toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Marikutsa, A.; Rumyantseva, M.; Gaskov, A.; Batuk, M.; Hadermann, J.; Sarmadian, N.; Saniz, R.; Partoens, B.; Lamoen, D. url  doi
openurl 
  Title Effect of zinc oxide modification by indium oxide on microstructure, adsorbed surface species, and sensitivity to CO Type A1 Journal article
  Year 2019 Publication (up) Frontiers in materials Abbreviated Journal  
  Volume 6 Issue 6 Pages  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract Additives in semiconductor metal oxides are commonly used to improve sensing behavior of gas sensors. Due to complicated effects of additives on the materials microstructure, adsorption sites and reactivity to target gases the sensing mechanism with modified metal oxides is a matter of thorough research. Herein, we establish the promoting effect of nanocrystalline zinc oxide modification by 1-7 at.% of indium on the sensitivity to CO gas due to improved nanostructure dispersion and concentration of active sites. The sensing materials were synthesized via an aqueous coprecipitation route. Materials composition, particle size and BET area were evaluated using X-ray diffraction, nitrogen adsorption isotherms, high-resolution electron microscopy techniques and EDX-mapping. Surface species of chemisorbed oxygen, OH-groups, and acid sites were characterized by probe molecule techniques and infrared spectroscopy. It was found that particle size of zinc oxide decreased and the BET area increased with the amount of indium oxide. The additive was observed as amorphous indium oxide segregated on agglomerated ZnO nanocrystals. The measured concentration of surface species was higher on In2O3-modified zinc oxide. With the increase of indium oxide content, the sensor response of ZnO/In2O3 to CO was improved. Using in situ infrared spectroscopy, it was shown that oxidation of CO molecules was enhanced on the modified zinc oxide surface. The effect of modifier was attributed to promotion of surface OH-groups and enhancement of CO oxidation on the segregated indium ions, as suggested by DFT in previous work.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000461540600001 Publication Date 2019-03-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-8016 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 11 Open Access OpenAccess  
  Notes ; Research was supported by the grant from Russian Science Foundation (project No. 18-73-00071). ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:158540 Serial 5205  
Permanent link to this record
 

 
Author Leinders, G.; Baldinozzi, G.; Ritter, C.; Saniz, R.; Arts, I.; Lamoen, D.; Verwerft, M. pdf  url
doi  openurl
  Title Charge Localization and Magnetic Correlations in the Refined Structure of U3O7 Type A1 Journal article
  Year 2021 Publication (up) Inorganic Chemistry Abbreviated Journal Inorg Chem  
  Volume 60 Issue 14 Pages 10550-10564  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Atomic arrangements in the mixed-valence oxide U3O7 are refined from high-resolution neutron scattering data. The crystallographic model describes a long-range structural order in a U60O140 primitive cell (space group P42/n) containing distorted cuboctahedral oxygen clusters. By combining experimental data and electronic structure calculations accounting for spin–orbit interactions, we provide robust evidence of an interplay between charge localization and the magnetic moments carried by the uranium atoms. The calculations predict U3O7 to be a semiconducting solid with a band gap of close to 0.32 eV, and a more pronounced charge-transfer insulator behavior as compared to the well-known Mott insulator UO2. Most uranium ions (56 out of 60) occur in 9-fold and 10-fold coordinated environments, surrounding the oxygen clusters, and have a tetravalent (24 out of 60) or pentavalent (32 out of 60) state. The remaining uranium ions (4 out of 60) are not contiguous to the oxygen cuboctahedra and have a very compact, 8-fold coordinated environment with two short (2 × 1.93(3) Å) “oxo-type” bonds. The higher Hirshfeld charge and the diamagnetic character point to a hexavalent state for these four uranium ions. Hence, the valence state distribution corresponds to 24/60 × U(IV) + 32/60 U(V) + 4/60 U(VI). The tetravalent and pentavalent uranium ions are predicted to carry noncollinear magnetic moments (with amplitudes of 1.6 and 0.8 μB, respectively), resulting in canted ferromagnetic order in characteristic layers within the overall fluorite-related structure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000675430900049 Publication Date 2021-07-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited Open Access OpenAccess  
  Notes Financial support for this research was partly provided by the Energy Transition Fund of the Belgian FPS Economy (Project SF-CORMOD – Spent Fuel CORrosion MODeling). This work was performed in part using HPC resources from GENCI-IDRIS (Grants 2020-101450 and 2020-101601), and in part by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO-Vlaanderen and the Flemish Government-department EWI. GL thanks E. Suard and C. Schreinemachers for assistance during the neutron scattering experiments at the ILL. GB acknowledges V. Petříček for suggestions on using JANA2006. Approved Most recent IF: 4.857  
  Call Number EMAT @ emat @c:irua:179907 Serial 6801  
Permanent link to this record
 

 
Author Nivesanond, K.; Peeters, A.; Lamoen, D.; van Alsenoy, C. doi  openurl
  Title Ab initio calculation of the interaction energy in the P2 binding pocket of HIV-1 protease Type A1 Journal article
  Year 2005 Publication (up) International Journal Of Quantum Chemistry Abbreviated Journal Int J Quantum Chem  
  Volume 105 Issue 3 Pages 292-299  
  Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000232232300009 Publication Date 2005-07-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-7608;1097-461X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.92 Times cited 8 Open Access  
  Notes Approved Most recent IF: 2.92; 2005 IF: 1.192  
  Call Number UA @ lucian @ c:irua:54919 Serial 30  
Permanent link to this record
 

 
Author Sarmadian, N.; Saniz, R.; Partoens, B.; Lamoen, D. url  doi
openurl 
  Title Ab initio study of shallow acceptors in bixbyite V2O3 Type A1 Journal article
  Year 2015 Publication (up) Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 117 Issue 117 Pages 015703  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract We present the results of our study on p-type dopability of bixbyite V2O3 using the Heyd, Scuseria, and Ernzerhof hybrid functional (HSE06) within the density functional theory (DFT) formalism. We study vanadium and oxygen vacancies as intrinsic defects and substitutional Mg, Sc, and Y as extrinsic defects. We find that Mg substituting V acts as a shallow acceptor, and that oxygen vacancies are electrically neutral. Hence, we predict Mg-doped V2O3 to be a p-type conductor. Our results also show that vanadium vacancies are relatively shallow, with a binding energy of 0.14 eV, so that they might also lead to p-type conductivity.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000347958600067 Publication Date 2015-01-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979;1089-7550; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 3 Open Access  
  Notes FWO G015013; Hercules Approved Most recent IF: 2.068; 2015 IF: 2.183  
  Call Number c:irua:122728 Serial 35  
Permanent link to this record
 

 
Author Titantah, J.T.; Lamoen, D.; Schowalter, M.; Rosenauer, A. doi  openurl
  Title Bond length variation in Ga1-xInxAs crystals from the Tersoff potential Type A1 Journal article
  Year 2007 Publication (up) Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 101 Issue 12 Pages 123508,1-4  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000247625700034 Publication Date 2007-06-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 19 Open Access  
  Notes Approved Most recent IF: 2.068; 2007 IF: 2.171  
  Call Number UA @ lucian @ c:irua:67460 Serial 247  
Permanent link to this record
 

 
Author Bekaert, J.; Saniz, R.; Partoens, B.; Lamoen, D. pdf  url
doi  openurl
  Title First-principles study of carbon impurities in CuInSe2 and CuGaSe2, present in non-vacuum synthesis methods Type A1 Journal article
  Year 2015 Publication (up) Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 117 Issue 117 Pages 015104  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract A first-principles study of the structural and electronic properties of carbon impurities in CuInSe2 and CuGaSe2 is presented. Carbon is present in organic molecules in the precursor solutions used in non-vacuum growth methods for CuInSe2 and CuGaSe2 based photovoltaic cells. These growth methods make more efficient use of material, time, and energy than traditional vacuum methods. The formation energies of several carbon impurities are calculated using the hybrid HSE06 functional. C Cu acts as a shallow donor, CIn and interstitial C yield deep donor levels in CuInSe2, while in CuGaSe2 CGa and interstitial C act as deep amphoteric defects. So, these defects reduce the majority carrier (hole) concentration in p-type CuInSe2 and CuGaSe2 by compensating the acceptor levels. The deep defects are likely to act as recombination centers for the photogenerated charge carriers and are thus detrimental for the performance of the photovoltaic cells. On the other hand, the formation energies of the carbon impurities are high, even under C-rich growth conditions. Thus, few C impurities will form in CuInSe2 and CuGaSe2 in thermodynamic equilibrium. However, the deposition of the precursor solution in non-vacuum growth methods presents conditions far from thermodynamic equilibrium. In this case, our calculations show that C impurities formed in non-equilibrium tend to segregate from CuInSe2 and CuGaSe2 by approaching thermodynamic equilibrium, e.g., via thorough annealing.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000347958600055 Publication Date 2015-01-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979;1089-7550; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 6 Open Access  
  Notes FWO G015013; Hercules Approved Most recent IF: 2.068; 2015 IF: 2.183  
  Call Number c:irua:122064 Serial 1215  
Permanent link to this record
 

 
Author Amini, M.N.; Saniz, R.; Lamoen, D.; Partoens, B. doi  openurl
  Title Hydrogen impurities and native defects in CdO Type A1 Journal article
  Year 2011 Publication (up) Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 110 Issue 6 Pages 063521,1-063521,7  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract We have used first-principles calculations based on density functional theory to study point defects in CdO within the local density approximation and beyond (LDA+U). Hydrogen interstitials and oxygen vacancies are found to act as shallow donors and can be interpreted as the cause of conductivity in CdO. Hydrogen can also occupy an oxygen vacancy in its substitutional form and also acts as a shallow donor. Similar to what was found for ZnO and MgO, hydrogen creates a multicenter bond with its six oxygen neighbors in CdO. The charge neutrality level for native defects and hydrogen impurities has been calculated. It is shown that in the case of native defects, it is not uniquely defined. Indeed, this level depends highly on the chemical potentials of the species and one can obtain different values for different end states in the experiment. Therefore, a comparison with experiment can only be made if the chemical potentials of the species in the experiment are well defined. However, for the hydrogen interstitial defect, since this level is independent of the chemical potential of hydrogen, one can obtain a unique value for the charge neutrality level. We find that the Fermi level stabilizes at 0.43 eV above the conduction band minimum in the case of the hydrogen interstitial defect, which is in good agreement with the experimentally reported value of 0.4 eV.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000295619300041 Publication Date 2011-09-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 13 Open Access  
  Notes ; The authors gratefully acknowledge financial support from the IWT-Vlaanderen through the ISIMADE project, the FWO-Vlaanderen through Project G.0191.08 and the BOF-NOI of the University of Antwerp. This work was carried out using the HPC infrastructure at the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center VSC. ; Approved Most recent IF: 2.068; 2011 IF: 2.168  
  Call Number UA @ lucian @ c:irua:93613 Serial 1533  
Permanent link to this record
 

 
Author Zhang, M.-L.; March, N.H.; Peeters, A.; van Alsenoy, C.; Howard, I.; Lamoen, D.; Leys, F. doi  openurl
  Title Loss rate of a plasticizer in a nylon matrix calculated using macroscopic reaction-diffusion kinetics Type A1 Journal article
  Year 2003 Publication (up) Journal Of Applied Physics Abbreviated Journal J Appl Phys  
  Volume 93 Issue Pages 1525-1532  
  Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000180630200031 Publication Date 2003-02-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record;  
  Impact Factor 2.068 Times cited Open Access  
  Notes Approved Most recent IF: 2.068; 2003 IF: 2.171  
  Call Number UA @ lucian @ c:irua:41405 Serial 1844  
Permanent link to this record
 

 
Author Titantah, J.T.; Lamoen, D.; Schowalter, M.; Rosenauer, A. pdf  doi
openurl 
  Title Modified atomic scattering amplitudes and size effects on the 002 and 220 electron structure factors of multiple Ga1-xInxAs/GaAs quantum wells Type A1 Journal article
  Year 2009 Publication (up) Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 105 Issue 8 Pages 084310,1-084310,8  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The modified atomic scattering amplitudes (MASAs) of mixed Ga<sub>1-x</sub>In<sub>x</sub>As, GaAs<sub>1-x</sub>N<sub>x</sub>, and InAs<sub>1-x</sub>N<sub>x</sub> are calculated using the density functional theory approach and the results are compared with those of the binary counterparts. The MASAs of N, Ga, As, and In for various scattering vectors in various chemical environments and in the zinc-blende structure are compared with the frequently used Doyle and Turner values. Deviation from the Doyle and Turner results is found for small scattering vectors (s<0.3 Å<sup>-1</sup>) and for these scattering vectors the MASAs are found to be sensitive to the orientation of the scattering vector and on the chemical environment. The chemical environment sensitive MASAs are used within zero pressure classical Metropolis Monte Carlo, finite temperature calculations to investigate the effect of well size on the electron 002 and 220 structure factors (SFs). The implications of the use of the 002 (200) spot for the quantification of nanostructured Ga<sub>1-x</sub>In<sub>x</sub>As systems are examined while the 220 SF across the well is evaluated and is found to be very sensitive to the in-plane static displacements.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000268064700149 Publication Date 2009-04-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.068 Times cited Open Access  
  Notes Fwo G.0425.05; Esteem 026019 Approved Most recent IF: 2.068; 2009 IF: 2.072  
  Call Number UA @ lucian @ c:irua:78282 Serial 2160  
Permanent link to this record
 

 
Author Sarmadian, N.; Saniz, R.; Partoens, B.; Lamoen, D. pdf  url
doi  openurl
  Title First-principles study of the optoelectronic properties and photovoltaic absorber layer efficiency of Cu-based chalcogenides Type A1 Journal article
  Year 2016 Publication (up) Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 120 Issue 120 Pages 085707  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract Cu-based chalcogenides are promising materials for thin-film solar cells with more than 20% measured

cell efficiency. Using first-principles calculations based on density functional theory, the

optoelectronic properties of a group of Cu-based chalcogenides Cu2-II-IV-VI4 is studied. They are

then screened with the aim of identifying potential absorber materials for photovoltaic applications.

The spectroscopic limited maximum efficiency (SLME) introduced by Yu and Zunger [Phys. Rev.

Lett. 108, 068701 (2012)] is used as a metric for the screening. After constructing the currentvoltage

curve, the SLME is calculated from the maximum power output. The role of the nature of

the band gap, direct or indirect, and also of the absorptivity of the studied materials on the maximum

theoretical power conversion efficiency is studied. Our results show that Cu2II-GeSe4 with

II¼ Cd and Hg, and Cu2-II-SnS4 with II ¼ Cd, Hg, and Zn have a higher theoretical efficiency

compared with the materials currently used as absorber layer.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000383913400074 Publication Date 2016-08-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 29 Open Access  
  Notes We acknowledge the financial support from the FWO-Vlaanderen through project G.0150.13N and a GOA fund from the University of Antwerp. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), bothfunded by the FWO-Vlaanderen and the Flemish Government–department EWI. Approved Most recent IF: 2.068  
  Call Number c:irua:135089 Serial 4113  
Permanent link to this record
 

 
Author Nivesanond, K.; Peeters, A.; Lamoen, D.; van Alsenoy, C. doi  openurl
  Title Conformational analysis of TMC114, a novel HIV-1 protease inhibitor Type A1 Journal article
  Year 2008 Publication (up) Journal of Chemical Information and Modeling Abbreviated Journal J Chem Inf Model  
  Volume 48 Issue 1 Pages 99-108  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000252713700009 Publication Date 2008-01-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1549-9596;1549-960X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.76 Times cited 13 Open Access  
  Notes Approved Most recent IF: 3.76; 2008 IF: 3.643  
  Call Number UA @ lucian @ c:irua:67463 Serial 491  
Permanent link to this record
 

 
Author Lamoen, D.; Persson, B.N.J. doi  openurl
  Title Adsorption of potassium and oxygen on graphite: a theoretical study Type A1 Journal article
  Year 1998 Publication (up) Journal Of Chemical Physics Abbreviated Journal J Chem Phys  
  Volume 108 Issue Pages 3332-3341  
  Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000074379600032 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9606; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.965 Times cited 91 Open Access  
  Notes Approved Most recent IF: 2.965; 1998 IF: 3.147  
  Call Number UA @ lucian @ c:irua:19420 Serial 64  
Permanent link to this record
 

 
Author Leys, F.E.; March, N.H.; Lamoen, D. doi  openurl
  Title Thermodynamic consistency and integral equations for the liquid structure Type A1 Journal article
  Year 2002 Publication (up) Journal Of Chemical Physics Abbreviated Journal J Chem Phys  
  Volume 117 Issue Pages 10726  
  Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000179495000031 Publication Date 2002-12-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9606; ISBN Additional Links UA library record; WoS full record;  
  Impact Factor 2.965 Times cited Open Access  
  Notes Approved Most recent IF: 2.965; 2002 IF: 2.998  
  Call Number UA @ lucian @ c:irua:41406 Serial 3634  
Permanent link to this record
 

 
Author Jacobs, W.; Reynaerts, C.; Andries, S.; van den Akker, S.; Moonen, N.; Lamoen, D. pdf  url
doi  openurl
  Title Analyzing the dispersion of cargo vapors around a ship’s superstructure by means of wind tunnel experiments Type A1 Journal article
  Year 2016 Publication (up) Journal of marine science and technology Abbreviated Journal J Mar Sci Tech-Japan  
  Volume 21 Issue 21 Pages 758-766  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In a previous study, it was found that cargo tank operations like cleaning and venting, lead to higher cargo vapor concentrations around the ship’s superstructure. Can wind tunnel experiments confirm these findings? Is there an improvement when using higher outlets at high velocities compared to lower outlets with a low outlet velocity? Is there a relation between relative wind speed and measured concentration? These questions were investigated in the Peutz wind tunnel. By using a tracer gas for the wind tunnel experiments, concentration coefficients have been calculated for various settings. The study shows that using high-velocity outlets is an efficient way to keep concentrations as low as possible. The only exception is for relative wind directions from the bow. In this last case using a manhole as ventilation outlet leads to lower concentrations. With increasing wind speeds the building downwash effect resulted in higher concentration coefficients near the main deck. This study confirms our on-board measurements and suggests the lowering of the ventilation inlet of the accommodation, so that the high-velocity outlet can be used safely at all times.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000388260200015 Publication Date 2016-05-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0948-4280 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.838 Times cited 2 Open Access  
  Notes The authors would like to thank Peutz bv. at Molenhoek, the Netherlands, for providing the wind tunnel facilities and their assistance during the various stages of this research. Approved Most recent IF: 0.838  
  Call Number EMAT @ emat @ c:irua:138728 Serial 4326  
Permanent link to this record
 

 
Author Caglak, E.; Govers, K.; Lamoen, D.; Labeau, P.-E.; Verwerft, M. pdf  url
doi  openurl
  Title Atomic scale analysis of defect clustering and predictions of their concentrations in UO2+x Type A1 Journal article
  Year 2020 Publication (up) Journal Of Nuclear Materials Abbreviated Journal J Nucl Mater  
  Volume 541 Issue Pages 152403  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The physical properties of uranium dioxide vary greatly with stoichiometry. Oxidation towards hyperstoichiometric UO2 – UO2+x – might be encountered at various stages of the nuclear fuel cycle if oxidative conditions are met; the impact of stoichiometry changes upon physical properties should therefore be properly assessed to ensure safe and reliable operations. These physical properties are intimately linked to the arrangement of atomic defects in the crystalline structure. The evolution of the defect concentration with environmental parameters – oxygen partial pressure and temperature – were evaluated by means of a point defect model where the reaction energies are derived from atomic-scale simulations. To this end, various configurations and net charge states of oxygen interstitial clusters in UO2 have been calculated. Various methodologies have been tested to determine the optimum cluster configurations and a rigid lattice approach turned out to be the most useful strategy to optimize defect configuration structures. Ultimately, results from the point defect model were discussed and compared to experimental measurements of stoichiometry dependence on oxygen partial pressure and temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000575165800006 Publication Date 2020-08-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3115 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.1 Times cited Open Access OpenAccess  
  Notes This work is dedicated to the memory of Prof. Alain Dubus, ULB, Bruxelles, Belgium. Financial support from the SCK CEN is gratefully acknowledged. Approved Most recent IF: 3.1; 2020 IF: 2.048  
  Call Number EMAT @ emat @c:irua:172464 Serial 6402  
Permanent link to this record
 

 
Author Howard, I.A.; Zutterman, F.; Deroover, G.; Lamoen, D.; van Alsenoy, C. doi  openurl
  Title Approaches to calculation of exciton interaction energies for a molecular dimer Type A1 Journal article
  Year 2004 Publication (up) Journal Of Physical Chemistry B Abbreviated Journal J Phys Chem B  
  Volume 108 Issue Pages 19155-19162  
  Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000225695100015 Publication Date 2004-12-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1520-6106;1520-5207; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.177 Times cited 35 Open Access  
  Notes Approved Most recent IF: 3.177; 2004 IF: 3.834  
  Call Number UA @ lucian @ c:irua:50259 Serial 147  
Permanent link to this record
 

 
Author Titantah, J.T.; Lamoen, D.; Neyts, E.; Bogaerts, A. doi  openurl
  Title The effect of hydrogen on the electronic and bonding properties of amorphous carbon Type A1 Journal article
  Year 2006 Publication (up) Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 18 Issue 48 Pages 10803-10815  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000242650600008 Publication Date 2006-11-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 13 Open Access  
  Notes Approved Most recent IF: 2.649; 2006 IF: 2.038  
  Call Number UA @ lucian @ c:irua:60468 Serial 816  
Permanent link to this record
 

 
Author Titantah, J.T.; Lamoen, D. doi  openurl
  Title The effect of temperature on the structural, electronic and optical properties of sp3-rich amorphous carbon Type A1 Journal article
  Year 2008 Publication (up) Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 20 Issue 3 Pages 035216,1-6  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The effect of temperature on the structural, electronic and optical properties of dense tetrahedral amorphous carbon made of similar to 80% sp(3)-bonded atoms is investigated using a combination of the classical Monte Carlo technique and density functional theory. A structural transformation accompanied by a slight decrease of the sp(3) fraction is evidenced above a temperature of about 600 degrees C. A structural analysis in combination with energy-loss near-edge structure calculations shows that beyond this temperature, the sp(2)-bonded C sites arrange themselves so as to enhance the conjugation of the p electrons. The Tauc optical band gap deduced from the calculated dielectric function shows major changes beyond this temperature in accordance with experimental results. Energy-loss near-edge structure and band gap calculations additionally reveal a massive destabilization of the of sp(3) bonding phase in favour of sp(2) bonding at a temperature of about 1300 degrees C which agrees very well with the reported value of 1100 degrees C.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000252922900026 Publication Date 2007-12-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 11 Open Access  
  Notes Approved Most recent IF: 2.649; 2008 IF: 1.900  
  Call Number UA @ lucian @ c:irua:67461 Serial 840  
Permanent link to this record
 

 
Author Dixit, H.; Saniz, R.; Cottenier, S.; Lamoen, D.; Partoens, B. pdf  doi
openurl 
  Title Electronic structure of transparent oxides with the Tran-Blaha modified Becke-Johnson potential Type A1 Journal article
  Year 2012 Publication (up) Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 24 Issue 20 Pages 205503-205503,9  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract We present electronic band structures of transparent oxides calculated using the Tran-Blaha modified Becke-Johnson (TB-mBJ) potential. We studied the basic n-type conducting binary oxides In2O3, ZnO, CdO and SnO2 along with the p-type conducting ternary oxides delafossite CuXO2 (X = Al, Ga, In) and spinel ZnX2O4 (X = Co, Rh, Ir). The results are presented for calculated band gaps and effective electron masses. We discuss the improvements in the band gap determination using TB-mBJ compared to the standard generalized gradient approximation (GGA) in density functional theory (DFT) and also compare the electronic band structure with available results from the quasiparticle GW method. It is shown that the calculated band gaps compare well with the experimental and GW results, although the electron effective mass is generally overestimated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000303507100009 Publication Date 2012-04-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 113 Open Access  
  Notes Iwt; Fwo Approved Most recent IF: 2.649; 2012 IF: 2.355  
  Call Number UA @ lucian @ c:irua:98222 Serial 1017  
Permanent link to this record
 

 
Author Dabaghmanesh, S.; Saniz, R.; Amini, M.N.; Lamoen, D.; Partoens, B. pdf  doi
openurl 
  Title Perovskite transparent conducting oxides : an ab initio study Type A1 Journal article
  Year 2013 Publication (up) Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 25 Issue 41 Pages 415503  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We present an ab initio study of the electronic structure and of the formation energies of various point defects in BaSnO3 and SrGeO3. We show that La and Y impurities substituting Ba or Sr are shallow donors with a preferred 1 + charge state. These defects have a low formation energy within all the suitable equilibrium growth conditions considered. Oxygen vacancies behave as shallow donors as well, preferring the 2 + charge state. Their formation energies, however, are higher in most growth conditions, indicating a limited contribution to conductivity. The calculated electron effective mass in BaSnO3, with a value of 0.21 me, and the very high mobility reported recently in La-doped BaSnO3 single-crystals, suggest that remarkably low scattering rates can be achieved in the latter. In the case of SrGeO3, our results point to carrier density and mobility values in the low range for typical polycrystalline TCOs, in line with experiment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000324920400011 Publication Date 2013-09-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 17 Open Access  
  Notes FWO;Hercules Approved Most recent IF: 2.649; 2013 IF: 2.223  
  Call Number UA @ lucian @ c:irua:110495 Serial 2574  
Permanent link to this record
 

 
Author Dixit, H.; Lamoen, D.; Partoens, B. pdf  doi
openurl 
  Title Quasiparticle band structure of rocksalt-CdO determined using maximally localized Wannier functions Type A1 Journal article
  Year 2013 Publication (up) Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 25 Issue 3 Pages 035501-35505  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract CdO in the rocksalt structure is an indirect band gap semiconductor. Thus, in order to determine its band gap one needs to calculate the complete band structure. However, in practice, the exact evaluation of the quasiparticle band structure for the large number of k-points which constitute the different symmetry lines in the Brillouin zone can be an extremely demanding task compared to the standard density functional theory (DFT) calculation. In this paper we report the full quasiparticle band structure of CdO using a plane-wave pseudopotential approach. In order to reduce the computational effort and time, we make use of maximally localized Wannier functions (MLWFs). The MLWFs offer a highly accurate method for interpolation of the DFT or GW band structure from a coarse k-point mesh in the irreducible Brillouin zone, resulting in a much reduced computational effort. The present paper discusses the technical details of the scheme along with the results obtained for the quasiparticle band gap and the electron effective mass.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000313100500010 Publication Date 2012-12-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 7 Open Access  
  Notes Fwo Approved Most recent IF: 2.649; 2013 IF: 2.223  
  Call Number UA @ lucian @ c:irua:105296 Serial 2801  
Permanent link to this record
 

 
Author Dixit, H.; Saniz, R.; Lamoen, D.; Partoens, B. pdf  doi
openurl 
  Title The quasiparticle band structure of zincblende and rocksalt ZnO Type A1 Journal article
  Year 2010 Publication (up) Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 22 Issue 12 Pages 125505,1-125505,7  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract We present the quasiparticle band structure of ZnO in its zincblende (ZB) and rocksalt (RS) phases at the Γ point, calculated within the GW approximation. The effect of the pd hybridization on the quasiparticle corrections to the band gap is discussed. We compare three systems, ZB-ZnO which shows strong pd hybridization and has a direct band gap, RS-ZnO which is also hybridized but includes inversion symmetry and therefore has an indirect band gap, and ZB-ZnS which shows a weaker hybridization due to a change of the chemical species from oxygen to sulfur. The quasiparticle corrections are calculated with different numbers of valence electrons in the Zn pseudopotential. We find that the Zn20 + pseudopotential is essential for the adequate treatment of the exchange interaction in the self-energy. The calculated GW band gaps are 2.47 eV and 4.27 eV respectively, for the ZB and RS phases. The ZB-ZnO band gap is underestimated compared to the experimental value of 3.27 by ~ 0.8 eV. The RS-ZnO band gap compares well with the experimental value of 4.5 eV. The underestimation for ZB-ZnO is correlated with the strong pd hybridization. The GW band gap for ZnS is 3.57 eV, compared to the experimental value of 3.8 eV.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000275496600010 Publication Date 2010-03-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 53 Open Access  
  Notes Iwt; Fwo; Bof-Nio Approved Most recent IF: 2.649; 2010 IF: 2.332  
  Call Number UA @ lucian @ c:irua:81531 Serial 2802  
Permanent link to this record
 

 
Author Titantah, J.T.; Lamoen, D.; Schowalter, M.; Rosenauer, A. url  doi
openurl 
  Title Ab initio based atomic scattering amplitudes and {002} electron structure factors of InxGa1-xAs/GaAs quantum wells Type A1 Journal article
  Year 2010 Publication (up) Journal of physics : conference series Abbreviated Journal  
  Volume 209 Issue 1 Pages 012040,1-012040,6  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The atomic scattering amplitudes of the various atoms of the systems Ga1−xInxAs, GaAs1−xNx and InAs1−xNx are calculated using the density functional theory (DFT) approach. The scattering amplitudes of N, Ga, As and In in the model systems are compared with the frequently used Doyle and Turner values. Deviation from the latter values is found for small scattering vectors (s<0.3Å−1) and for these scattering vectors dependence on the orientation of the scattering vector and the chemical environment is reported. We suggest a parametrization of these modified scattering amplitudes (MASAs) for small scattering vectors (s<1.0Å−1). The MASAs are exploited within zero pressure classical Metropolis Monte Carlo (MC), finite temperature calculations to investigate the effect of quantum well size on the electron {002} structure factor (SF) of Ga1−xInxAs quantum wells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000283739100040 Publication Date 2010-02-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6596; ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:85760 Serial 28  
Permanent link to this record
 

 
Author Saniz, R.; Vercauteren, S.; Lamoen, D.; Partoens, B.; Barbiellini, B. pdf  doi
openurl 
  Title Accurate description of the van der Waals interaction of an electron-positron pair with the surface of a topological insulator Type P1 Proceeding
  Year 2014 Publication (up) Journal of physics : conference series Abbreviated Journal  
  Volume 505 Issue Pages 012002  
  Keywords P1 Proceeding; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract Positrons can be trapped in localized states at the surface of a material, and thus quite selectively interact with core or valence surface electrons. Hence, advanced surface positron spectroscopy techniques can present the ideal tools to study a topological insulator, where surface states play a fundamental role. We analyze the problem of a positron at a TI surface, assuming that it is a weakly physisorbed positronium (Ps) atom. To determine if the surface of interest in a material can sustain such a physisorption, an accurate description of the underlying van der Waals (vdW) interaction is essential. We have developed a first-principles parameterfree method, based on the density functional theory, to extract key parameters determining the vdW interaction potential between a Ps atom and the surface of a given material. The method has been successfully applied to quartz and preliminary results on Bi2Te2Se indicate the existence of a positron surface state. We discuss the robustness of our predictions versus the most relevant approximations involved in our approach.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000338216500002 Publication Date 2014-04-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588;1742-6596; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 2 Open Access  
  Notes ; We thank A. Weiss for very useful conversations. We acknowledge financial support from FWO-Vlaanderen (projectG.0150.13). This work was carried out using the HPC infrastructure of the University of Antwerp (CalcUA), adivision of the Flemish Supercomputer Center (VSC), funded by the Hercules foundation and the Flemish Government (EWI Department). B. B. is supported by DOE grants Nos. DE-FG02-07ER46352 and DE-AC02-05CH11231 for theory support at ALS, Berkeley, and a NERSC computer time allocation. ; Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:118264 Serial 46  
Permanent link to this record
 

 
Author Müller, K.; Schowalter, M.; Rosenauer, A.; Jansen, J.; Tsuda, K.; Titantah, J.T.; Lamoen, D. url  doi
openurl 
  Title Refinement of chemically sensitive structure factors using parallel and convergent beam electron nanodiffraction Type A1 Journal article
  Year 2010 Publication (up) Journal of physics : conference series Abbreviated Journal  
  Volume 209 Issue 1 Pages 012025-012025,4  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We introduce a new method to measure structure factors from parallel beam electron diffraction (PBED) patterns. Bloch wave refinement routines were developed which can minimise the difference between simulated and experimental Bragg intensities via variation of structure factors, Debye parameters, specimen thickness and -orientation. Due to plane wave illumination, the PBED refinement is highly efficient not only in computational respect, but also concerning the experimental effort since energy filtering is shown to have no significant effect on the refinement results. The PBED method was applied to simulated GaAs diffraction patterns to derive systematic errors and rules for the identification of plausible refinement results. The evaluation of experimental GaAs PBED patterns yields a 200 X-ray structure factor of -6.33±0.14. Additionally, we obtained -6.35±0.13 from two-dimensional convergent beam electron diffraction refinements. Both results confirm density functional theory calculations published by Rosenauer et al. and indicate the inaccuracy of isolated atom scattering data, which is crucial e.g. for the composition evaluation by lattice fringe analysis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos Publication Date 2010-02-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6596; ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:85761 Serial 2855  
Permanent link to this record
 

 
Author Soldatov, A.V.; Lamoen, D.; Konstantinović, M.J.; van den Berghe, S.; Scheinost, A.C.; Verwerft, M. doi  openurl
  Title Local structure and oxidation state of uranium in some ternary oxides: X-ray absorption analysis Type A1 Journal article
  Year 2007 Publication (up) Journal Of Solid State Chemistry Abbreviated Journal J Solid State Chem  
  Volume 180 Issue 1 Pages 54-61  
  Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000243951900008 Publication Date 2006-09-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.299 Times cited 60 Open Access  
  Notes Approved Most recent IF: 2.299; 2007 IF: 2.149  
  Call Number UA @ lucian @ c:irua:61579 Serial 1831  
Permanent link to this record
 

 
Author Paulus, A.; Hendrickx, M.; Bercx, M.; Karakulina, O.M.; Kirsanova, M.A.; Lamoen, D.; Hadermann, J.; Abakumov, A.M.; Van Bael, M.K.; Hardy, A. url  doi
openurl 
  Title An in-depth study of Sn substitution in Li-rich/Mn-rich NMC as a cathode material for Li-ion batteries Type A1 Journal article
  Year 2020 Publication (up) Journal of the Chemical Society : Dalton transactions Abbreviated Journal  
  Volume 49 Issue 30 Pages 10486-10497  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Layered Li-rich/Mn-rich NMC (LMR-NMC) is characterized by high initial specific capacities of more than 250 mA h g(-1), lower cost due to a lower Co content and higher thermal stability than LiCoO2. However, its commercialisation is currently still hampered by significant voltage fade, which is caused by irreversible transition metal ion migration to emptied Li positionsviatetrahedral interstices upon electrochemical cycling. This structural change is strongly correlated with anionic redox chemistry of the oxygen sublattice and has a detrimental effect on electrochemical performance. In a fully charged state, up to 4.8 Vvs.Li/Li+, Mn4+ is prone to migrate to the Li layer. The replacement of Mn4+ for an isovalent cation such as Sn4+ which does not tend to adopt tetrahedral coordination and shows a higher metal-oxygen bond strength is considered to be a viable strategy to stabilize the layered structure upon extended electrochemical cycling, hereby decreasing voltage fade. The influence of Sn4+ on the voltage fade in partially charged LMR-NMC is not yet reported in the literature, and therefore, we have investigated the structure and the corresponding electrochemical properties of LMR-NMC with different Sn concentrations. We determined the substitution limit of Sn4+ in Li1.2Ni0.13Co0.13Mn0.54-xSnxO2 by powder X-ray diffraction and transmission electron microscopy to be x approximate to 0.045. The limited solubility of Sn is subsequently confirmed by density functional theory calculations. Voltage fade for x= 0 andx= 0.027 has been comparatively assessed within the 3.00 V-4.55 V (vs.Li/Li+) potential window, from which it is concluded that replacing Mn4+ by Sn4+ cannot be considered as a viable strategy to inhibit voltage fade within this window, at least with the given restricted doping level.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000555330900018 Publication Date 2020-07-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0300-9246; 1477-9226; 1472-7773 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4 Times cited Open Access OpenAccess  
  Notes ; The authors acknowledge Research Foundation Flanders (FWO) project number G040116N for funding. The authors are grateful to Dr Ken Elen and Greet Cuyvers (imo-imomec, UHasselt and imec) for respectively preliminary PXRD measurements and performing ICP-AES on the monometal precursors. Dr Dmitry Rupasov (Skolkovo Institute of Science and Technology) is acknowledged for performing TGA measurements on the metal sulfate precursors. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO-Vlaanderen and the Flemish Government-department EWI. ; Approved Most recent IF: 4; 2020 IF: 4.029  
  Call Number UA @ admin @ c:irua:171149 Serial 6450  
Permanent link to this record
 

 
Author Tirry, W.; Schryvers, D.; Jorissen, K.; Lamoen, D. pdf  doi
openurl 
  Title Quantitative determination of the crystal structure of Ni4Ti3 precipitates Type A1 Journal article
  Year 2006 Publication (up) Materials science and engineering: part A: structural materials: properties, microstructure and processing Abbreviated Journal Mat Sci Eng A-Struct  
  Volume 438 Issue Pages 517-520  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000242900900112 Publication Date 2006-07-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-5093; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.094 Times cited 7 Open Access  
  Notes Mrtn-Ct-2004-505226 Approved Most recent IF: 3.094; 2006 IF: 1.490  
  Call Number UA @ lucian @ c:irua:61577 Serial 2752  
Permanent link to this record
 

 
Author Müller, E.; Kruse, P.; Gerthsen, D.; Schowalter, M.; Rosenauer, A.; Lamoen, D.; Kling, R. pdf  openurl
  Title Measurement of the mean inner potential of ZnO nanorods by transmission electron holography Type A1 Journal article
  Year 2005 Publication (up) Microscopy of Semiconducting Materials Abbreviated Journal  
  Volume 107 Issue Pages 303-306  
  Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title SPRINGER PROCEEDINGS IN PHYSICS Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0930-8989 ISBN Additional Links UA library record; WoS full record;  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:72914 Serial 1962  
Permanent link to this record
 

 
Author Bercx, M.; Slap, L.; Partoens, B.; Lamoen, D. pdf  url
doi  openurl
  Title First-Principles Investigation of the Stability of the Oxygen Framework of Li-Rich Battery Cathodes Type A1 Journal article
  Year 2019 Publication (up) MRS advances Abbreviated Journal MRS Adv.  
  Volume 4 Issue 14 Pages 813-820  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract Lithium-rich layered oxides such as Li<sub>2</sub>MnO<sub>3</sub>have shown great potential as cathodes in Li-ion batteries, mainly because of their large capacities. However, these materials still suffer from structural degradation as the battery is cycled, reducing the average voltage and capacity of the cell. The voltage fade is believed to be related to the migration of transition metals into the lithium layer, linked to the formation of O-O dimers with a short bond length, which in turn is driven by the presence of oxygen holes due to the participation of oxygen in the redox process. We investigate the formation of O-O dimers for partially charged O1-Li<sub>2</sub>MnO<sub>3</sub>using a first-principles density functional theory approach by calculating the reaction energy and kinetic barriers for dimer formation. Next, we perform similar calculations for partially charged O1-Li<sub>2</sub>IrO<sub>3</sub>, a Li-rich material for which the voltage fade was not observed during cycling. When we compare the stability of the oxygen framework, we conclude that the formation of O-O dimers is both thermodynamically and kinetically viable for O1-Li<sub>0.5</sub>MnO<sub>3</sub>. For O1-Li<sub>0.5</sub>IrO<sub>3</sub>, we observe that the oxygen lattice is much more stable, either returning to its original state when perturbed, or resulting in a structure with an O-O dimer that is much higher in energy. This can be explained by the mixed redox process for Li<sub>2</sub>IrO<sub>3</sub>, which is also shown from the calculated magnetic moments. The lack of O-O dimer formation in O1-Li<sub>0.5</sub>IrO<sub>3</sub>provides valuable insight as to why Li<sub>2</sub>IrO<sub>3</sub>does not demonstrate a voltage fade as the battery is cycled, which can be used to design Li-rich battery cathodes with an improved cycling performance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000466846700004 Publication Date 2019-02-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2059-8521 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 3 Open Access Not_Open_Access: Available from 22.02.2020  
  Notes We acknowledge the financial support of FWO-Vlaanderen through project G040116N. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO-Vlaanderen and the Flemish Government-department EWI. Approved Most recent IF: NA  
  Call Number EMAT @ emat @UA @ admin @ c:irua:160121 Serial 5179  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: