing five particles with charge q1 and five with charge q2, respectively. Using Monte Carlo and molecular dynamics (MD) simulations, we investigated the ground state configurations as well as radial and angular displacements of particles as a function of temperature and their dependence on the ratio q = q2/q1. We found new configurations and a new multi-step melting behavior for q sufficiently different from the uniform charge limit q = 1.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000264708600007 Publication Date 2009-03-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 2 Open Access  
  Notes Approved Most recent IF: 2.649; 2009 IF: 1.964  
  Call Number UA @ lucian @ c:irua:76412 Serial 1384  
Permanent link to this record
 

 
Author Kishore, V.V.R.; Čukarić, N.; Partoens, B.; Tadić, M.; Peeters, F.M. pdf  doi
openurl 
  Title Hole subbands in freestanding nanowires : six-band versus eight-band k.p modelling Type A1 Journal article
  Year 2012 Publication (up) Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 24 Issue 13 Pages 135302-135302,10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The electronic structure of GaAs, InAs and InSb nanowires is studied using the six-band and the eight-band k.p models. The effect of the different Luttinger-like parameters (in the eight-band model) on the hole band structure is investigated. Although GaAs nanostructures are often treated within a six-band model because of the large bandgap, it is shown that an eight-band model is necessary for a correct description of its hole spectrum. The camel-back structure usually found in the six-band model is not always present in the eight-band model. This camel-back structure depends on the interaction between light and heavy holes, especially the ones with opposite spin. The latter effect is less pronounced in an eight-band model, but could be very sensitive to the Kane inter-band energy (E-P) value.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000302120100007 Publication Date 2012-03-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 13 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), Belgian Science Policy (IAP) and the Ministry of Education and Science of Serbia. ; Approved Most recent IF: 2.649; 2012 IF: 2.355  
  Call Number UA @ lucian @ c:irua:97763 Serial 1479  
Permanent link to this record
 

 
Author Dabaghmanesh, S.; Saniz, R.; Amini, M.N.; Lamoen, D.; Partoens, B. pdf  doi
openurl 
  Title Perovskite transparent conducting oxides : an ab initio study Type A1 Journal article
  Year 2013 Publication (up) Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 25 Issue 41 Pages 415503  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We present an ab initio study of the electronic structure and of the formation energies of various point defects in BaSnO3 and SrGeO3. We show that La and Y impurities substituting Ba or Sr are shallow donors with a preferred 1 + charge state. These defects have a low formation energy within all the suitable equilibrium growth conditions considered. Oxygen vacancies behave as shallow donors as well, preferring the 2 + charge state. Their formation energies, however, are higher in most growth conditions, indicating a limited contribution to conductivity. The calculated electron effective mass in BaSnO3, with a value of 0.21 me, and the very high mobility reported recently in La-doped BaSnO3 single-crystals, suggest that remarkably low scattering rates can be achieved in the latter. In the case of SrGeO3, our results point to carrier density and mobility values in the low range for typical polycrystalline TCOs, in line with experiment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000324920400011 Publication Date 2013-09-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 17 Open Access  
  Notes FWO;Hercules Approved Most recent IF: 2.649; 2013 IF: 2.223  
  Call Number UA @ lucian @ c:irua:110495 Serial 2574  
Permanent link to this record
 

 
Author Dixit, H.; Lamoen, D.; Partoens, B. pdf  doi
openurl 
  Title Quasiparticle band structure of rocksalt-CdO determined using maximally localized Wannier functions Type A1 Journal article
  Year 2013 Publication (up) Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 25 Issue 3 Pages 035501-35505  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract CdO in the rocksalt structure is an indirect band gap semiconductor. Thus, in order to determine its band gap one needs to calculate the complete band structure. However, in practice, the exact evaluation of the quasiparticle band structure for the large number of k-points which constitute the different symmetry lines in the Brillouin zone can be an extremely demanding task compared to the standard density functional theory (DFT) calculation. In this paper we report the full quasiparticle band structure of CdO using a plane-wave pseudopotential approach. In order to reduce the computational effort and time, we make use of maximally localized Wannier functions (MLWFs). The MLWFs offer a highly accurate method for interpolation of the DFT or GW band structure from a coarse k-point mesh in the irreducible Brillouin zone, resulting in a much reduced computational effort. The present paper discusses the technical details of the scheme along with the results obtained for the quasiparticle band gap and the electron effective mass.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000313100500010 Publication Date 2012-12-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 7 Open Access  
  Notes Fwo Approved Most recent IF: 2.649; 2013 IF: 2.223  
  Call Number UA @ lucian @ c:irua:105296 Serial 2801  
Permanent link to this record
 

 
Author Dixit, H.; Saniz, R.; Lamoen, D.; Partoens, B. pdf  doi
openurl 
  Title The quasiparticle band structure of zincblende and rocksalt ZnO Type A1 Journal article
  Year 2010 Publication (up) Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 22 Issue 12 Pages 125505,1-125505,7  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract We present the quasiparticle band structure of ZnO in its zincblende (ZB) and rocksalt (RS) phases at the Γ point, calculated within the GW approximation. The effect of the pd hybridization on the quasiparticle corrections to the band gap is discussed. We compare three systems, ZB-ZnO which shows strong pd hybridization and has a direct band gap, RS-ZnO which is also hybridized but includes inversion symmetry and therefore has an indirect band gap, and ZB-ZnS which shows a weaker hybridization due to a change of the chemical species from oxygen to sulfur. The quasiparticle corrections are calculated with different numbers of valence electrons in the Zn pseudopotential. We find that the Zn20 + pseudopotential is essential for the adequate treatment of the exchange interaction in the self-energy. The calculated GW band gaps are 2.47 eV and 4.27 eV respectively, for the ZB and RS phases. The ZB-ZnO band gap is underestimated compared to the experimental value of 3.27 by ~ 0.8 eV. The RS-ZnO band gap compares well with the experimental value of 4.5 eV. The underestimation for ZB-ZnO is correlated with the strong pd hybridization. The GW band gap for ZnS is 3.57 eV, compared to the experimental value of 3.8 eV.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000275496600010 Publication Date 2010-03-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 53 Open Access  
  Notes Iwt; Fwo; Bof-Nio Approved Most recent IF: 2.649; 2010 IF: 2.332  
  Call Number UA @ lucian @ c:irua:81531 Serial 2802  
Permanent link to this record
 

 
Author Sivek, J.; Sahin, H.; Partoens, B.; Peeters, F.M. pdf  doi
openurl 
  Title Giant magnetic anisotropy in doped single layer molybdenum disulfide and fluorographene Type A1 Journal article
  Year 2016 Publication (up) Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 28 Issue 28 Pages 195301  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Stable monolayer materials based on existing, well known and stable two-dimensional crystal fluorographene and molybdenum disulfide are predicted to exhibit a huge magnetocrystalline anisotropy when functionalized with adsorbed transition metal atoms at vacant sides. Ab initio calculations within the density-functional theory formalism were performed to investigate the adsorption of the transitional metals in a single S (or F) vacancy of monolayer molybdenum disulfide (or fluorographene). We found strong bonding of the transitional metal atoms to the vacant sites with binding energies ranging from 2.5 to 5.2 eV. Our calculations revealed that these systems with adsorbed metal atoms exhibit a magnetic anisotropy, specifically the structures including Os and Ir show a giant magnetocrystalline anisotropy energy of 31-101 meV. Our results demonstrate the possibility of obtaining stable monolayer materials with huge magnetocrystalline anisotropy based on preexisting, well known and stable two-dimensional crystals: fluorographene and molybdenum disulfide. We believe that the results obtained here are useful not only for deeper understanding of the origin of magnetocrystalline anisotropy but also for the design of monolayer optoelectronic devices with novel functionalities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000374394700007 Publication Date 2016-04-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 7 Open Access  
  Notes Approved Most recent IF: 2.649  
  Call Number UA @ lucian @ c:irua:133611 Serial 4185  
Permanent link to this record
 

 
Author Cukaric, N.A.; Partoens, B.; Tadic, M.Z.; Arsoski, V.V.; Peeters, F.M. pdf  doi
openurl 
  Title The 30-band k . p theory of valley splitting in silicon thin layers Type A1 Journal article
  Year 2016 Publication (up) Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 28 Issue 28 Pages 195303  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The valley splitting of the conduction-band states in a thin silicon-on-insulator layer is investigated using the 30-band k . p theory. The system composed of a few nm thick Si layer embedded within thick SiO2 layers is analyzed. The valley split states are found to cross periodically with increasing quantum well width, and therefore the energy splitting is an oscillatory function of the quantum well width, with period determined by the wave vector K-0 of the conduction band minimum. Because the valley split states are classified by parity, the optical transition between the ground hole state and one of those valley split conduction band states is forbidden. The oscillations in the valley splitting energy decrease with electric field and with smoothing of the composition profile between the well and the barrier by diffusion of oxygen from the SiO2 layers to the Si quantum well. Such a smoothing also leads to a decrease of the interband transition matrix elements. The obtained results are well parametrized by the effective two-valley model, but are found to disagree from previous 30-band calculations. This discrepancy could be traced back to the fact that the basis for the numerical solution of the eigenproblem must be restricted to the first Brillouin zone in order to obtain quantitatively correct results for the valley splitting.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000374394700009 Publication Date 2016-04-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.649 Times cited Open Access  
  Notes ; This work was supported by the Ministry of Education, Science, and Technological Development of Serbia, the Flemish fund for Scientific Research (FWO-Vl), and the Methusalem programme of the Flemish government. ; Approved Most recent IF: 2.649  
  Call Number UA @ lucian @ c:irua:133610 Serial 4261  
Permanent link to this record
 

 
Author Peelaers, H.; Durgun, E.; Partoens, B.; Bilc, D.I.; Ghosez, P.; Van de Walle, C.G.; Peeters, F.M. pdf  doi
openurl 
  Title Ab initio study of hydrogenic effective mass impurities in Si nanowires Type A1 Journal article
  Year 2017 Publication (up) Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 29 Issue 29 Pages 095303  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The effect of B and P dopants on the band structure of Si nanowires is studied using electronic structure calculations based on density functional theory. At low concentrations a dispersionless band is formed, clearly distinguishable from the valence and conduction bands. Although this band is evidently induced by the dopant impurity, it turns out to have purely Si character. These results can be rigorously analyzed in the framework of effective mass theory. In the process we resolve some common misconceptions about the physics of hydrogenic shallow impurities, which can be more clearly elucidated in the case of nanowires than would be possible for bulk Si. We also show the importance of correctly describing the effect of dielectric confinement, which is not included in traditional electronic structure calculations, by comparing the obtained results with those of G(0)W(0) calculations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000395103900002 Publication Date 2017-01-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 1 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the NSF MRSEC Program under award No. DMR11-21053, and the Army Research Office (W911NF-13-1-0380). DIB acknowledges financial support from the grant of the Romanian National Authority for Scientific Research, CNCS UEFISCDI, project No. PN-II-RU-TE-2011-3-0085. Ph G acknowledges a research professorship of the Francqui foundation and financial support of the ARC project AIMED and FNRS project HiT4FiT. This research used resources of the Ceci HPC Center funded by F R S-FNRS (Grant No. 2.5020.1) and of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. ; Approved Most recent IF: 2.649  
  Call Number UA @ lucian @ c:irua:142447 Serial 4584  
Permanent link to this record
 

 
Author Leenaerts, O.; Partoens, B.; Peeters, F.M.; Volodin, A.; van Haesendonck, C. pdf  doi
openurl 
  Title The work function of few-layer graphene Type A1 Journal article
  Year 2017 Publication (up) Journal of physics : condensed matter Abbreviated Journal  
  Volume 29 Issue 3 Pages 035003  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A theoretical and experimental study of the work function of few-layer graphene is reported. The influence of the number of layers on the work function is investigated in the presence of a substrate, a molecular dipole layer, and combinations of the two. The work function of few-layer graphene is almost independent of the number of layers with only a difference between monolayer and multilayer graphene of about 60 meV. In the presence of a charge-donating substrate the charge distribution is found to decay exponentially away from the substrate and this is directly reflected in the work function of few-layer graphene. A dipole layer changes the work function only when placed in between the substrate and few-layer graphene through a change of the charge transfer between the two.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000425250600002 Publication Date 2016-11-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 61 Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:164938 Serial 8760  
Permanent link to this record
 

 
Author Saniz, R.; Vercauteren, S.; Lamoen, D.; Partoens, B.; Barbiellini, B. pdf  doi
openurl 
  Title Accurate description of the van der Waals interaction of an electron-positron pair with the surface of a topological insulator Type P1 Proceeding
  Year 2014 Publication (up) Journal of physics : conference series Abbreviated Journal  
  Volume 505 Issue Pages 012002  
  Keywords P1 Proceeding; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract Positrons can be trapped in localized states at the surface of a material, and thus quite selectively interact with core or valence surface electrons. Hence, advanced surface positron spectroscopy techniques can present the ideal tools to study a topological insulator, where surface states play a fundamental role. We analyze the problem of a positron at a TI surface, assuming that it is a weakly physisorbed positronium (Ps) atom. To determine if the surface of interest in a material can sustain such a physisorption, an accurate description of the underlying van der Waals (vdW) interaction is essential. We have developed a first-principles parameterfree method, based on the density functional theory, to extract key parameters determining the vdW interaction potential between a Ps atom and the surface of a given material. The method has been successfully applied to quartz and preliminary results on Bi2Te2Se indicate the existence of a positron surface state. We discuss the robustness of our predictions versus the most relevant approximations involved in our approach.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000338216500002 Publication Date 2014-04-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588;1742-6596; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 2 Open Access  
  Notes ; We thank A. Weiss for very useful conversations. We acknowledge financial support from FWO-Vlaanderen (projectG.0150.13). This work was carried out using the HPC infrastructure of the University of Antwerp (CalcUA), adivision of the Flemish Supercomputer Center (VSC), funded by the Hercules foundation and the Flemish Government (EWI Department). B. B. is supported by DOE grants Nos. DE-FG02-07ER46352 and DE-AC02-05CH11231 for theory support at ALS, Berkeley, and a NERSC computer time allocation. ; Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:118264 Serial 46  
Permanent link to this record
 

 
Author Callewaert, V.; Saniz, R.; Barbiellini, B.; Partoens, B. url  doi
openurl 
  Title Surface states and positron annihilation spectroscopy: results and prospects from a first-principles approach Type A1 Journal article
  Year 2017 Publication (up) Journal of physics : conference series Abbreviated Journal  
  Volume 791 Issue 791 Pages 012036  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The trapping of positrons at the surface of a material can be exploited to study quite selectively the surface properties of the latter by means of positron annihilation spectroscopy techniques. To support these, it is desirable to be able to theoretically predict the existence of such positronic surface states and to describe their annihilation characteristics with core or valence surface electrons in a reliable way. Here, we build on the well-developed first-principles techniques for the study of positrons in bulk solids as well as on previous models for surfaces, and investigate two schemes that can improve the theoretical description of the interaction of positrons with surfaces. One is based on supplementing the local-density correlation potential with the corrugated image potential at the surface, and the other is based on the weighted-density approximation to correlation. We discuss our results for topological insulators, graphene layers, and quantum dots, with emphasis on the information that can be directly related to experiment. We also discuss some open theoretical problems that should be addressed by future research.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000400610500036 Publication Date 2017-02-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 1 Open Access  
  Notes We acknowledge financial support from FWO-Vlaanderen (projects G.0150.13 and G.0224.14N). This work was carried out using the HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center (VSC), funded by the Hercules foundation and the Flemish Government (EWI Department). The work at Northeastern University was supported by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences grant number DE-FG02-07ER46352 (core research), and benefited from Northeastern University’s Advanced Scientific Computation Center (ASCC), the NERSC supercomputing center through DOE grant number DE-AC02- 05CH11231, and support (applications to layered materials) from the DOE EFRC: Center for the Computational Design of Functional Layered Materials (CCDM) under DE-SC0012575. Approved Most recent IF: NA  
  Call Number CMT @ cmt @ c:irua:140847 Serial 4425  
Permanent link to this record
 

 
Author Eijt, S.W.H.; Shi, W.; Mannheim, A.; Butterling, M.; Schut, H.; Egger, W.; Dickmann, M.; Hugenschmidt, C.; Shakeri, B.; Meulenberg, R.W.; Callewaert, V.; Saniz, R.; Partoens, B.; Barbiellini, B.; Bansil, A.; Melskens, J.; Zeman, M.; Smets, A.H.M.; Kulbak, M.; Hodes, G.; Cahen, D.; Brück, E. url  doi
openurl 
  Title New insights into the nanostructure of innovative thin film solar cells gained by positron annihilation spectroscopy Type A1 Journal article
  Year 2017 Publication (up) Journal of physics : conference series Abbreviated Journal  
  Volume 791 Issue 791 Pages 012021  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Recent studies showed that positron annihilation methods can provide key insights into the nanostructure and electronic structure of thin film solar cells. In this study, positron annihilation lifetime spectroscopy (PALS) is applied to investigate CdSe quantum dot (QD) light absorbing layers, providing evidence of positron trapping at the surfaces of the QDs. This enables one to monitor their surface composition and electronic structure. Further, 2D-Angular Correlation of Annihilation Radiation (2D-ACAR) is used to investigate the nanostructure of divacancies in photovoltaic-high-quality a-Si:H films. The collected momentum distributions were converted by Fourier transformation to the direct space representation of the electron-positron autocorrelation function. The evolution of the size of the divacancies as a function of hydrogen dilution during deposition of a-Si:H thin films was examined. Finally, we present a first positron Doppler Broadening of Annihilation Radiation (DBAR) study of the emerging class of highly efficient thin film solar cells based on perovskites.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000400610500021 Publication Date 2017-02-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 1 Open Access  
  Notes The work at Delft University of Technology was supported by the China Scholarship Council (CSC) grant of W.S., by ADEM, A green Deal in Energy Materials of the Ministry of Economic Affairs of The Netherlands (www.adem- innovationlab.nl), and the STW Vidi grant of A.S., Grant No. 10782. The PALS study is based upon experiments performed at the PLEPS instrument of the NEPOMUC facility at the Heinz Maier-Leibnitz Zentrum (MLZ), Garching, Germany, and was supported by the European Commission under the 7 th Framework Programme, Key Action: Strengthening the European Research Area, Research Infrastructures, Contract No. 226507, NMI3. The work at University of Maine was supported by the National Science Foundation under Grant No. DMR-1206940. Research at the University of Antwerp was supported by FWO grants G022414N and G015013. The work at Northeastern University was supported by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences grant number DE-FG02-07ER46352 (core research), and benefited from Northeastern University's Advanced Scientific Computation Center (ASCC), the NERSC supercomputing center through DOE grant number DE-AC02-05CH11231, and support (applications to layered materials) from the DOE EFRC: Center for the Computational Design of Functional Layered Materials (CCDM) under DE-SC0012575. The work at the Weizmann Institute was supported by the Sidney E. Frank Foundation through the Israel Science Foundation, by the Israel Ministry of Science, and the Israel National Nano-Initiative. D.C. holds the Sylvia and Rowland Schaefer Chair in Energy Research. Approved Most recent IF: NA  
  Call Number CMT @ cmt @ c:irua:140850 Serial 4426  
Permanent link to this record
 

 
Author Sabzalipour, A.; Mir, M.; Zarenia, M.; Partoens, B. pdf  doi
openurl 
  Title Charge transport in magnetic topological ultra-thin films : the effect of structural inversion asymmetry Type A1 Journal article
  Year 2021 Publication (up) Journal Of Physics-Condensed Matter Abbreviated Journal J Phys-Condens Mat  
  Volume 33 Issue 32 Pages 325702  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We study the effect of structural inversion asymmetry, induced by the presence of substrates or by external electric fields, on charge transport in magnetic topological ultra-thin films. We consider general orientations of the magnetic impurities. Our results are based on the Boltzmann formalism along with a modified relaxation time scheme. We show that the structural inversion asymmetry enhances the charge transport anisotropy induced by the magnetic impurities and when only one conduction subband contributes to the charge transport a dissipationless charge current is accessible. We demonstrate how a substrate or gate voltage can control the effect of the magnetic impurities on the charge transport, and how this depends on the orientation of the magnetic impurities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000666698000001 Publication Date 2021-05-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 1 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 2.649  
  Call Number UA @ admin @ c:irua:179647 Serial 6974  
Permanent link to this record
 

 
Author Partoens, B.; Matulis, A.; Peeters, F.M. openurl 
  Title Magnetoplasma excitations in vertically coupled quantum dot systems Type A1 Journal article
  Year 1999 Publication (up) Materials science forum Abbreviated Journal Mater Sci Forum  
  Volume 297/298 Issue Pages 225-228  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000080081600043 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0255-5476; 1662-9752 ISBN Additional Links UA library record; WoS full record;  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:24176 Serial 1920  
Permanent link to this record
 

 
Author de Backer, J.W.; Vos, W.G.; Gorlé, C.D.; Germonpré, P.; Partoens, B.; Wuyts, F.L.; Parizel, P.M.; de Backer, W. doi  openurl
  Title Flow analyses in the lower airways: patient-specific model and boundary conditions Type A1 Journal article
  Year 2008 Publication (up) Medical engineering and physics Abbreviated Journal Med Eng Phys  
  Volume 30 Issue 7 Pages 872-879  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Antwerp Surgical Training, Anatomy and Research Centre (ASTARC); Laboratory Experimental Medicine and Pediatrics (LEMP)  
  Abstract Computational fluid dynamics (CFD) is increasingly applied in the respiratory domain. The ability to simulate the flow through a bifurcating tubular system has increased the insight into the internal flow dynamics and the particular characteristics of respiratory flows such as secondary motions and inertial effects. The next step in the evolution is to apply the technique to patient-specific cases, in order to provide more information about pathological airways. This study presents a patient-specific approach where both the geometry and the boundary conditions (BC) are based on individual imaging methods using computed tomography (CT). The internal flow distribution of a 73-year-old female suffering from chronic obstructive pulmonary disease (COPD) is assessed. The validation is performed through the comparison of lung ventilation with gamma scintigraphy. The results show that in order to obtain agreement within the accuracy limits of the gamma scintigraphy scan, both the patient-specific geometry and the BC (driving pressure) play a crucial role. A minimal invasive test (CT scan) supplied enough information to perform an accurate CFD analysis. In the end it was possible to capture the pathological features of the respiratory system using the imaging and computational fluid dynamics techniques. This brings the introduction of this new technique in the clinical practice one step closer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000259768300009 Publication Date 2007-12-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1350-4533; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.819 Times cited 82 Open Access  
  Notes Approved Most recent IF: 1.819; 2008 IF: 2.216  
  Call Number UA @ lucian @ c:irua:71693 Serial 1224  
Permanent link to this record
 

 
Author Leenaerts, O.; Partoens, B.; Peeters, F.M. doi  openurl
  Title Adsorption of small molecules on graphene Type A1 Journal article
  Year 2009 Publication (up) Microelectronics journal Abbreviated Journal Microelectron J  
  Volume 40 Issue 4/5 Pages 860-862  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate the adsorption process of small molecules on graphene through first-principles calculations and show the presence of two main charge transfer mechanisms. Which mechanism is the dominant one depends on the magnetic properties of the adsorbing molecules. We explain these mechanisms through the density of states of the system and the molecular orbitals of the adsorbates, and demonstrate the possible difficulties in calculating the charge transfer from first principles between a graphene sheet and a molecule. Our results are in good agreement with experiment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Luton Editor  
  Language Wos 000265870200058 Publication Date 2008-12-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0026-2692; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.163 Times cited 116 Open Access  
  Notes Approved Most recent IF: 1.163; 2009 IF: 0.778  
  Call Number UA @ lucian @ c:irua:77030 Serial 65  
Permanent link to this record
 

 
Author Li, B.; Partoens, B.; Peeters, F.M.; Magnus, W. pdf  doi
openurl 
  Title Dielectric mismatch effect on coupled impurity states in a freestanding nanowire Type A1 Journal article
  Year 2009 Publication (up) Microelectronics journal Abbreviated Journal Microelectron J  
  Volume 40 Issue 3 Pages 446-448  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We studied the coupled impurity states in a freestanding semiconductor nanowire (NW), within the effective mass approximation and including the effect of the dielectric mismatch, by using finite element method. Bonding and anti-bonding states are found and their energies converge with increasing distance di between the two impurities. The dependence of the binding energy on the wire radius R and the distance di between the two impurities is investigated, and we compare it with the result of a freestanding NW that contains a single impurity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Luton Editor  
  Language Wos 000264694700017 Publication Date 2008-07-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0026-2692; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.163 Times cited 4 Open Access  
  Notes Approved Most recent IF: 1.163; 2009 IF: 0.778  
  Call Number UA @ lucian @ c:irua:76410 Serial 690  
Permanent link to this record
 

 
Author Slachmuylders, A.F.; Partoens, B.; Magnus, W.; Peeters, F.M. doi  openurl
  Title Neutral shallow donors near a metallic interface Type A1 Journal article
  Year 2009 Publication (up) Microelectronics journal Abbreviated Journal Microelectron J  
  Volume 40 Issue 4/5 Pages 753-755  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The effect of a metallic gate on the bound states of a shallow donor located near the gate is studied. We calculate the energy spectrum as a function of the distance between the metallic gate and the donor and find an anti-crossing behavior in the energy levels for certain distances. We show how a transverse electric field can tune the average position of the electron with respect to the metallic gate and the impurity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Luton Editor  
  Language Wos 000265870200024 Publication Date 2009-02-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0026-2692; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.163 Times cited 1 Open Access  
  Notes Approved Most recent IF: 1.163; 2009 IF: 0.778  
  Call Number UA @ lucian @ c:irua:77029 Serial 2296  
Permanent link to this record
 

 
Author Janssens, K.L.; Partoens, B.; Peeters, F.M. doi  openurl
  Title Type II quantum dots in magnetic fields: excitonic behaviour Type A1 Journal article
  Year 2003 Publication (up) Microelectronics journal Abbreviated Journal Microelectron J  
  Volume 34 Issue Pages 347-350  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Luton Editor  
  Language Wos 000183607400007 Publication Date 2003-04-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0026-2692; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.163 Times cited 1 Open Access  
  Notes Approved Most recent IF: 1.163; 2003 IF: 0.565  
  Call Number UA @ lucian @ c:irua:62450 Serial 3790  
Permanent link to this record
 

 
Author Bercx, M.; Slap, L.; Partoens, B.; Lamoen, D. pdf  url
doi  openurl
  Title First-Principles Investigation of the Stability of the Oxygen Framework of Li-Rich Battery Cathodes Type A1 Journal article
  Year 2019 Publication (up) MRS advances Abbreviated Journal MRS Adv.  
  Volume 4 Issue 14 Pages 813-820  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract Lithium-rich layered oxides such as Li<sub>2</sub>MnO<sub>3</sub>have shown great potential as cathodes in Li-ion batteries, mainly because of their large capacities. However, these materials still suffer from structural degradation as the battery is cycled, reducing the average voltage and capacity of the cell. The voltage fade is believed to be related to the migration of transition metals into the lithium layer, linked to the formation of O-O dimers with a short bond length, which in turn is driven by the presence of oxygen holes due to the participation of oxygen in the redox process. We investigate the formation of O-O dimers for partially charged O1-Li<sub>2</sub>MnO<sub>3</sub>using a first-principles density functional theory approach by calculating the reaction energy and kinetic barriers for dimer formation. Next, we perform similar calculations for partially charged O1-Li<sub>2</sub>IrO<sub>3</sub>, a Li-rich material for which the voltage fade was not observed during cycling. When we compare the stability of the oxygen framework, we conclude that the formation of O-O dimers is both thermodynamically and kinetically viable for O1-Li<sub>0.5</sub>MnO<sub>3</sub>. For O1-Li<sub>0.5</sub>IrO<sub>3</sub>, we observe that the oxygen lattice is much more stable, either returning to its original state when perturbed, or resulting in a structure with an O-O dimer that is much higher in energy. This can be explained by the mixed redox process for Li<sub>2</sub>IrO<sub>3</sub>, which is also shown from the calculated magnetic moments. The lack of O-O dimer formation in O1-Li<sub>0.5</sub>IrO<sub>3</sub>provides valuable insight as to why Li<sub>2</sub>IrO<sub>3</sub>does not demonstrate a voltage fade as the battery is cycled, which can be used to design Li-rich battery cathodes with an improved cycling performance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000466846700004 Publication Date 2019-02-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2059-8521 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 3 Open Access Not_Open_Access: Available from 22.02.2020  
  Notes We acknowledge the financial support of FWO-Vlaanderen through project G040116N. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO-Vlaanderen and the Flemish Government-department EWI. Approved Most recent IF: NA  
  Call Number EMAT @ emat @UA @ admin @ c:irua:160121 Serial 5179  
Permanent link to this record
 

 
Author Peelaers, H.; Partoens, B.; Peeters, F.M. doi  openurl
  Title Formation and segregation energies of B and P doped and BP codoped silicon nanowires Type A1 Journal article
  Year 2006 Publication (up) Nano letters Abbreviated Journal Nano Lett  
  Volume 6 Issue 12 Pages 2781-2784  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington Editor  
  Language Wos 000242786500026 Publication Date 2006-11-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 94 Open Access  
  Notes Approved Most recent IF: 12.712; 2006 IF: 9.960  
  Call Number UA @ lucian @ c:irua:62381 Serial 1248  
Permanent link to this record
 

 
Author Peelaers, H.; Partoens, B.; Peeters, F.M. doi  openurl
  Title Phonon band structure of Si nanowires: a stability analysis Type A1 Journal article
  Year 2009 Publication (up) Nano letters Abbreviated Journal Nano Lett  
  Volume 9 Issue 1 Pages 107-111  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We present full ab initio calculations of the phonon band structure of thin Si nanowires oriented along the [110] direction. Using these phonon dispersion relations, we investigate the structural stability of these wires. We found that all studied wires were stable also when doped with either B or P, if the unit cell was taken sufficiently large along the wire axis. The evolution of the phonon dispersion relations and of the sound velocities with respect to the wire diameters is discussed. Softening is observed for acoustic modes and hardening for optical phonon modes with increasing wire diameters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington Editor  
  Language Wos 000262519100020 Publication Date 2008-12-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 51 Open Access  
  Notes Approved Most recent IF: 12.712; 2009 IF: 9.991  
  Call Number UA @ lucian @ c:irua:76022 Serial 2601  
Permanent link to this record
 

 
Author Bekaert, J.; Khestanova, E.; Hopkinson, D.G.; Birkbeck, J.; Clark, N.; Zhu, M.; Bandurin, D.A.; Gorbachev, R.; Fairclough, S.; Zou, Y.; Hamer, M.; Terry, D.J.; Peters, J.J.P.; Sanchez, A.M.; Partoens, B.; Haigh, S.J.; Milošević, M.V.; Grigorieva, I., V pdf  url
doi  openurl
  Title Enhanced superconductivity in few-layer TaS₂ due to healing by oxygenation Type A1 Journal article
  Year 2020 Publication (up) Nano Letters Abbreviated Journal Nano Lett  
  Volume 20 Issue 5 Pages 3808-3818  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract When approaching the atomically thin limit, defects and disorder play an increasingly important role in the properties of two-dimensional (2D) materials. While defects are generally thought to negatively affect superconductivity in 2D materials, here we demonstrate the contrary in the case of oxygenation of ultrathin tantalum disulfide (TaS2). Our first-principles calculations show that incorporation of oxygen into the TaS2 crystal lattice is energetically favorable and effectively heals sulfur vacancies typically present in these crystals, thus restoring the electronic band structure and the carrier density to the intrinsic characteristics of TaS2. Strikingly, this leads to a strong enhancement of the electron-phonon coupling, by up to 80% in the highly oxygenated limit. Using transport measurements on fresh and aged (oxygenated) few-layer TaS2, we found a marked increase of the superconducting critical temperature (T-c) upon aging, in agreement with our theory, while concurrent electron microscopy and electron-energy loss spectroscopy confirmed the presence of sulfur vacancies in freshly prepared TaS2 and incorporation of oxygen into the crystal lattice with time. Our work thus reveals the mechanism by which certain atomic-scale defects can be beneficial to superconductivity and opens a new route to engineer T-c in ultrathin materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000535255300114 Publication Date 2020-04-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 10.8 Times cited 16 Open Access  
  Notes ; This work was supported by Research Foundation-Flanders (FWO). J.Be. acknowledges support of a postdoctoral fellowship of the FWO. The computational resources and services used for the first-principles calculations in this work were provided by the VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government-department EWI. S.J.H., D.H., and S.F. would like to thank the Engineering and Physical Sciences Research Council (EPSRC) U.K (grants EP/R031711/1, EP/P009050/1 and the Graphene NOWNANO CDT) and the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement ERC-2016-STG-EvoluTEM-715502, the Hetero2D Synergy grant and EC-FET Graphene Flagship) for funding. We thank Diamond Light Source for access and support in use of the electron Physical Science Imaging Centre (Instrument E02 and proposal numbers EM19315 and MG21597) that contributed to the results presented here. ; Approved Most recent IF: 10.8; 2020 IF: 12.712  
  Call Number UA @ admin @ c:irua:170264 Serial 6507  
Permanent link to this record
 

 
Author Bals, S.; Van Aert, S.; Romero, C.P.; Lauwaet, K.; Van Bael, M.J.; Schoeters, B.; Partoens, B.; Yuecelen, E.; Lievens, P.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Atomic scale dynamics of ultrasmall germanium clusters Type A1 Journal article
  Year 2012 Publication (up) Nature communications Abbreviated Journal Nat Commun  
  Volume 3 Issue 897 Pages 897  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract Starting from the gas phase, small clusters can be produced and deposited with huge flexibility with regard to composition, materials choice and cluster size. Despite many advances in experimental characterization, a detailed morphology of such clusters is still lacking. Here we present an atomic scale observation as well as the dynamical behaviour of ultrasmall germanium clusters. Using quantitative scanning transmission electron microscopy in combination with ab initio calculations, we are able to characterize the transition between different equilibrium geometries of a germanium cluster consisting of less than 25 atoms. Seven-membered rings, trigonal prisms and some smaller subunits are identified as possible building blocks that stabilize the structure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000306099900024 Publication Date 2012-06-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 90 Open Access  
  Notes Fwo; Iap; Iwt Approved Most recent IF: 12.124; 2012 IF: 10.015  
  Call Number UA @ lucian @ c:irua:100340 Serial 183  
Permanent link to this record
 

 
Author Willhammar, T.; Sentosun, K.; Mourdikoudis, S.; Goris, B.; Kurttepeli, M.; Bercx, M.; Lamoen, D.; Partoens, B.; Pastoriza-Santos, I.; Pérez-Juste, J.; Liz-Marzán, L.M.; Bals, S.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Structure and vacancy distribution in copper telluride nanoparticles influence plasmonic activity in the near-infrared Type A1 Journal article
  Year 2017 Publication (up) Nature communications Abbreviated Journal Nat Commun  
  Volume 8 Issue 8 Pages 14925  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract Copper chalcogenides find applications in different domains including photonics, photothermal therapy and photovoltaics. CuTe nanocrystals have been proposed as an alternative to noble metal particles for plasmonics. Although it is known that deviations from stoichiometry are a prerequisite for plasmonic activity in the near-infrared, an accurate description of the material and its (optical) properties is hindered by an insufficient understanding of the atomic structure and the influence of defects, especially for materials in their nanocrystalline form. We demonstrate that the structure of Cu1.5±xTe nanocrystals canbe determined using electron diffraction tomography. Real-space high-resolution electron tomography directly reveals the three-dimensional distribution of vacancies in the structure. Through first-principles density functional theory, we furthermore demonstrate that the influence of these vacancies on the optical properties of the nanocrystals is determined. Since our methodology is applicable to a variety of crystalline nanostructured materials, it is expected to provide unique insights concerning structure–property correlations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000397799700001 Publication Date 2017-03-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 37 Open Access OpenAccess  
  Notes The work was financially supported by the European Research Council through an ERC Starting Grant (#335078-COLOURATOMS). T.W. acknowledges the Swedish Research Council for an international postdoc grant. We acknowledge financial support of FWO-Vlaanderen through project G.0216.14N, G.0369.15N and a postdoctoral research grant to B.G. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO-Vlaanderen and the Flemish Government–Department EWI. The work was further supported by the Spanish MINECO (MAT2013-45168-R). S.M. thanks the Action ooSupporting Postdoctoral Researchers44 of the Operational Program ‘Education and Lifelong Learning’ (Action’s Beneficiary: General Secretariat for Research and Technology of Greece), which was co-financed by the European Social Fund (ESF) and the Greek State. (ROMEO:green; preprint:; postprint:can ; pdfversion:can); ECAS_Sara Approved Most recent IF: 12.124  
  Call Number EMAT @ emat @ c:irua:142203UA @ admin @ c:irua:142203 Serial 4538  
Permanent link to this record
 

 
Author Chirayath, V.A.; Callewaert, V.; Fairchild, A.J.; Chrysler, M.D.; Gladen, R.W.; Mcdonald, A.D.; Imam, S.K.; Shastry, K.; Koymen, A.R.; Saniz, R.; Barbiellini, B.; Rajeshwar, K.; Partoens, B.; Weiss, A.H. pdf  url
doi  openurl
  Title Auger electron emission initiated by the creation of valence-band holes in graphene by positron annihilation Type A1 Journal article
  Year 2017 Publication (up) Nature communications Abbreviated Journal Nat Commun  
  Volume 8 Issue 8 Pages 16116  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Auger processes involving the filling of holes in the valence band are thought to make important contributions to the low-energy photoelectron and secondary electron spectrum from many solids. However, measurements of the energy spectrum and the efficiency with which electrons are emitted in this process remain elusive due to a large unrelated background resulting from primary beam-induced secondary electrons. Here, we report the direct measurement of the energy spectra of electrons emitted from single layer graphene as a result of the decay of deep holes in the valence band. These measurements were made possible by eliminating competing backgrounds by employing low-energy positrons (<1.25 eV) to create valence-band holes by annihilation. Our experimental results, supported by theoretical calculations, indicate that between 80 and 100% of the deep valence-band holes in graphene are filled via an Auger transition.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000405398200001 Publication Date 2017-07-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 20 Open Access  
  Notes The experiments in this work were supported by the grant NSF DMR 1508719. A.H.W and A.R.K. gratefully acknowledge support for the building of advanced positron beam through the grant NSF DMR MRI 1338130. V.C. and R.S. were supported by the FWO-Vlaanderen through Project No. G. 0224.14N. The computational resources and services used in this work were in part provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the Hercules Foundation and the Flemish Government (EWI Department). The work at Northeastern University was supported by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences grant number DE-FG02-07ER46352 (core research), and benefited from Northeastern University’s Advanced Scientific Computation Center (ASCC), the NERSC supercomputing center through DOE grant number DE-AC02-05CH11231, and support (applications to layered materials) from the DOE EFRC: Center for the Computational Design of Functional Layered Materials (CCDM) under DE-SC0012575. Approved Most recent IF: 12.124  
  Call Number CMT @ cmt @ c:irua:144625 Serial 4627  
Permanent link to this record
 

 
Author Partoens, B. doi  openurl
  Title Spinorbit interactions : hide and seek Type A1 Journal article
  Year 2014 Publication (up) Nature physics Abbreviated Journal Nat Phys  
  Volume 10 Issue Pages 333-334  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract It is commonly believed that solids with spatial inversion symmetry do not display spinorbit effects. However, first-principles calculations now reveal unexpected spin structure for centrosymmetric crystals  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000335371200003 Publication Date 2014-04-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1745-2473; 1745-2481 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 22.806 Times cited 8 Open Access  
  Notes Approved Most recent IF: 22.806; 2014 IF: 20.147  
  Call Number UA @ lucian @ c:irua:141068 Serial 4608  
Permanent link to this record
 

 
Author Park, K.; De Beule, C.; Partoens, B. url  doi
openurl 
  Title The ageing effect in topological insulators : evolution of the surface electronic structure of Bi2Se3 upon K adsorption Type A1 Journal article
  Year 2013 Publication (up) New journal of physics Abbreviated Journal New J Phys  
  Volume 15 Issue Pages 113031-16  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Topological insulators (TIs) have attracted a lot of interest in recent years due to their topologically protected surface states, as well as exotic proximity-induced phenomena and device applications for TI heterostructures. Since the first experimental studies of TIs, angle-resolved photoemission spectra (ARPES) showed that the electronic structure of the topological surface states significantly changes as a function of time after cleavage. The origin and underlying mechanism of this ageing effect are still under debate, despite its importance. Here we investigate the evolution of the surface Dirac cone for Bi2Se3 films upon asymmetric potassium (K) adsorption, using density-functional theory and a tight-binding model. We find that the K adatoms induce short-ranged downward band bending within 2-3 nm from the surface, due to charge transfer from the adatoms to the TI. These findings are in contrast to earlier proposals in the literature, that propose a long-ranged downward band bending up to 15 nm from the surface. Furthermore, as the charge transfer increases, we find that a new Dirac cone, localized slightly deeper into the TI than the original one, appears at the K-adsorbed surface, originating from strong Rashba-split conduction-band states. Our results suggest possible reinterpretations of experiments because the new Dirac cone might have been observed in ARPES measurements instead of the original one that appears immediately after cleavage. Our findings are consistent with ARPES data and provide insight into building TI-heterostructure devices by varying the band-bending potential or film thickness.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000326876100006 Publication Date 2013-11-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.786 Times cited 45 Open Access  
  Notes ; KP was supported by National Science Foundation grant numbers DMR-0804665 and DMR-1206354 and SDSC Trestles under DMR060009N. CDB was supported by the Research Foundation Flanders (FWO). ; Approved Most recent IF: 3.786; 2013 IF: 3.671  
  Call Number UA @ lucian @ c:irua:112707 Serial 84  
Permanent link to this record
 

 
Author Dixit, H.; Tandon, N.; Cottenier, S.; Saniz, R.; Lamoen, D.; Partoens, B.; van Speybroeck, V.; Waroquier, M. pdf  url
doi  openurl
  Title Electronic structure and band gap of zinc spinel oxides beyond LDA : ZnAl2O4, ZnGa2O4 and ZnIn2O4 Type A1 Journal article
  Year 2011 Publication (up) New journal of physics Abbreviated Journal New J Phys  
  Volume 13 Issue 6 Pages 063002-063002,11  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract We examine the electronic structure of the family of ternary zinc spinel oxides ZnX2O4 (X=Al, Ga and In). The band gap of ZnAl2O4 calculated using density functional theory (DFT) is 4.25 eV and is overestimated compared with the experimental value of 3.83.9 eV. The DFT band gap of ZnGa2O4 is 2.82 eV and is underestimated compared with the experimental value of 4.45.0 eV. Since DFT typically underestimates the band gap in the oxide system, the experimental measurements for ZnAl2O4 probably require a correction. We use two first-principles techniques capable of describing accurately the excited states of semiconductors, namely the GW approximation and the modified BeckeJohnson (MBJ) potential approximation, to calculate the band gap of ZnX2O4. The GW and MBJ band gaps are in good agreement with each other. In the case of ZnAl2O4, the predicted band gap values are >6 eV, i.e. ~2 eV larger than the only reported experimental value. We expect future experimental work to confirm our results. Our calculations of the electron effective masses and the second band gap indicate that these compounds are very good candidates to act as transparent conducting host materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000292137500002 Publication Date 2011-06-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.786 Times cited 98 Open Access  
  Notes Iwt; Fwo; Bof-Noi Approved Most recent IF: 3.786; 2011 IF: 4.177  
  Call Number UA @ lucian @ c:irua:89555 Serial 1008  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: