toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Van der Donck, M.; De Beule, C.; Partoens, B.; Peeters, F.M.; Van Duppen, B. doi  openurl
  Title Piezoelectricity in asymmetrically strained bilayer graphene Type A1 Journal article
  Year 2016 Publication (up) 2D materials Abbreviated Journal 2D Mater  
  Volume 3 Issue 3 Pages 035015  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We study the electronic properties of commensurate faulted bilayer graphene by diagonalizing the one-particle Hamiltonian of the bilayer system in a complete basis of Bloch states of the individual graphene layers. Our novel approach is very general and can be easily extended to any commensurate graphene-based heterostructure. Here, we consider three cases: (i) twisted bilayer graphene, (ii) bilayer graphene where triaxial stress is applied to one layer and (iii) bilayer graphene where uniaxial stress is applied to one layer. We show that the resulting superstructures can be divided into distinct classes, depending on the twist angle or the magnitude of the induced strain. The different classes are distinguished from each other by the interlayer coupling mechanism, resulting in fundamentally different low-energy physics. For the cases of triaxial and uniaxial stress, the individual graphene layers tend to decouple and we find significant charge transfer between the layers. In addition, this piezoelectric effect can be tuned by applying a perpendicular electric field. Finally, we show how our approach can be generalized to multilayer systems.  
  Address  
  Corporate Author Thesis  
  Publisher IOP Publishing Place of Publication Bristol Editor  
  Language Wos 000384072500003 Publication Date 2016-08-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.937 Times cited 10 Open Access  
  Notes ; This work was supported by the Research Foundation-Flanders (FWO-Vl) through aspirant research grants to MVDD, CDB, and BVD. ; Approved Most recent IF: 6.937  
  Call Number UA @ lucian @ c:irua:137203 Serial 4361  
Permanent link to this record
 

 
Author Lu, A.K.A.; Houssa, M.; Radu, I.P.; Pourtois, G. pdf  doi
openurl 
  Title Toward an understanding of the electric field-induced electrostatic doping in van der Waals heterostructures : a first-principles study Type A1 Journal article
  Year 2017 Publication (up) ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter  
  Volume 9 Issue 8 Pages 7725-7734  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Since the discovery of graphene, a broad range of two-dimensional (2D) materials has captured the attention of the scientific communities. Materials, such as hexagonal boron nitride (hBN) and the transition metal dichalcogenides (TMDs) family, have shown promising semiconducting and insulating properties that are very appealing for the semiconductor industry. Recently, the possibility of taking advantage of the properties of 2D-based heterostructures has been investigated for low-power nanoelectronic applications. In this work, we aim at evaluating the relation between the nature of the materials used in such heterostructures and the amplitude of the layer-to-layer charge transfer induced by an external electric field, as is typically present in nanoelectronic gated devices. A broad range of combinations of TMDs, graphene, and hBN has been investigated using density functional theory. Our results show that the electric field induced charge transfer strongly depends on the nature of the 2D materials used in the van der Waals heterostructures and to a lesser extent on the relative orientation of the materials in the structure. Our findings contribute to the building of the fundamental understanding required to engineer electrostatically the doping of 2D materials and to establish the factors that drive the charge transfer mechanisms in electron tunneling-based devices. These are key ingredients for the development of 2D -based nanoelectronic devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000395494200119 Publication Date 2017-02-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.504 Times cited 10 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 7.504  
  Call Number UA @ lucian @ c:irua:142483 Serial 4696  
Permanent link to this record
 

 
Author Bagiński, M.; Pedrazo-Tardajos, A.; Altantzis, T.; Tupikowska, M.; Vetter, A.; Tomczyk, E.; Suryadharma, R.N.S.; Pawlak, M.; Andruszkiewicz, A.; Górecka, E.; Pociecha, D.; Rockstuhl, C.; Bals, S.; Lewandowski, W. url  doi
openurl 
  Title Understanding and Controlling the Crystallization Process in Reconfigurable Plasmonic Superlattices Type A1 Journal article
  Year 2021 Publication (up) Acs Nano Abbreviated Journal Acs Nano  
  Volume Issue Pages acsnano.0c09746  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract The crystallization of nanomaterials is a primary source of solid-state, photonic structures. Thus, a detailed understanding of this process is of paramount importance for the successful application of photonic nanomaterials in emerging optoelectronic technologies. While colloidal crystallization has been thoroughly studied, for example, with advanced in situ electron microscopy methods, the noncolloidal crystallization (freezing) of nanoparticles (NPs) remains so far unexplored. To fill this gap, in this work, we present proof-of principle experiments decoding a crystallization of reconfigurable assemblies of NPs at a solid state. The chosen material corresponds to an excellent testing bed, as it enables both in situ and ex situ investigation using X-ray diffraction (XRD), transmission electron microscopy (TEM), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), atomic force microscopy (AFM), and optical spectroscopy in visible and ultraviolet range (UV−vis) techniques. In particular, ensemble measurements with small-angle XRD highlighted the dependence of the correlation length in the NPs assemblies on the number of heating/cooling cycles and the rate of cooling. Ex situ TEM imaging further supported these results by revealing a dependence of domain size and structure on the sample preparation route and by showing we can control the domain size over 2 orders of magnitude. The application of HAADF-STEM tomography, combined with in situ thermal control, provided three-dimensional single-particle level information on the positional order evolution within assemblies. This combination of real and reciprocal space provides insightful information on the anisotropic, reversibly reconfigurable assemblies of NPs. TEM measurements also highlighted the importance of interfaces in the polydomain structure of nanoparticle solids, allowing us to understand experimentally observed differences in UV−vis extinction spectra of the differently prepared crystallites. Overall, the obtained results show that the combination of in situ heating HAADF-STEM tomography with XRD and ex situ TEM techniques is a powerful approach to study nanoparticle freezing processes and to reveal the crucial impact of disorder in the solid-state aggregates of NPs on their plasmonic properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000634569100101 Publication Date 2021-02-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 10 Open Access OpenAccess  
  Notes Ministerstwo Nauki i Szkolnictwa Wyzszego, 0112/DIA/2019/48 ; European Commission, 731019 E171000009 (EUSMI) ; Narodowe Centrum Nauki, 2016/21/N/ST5/03356 ; Deutsche Forschungsgemeinschaft, RO 3640/12-1 ; Fundacja na rzecz Nauki Polskiej, First TEAM2016–2/15 ; European Research Council, 815128 (REALNANO) ; sygma; Approved Most recent IF: 13.942  
  Call Number EMAT @ emat @c:irua:175872 Serial 6673  
Permanent link to this record
 

 
Author Parzyszek, S.; Tessarolo, J.; Pedrazo-Tardajos, A.; Ortuno, A.M.; Baginski, M.; Bals, S.; Clever, G.H.; Lewandowski, W. url  doi
openurl 
  Title Tunable circularly polarized luminescence via chirality induction and energy transfer from organic films to semiconductor nanocrystals Type A1 Journal article
  Year 2022 Publication (up) ACS nano Abbreviated Journal Acs Nano  
  Volume 16 Issue 11 Pages 18472-18482  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Circularly polarized luminescent (CPL) films with high dissymmetry factors hold great potential for optoelectronic applications. Herei n , we propose a strategy for achieving strongly dissymetric CPL in nanocomposite films based on chira l i t y induction and energy transfer to semiconductor nanocrystals. First, focusing on a purely organic system, aggregation-induced emission (AIE) and CPL activity of organic liquid crystals (LCs) forming helical nanofilaments was detected, featuring green emission with high dissymmetry factors g(lum) similar to 10(-2). The handedness of helical filaments, and thus the sign of CPL, was controlled via minute amounts of a small chiral organic dopant. Second, nanocomposite films were fabricated by incorporating InP/ZnS semi-conductor quantum dots (QDs) into the LC matri x , which induced the chiral assembly of QDs and endowed them with chiroptical properties. Due to the spectral matching of the components, energy transfer (ET) from LC to QDs was possible enabling a convenient way of tuning CPL wavelengths by varying the LC/QD ratio. As obtained, composite films exhibited absolute glum values up to similar to 10(-2) and thermally on/off switchable luminescence. Overall, we demonstrate the induction of chiroptical properties by the assembly of nonchiral building QDs on the chiral organic template and energy transfer from organic films to QDs, representing a simple and versatile approach to tune the CPL activity of organic materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000883943600001 Publication Date 2022-11-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 17.1 Times cited 10 Open Access OpenAccess  
  Notes W.L., S.P., and M.B. acknowledge support from the National Science Center Poland under the OPUS Grant UMO-2019/35/B/ST5/04488. J.T. and G.H.C. acknowledge the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy, Grant EXC 2033-390677874-RESOLV. W.L. acknowledges financial support from the European Commission under the Horizon 2020 Programme by Grant E210400529. S.B. and A.P.-T. acknowledge financial support from the European Commission under the Horizon 2020 Programme by Grant 731019 (EUSMI) and ERC Consolidator Grant 815128 (REALNANO). We thank Elie Benchimol for his help with the CPL measurements. We thank Damian Pociecha for his help in the determination of phase sequences of organic compounds. Approved Most recent IF: 17.1  
  Call Number UA @ admin @ c:irua:192101 Serial 7345  
Permanent link to this record
 

 
Author Solís, C.; Rossell, M.D.; Garcia, G.; Van Tendeloo, G.; Santiso, J. pdf  doi
openurl 
  Title Unusual strain accommodation and conductivity enhancement by structure modulation variations in Sr4Fe6O12+\delta epitaxial films Type A1 Journal article
  Year 2008 Publication (up) Advanced functional materials Abbreviated Journal Adv Funct Mater  
  Volume 18 Issue 5 Pages 785-793  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000254448400014 Publication Date 2008-03-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301X;1616-3028; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 10 Open Access  
  Notes Iap V-1; Gbou Approved Most recent IF: 12.124; 2008 IF: 6.808  
  Call Number UA @ lucian @ c:irua:70039 Serial 3818  
Permanent link to this record
 

 
Author Jenkinson, K.; Liz-Marzan, L.M.; Bals, S. pdf  url
doi  openurl
  Title Multimode electron tomography sheds light on synthesis, structure, and properties of complex metal-based nanoparticles Type A1 Journal article
  Year 2022 Publication (up) Advanced materials Abbreviated Journal Adv Mater  
  Volume 34 Issue 36 Pages 2110394-19  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Electron tomography has become a cornerstone technique for the visualization of nanoparticle morphology in three dimensions. However, to obtain in-depth information about a nanoparticle beyond surface faceting and morphology, different electron microscopy signals must be combined. The most notable examples of these combined signals include annular dark-field scanning transmission electron microscopy (ADF-STEM) with different collection angles and the combination of ADF-STEM with energy-dispersive X-ray or electron energy loss spectroscopies. Here, the experimental and computational development of various multimode tomography techniques in connection to the fundamental materials science challenges that multimode tomography has been instrumental to overcoming are summarized. Although the techniques can be applied to a wide variety of compositions, the study is restricted to metal and metal oxide nanoparticles for the sake of simplicity. Current challenges and future directions of multimode tomography are additionally discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000831332200001 Publication Date 2022-04-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 29.4 Times cited 10 Open Access OpenAccess  
  Notes The authors thank the financial support of the European Research Council (ERC-AdG-2017 787510, ERC-CoG-2019 815128) and of the European Commission (EUSMI, Grant 731019 and ESTEEM3, Grant 823717). Approved Most recent IF: 29.4  
  Call Number UA @ admin @ c:irua:189616 Serial 7087  
Permanent link to this record
 

 
Author Zhang, B.; Deschamps, M.; Ammar, M.-R.; Raymundo-Pinero, E.; Hennet, L.; Batuk, D.; Tarascon, J.-M. pdf  doi
openurl 
  Title Laser synthesis of hard carbon for anodes in Na-ion battery Type A1 Journal article
  Year 2017 Publication (up) Advanced Materials Technologies Abbreviated Journal  
  Volume 2 Issue 3 Pages 1600227  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000398999900003 Publication Date 2016-12-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2365-709x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 10 Open Access Not_Open_Access  
  Notes ; The RS2E (Reseau sur le StockageElectrochimique de l'Energie) network is acknowledged for the financial support of this work through the ANR project Storex (ANR-10-LABX-76-01). J.-M.T acknowledges funding from the European Research Council (ERC) (FP/2014-2020)/ERC GrantProject 670116-ARPEMA. ; Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:142452 Serial 4666  
Permanent link to this record
 

 
Author González‐Rubio, G.; Díaz‐Núñez, P.; Albrecht, W.; Manzaneda‐González, V.; Bañares, L.; Rivera, A.; Liz‐Marzán, L.M.; Peña‐Rodríguez, O.; Bals, S.; Guerrero‐Martínez, A. url  doi
openurl 
  Title Controlled Alloying of Au@Ag Core–Shell Nanorods Induced by Femtosecond Laser Irradiation Type A1 Journal article
  Year 2021 Publication (up) Advanced Optical Materials Abbreviated Journal Adv Opt Mater  
  Volume Issue Pages 2002134  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000625964300001 Publication Date 2021-03-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2195-1071 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.875 Times cited 10 Open Access OpenAccess  
  Notes G.G.‐R., P.D.‐N., and W.A. contributed equally to this work. This work was funded by the Spanish Ministry of Science, Innovation and Universities (MICIU) (Grant Nos. RTI2018‐095844‐B‐I00, PID2019‐105325RB, and PGC2018‐096444‐B‐I00), the Madrid Regional Government (Grant Nos. P2018/NMT‐4389 and S2018/EMT‐4437), and the EUROfusion Consortium (grant ENR‐IFE19.CCFE‐01). This work was supported by COST (European Cooperation in Science and Technology) Action TUMIEE (Grant No. CA17126). S.B. and W.A. acknowledge funding from the European Research Council under the European Union's Horizon 2020 Research and Innovation Program (ERC Consolidator Grant No. 815128 – REALNANO). All the authors acknowledge funding from the European Commission (Grant No. E180900184‐EUSMI). G.G.‐R. thanks the Spanish MICIU for an FPI (Grant No. BES‐2014‐068972) fellowship. W.A. acknowledges an Individual Fellowship from the Marie Sklodowska‐Curie actions (MSCA) under the EU's Horizon 2020 Program (Grant No. 797153, SOPMEN). The facilities provided by the Center for Ultrafast Laser of Complutense University of Madrid are gratefully acknowledged. The authors also acknowledge the computer resources and technical assistance provided by CESVIMA (UPM).; sygmaSB Approved Most recent IF: 6.875  
  Call Number EMAT @ emat @c:irua:177586 Serial 6758  
Permanent link to this record
 

 
Author Zelaya, E.; Esquivel, M.R.; Schryvers, D. pdf  doi
openurl 
  Title Evolution of the phase stability of NiAl under low energy ball milling Type A1 Journal article
  Year 2013 Publication (up) Advanced powder technology Abbreviated Journal Adv Powder Technol  
  Volume 24 Issue 6 Pages 1063-1069  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Low energy mechanical alloying of Ni35 at.%Al and Ni40 at.%Al material was performed and the resulting structures were investigated by XRD and TEM. The final intermetallics observed consist of two phases, NiAl(B2) and Ni3Al while 7R and 3R martensite was observed in post-annealed samples. Different integrated milling times were associated to the intermetallic consolidation and initial blend dissociation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Zeist Editor  
  Language Wos 000339175000024 Publication Date 2013-03-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-8831; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.659 Times cited 10 Open Access  
  Notes Fwo Approved Most recent IF: 2.659; 2013 IF: 1.642  
  Call Number UA @ lucian @ c:irua:107345 Serial 1102  
Permanent link to this record
 

 
Author Zaghi, A.E.; Buffière, M.; Brammertz, G.; Batuk, M.; Lenaers, N.; Kniknie, B.; Hadermann, J.; Meuris, M.; Poortmans, J.; Vleugels, J. pdf  url
doi  openurl
  Title Mechanical synthesis of high purity Cu-In-Se alloy nanopowder as precursor for printed CISe thin film solar cells Type A1 Journal article
  Year 2014 Publication (up) Advanced powder technology Abbreviated Journal Adv Powder Technol  
  Volume 25 Issue 4 Pages 1254-1261  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Mechanical alloying and ball milling are low cost, up-scalable techniques for the preparation of high purity chalcogenide nanopowders to be used as precursor material for printing thin film solar cells. In this study, high purity copper indium selenium (Cu-In-Se) alloy nanopowders with 20-200 nm particle size were synthesized from macroscopic elemental Cu, In and Se powders via mechanical alloying and planetary ball milling. The particle size distribution, morphology, composition, and purity level of the synthesized Cu-In-Se alloy nanopowders were investigated. Thin Cu-In-Se alloy nanopowder ink coatings, deposited on Mo-coated glass substrates by doctor blading, were converted into a CuInSe2 semiconductor film by selenization heat treatment in Se vapor. The CuInSe2 film showed semiconducting band gap around 1 eV measured by photoluminescence spectroscopy. CuInSe2 absorber layer based thin film solar cell devices were fabricated to assess their performance. The solar cell device showed a total efficiency of 4.8%, as measured on 0.25 cm(2) area cell. (c) 2014 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Zeist Editor  
  Language Wos 000341871700015 Publication Date 2014-03-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-8831; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.659 Times cited 10 Open Access  
  Notes Approved Most recent IF: 2.659; 2014 IF: 2.638  
  Call Number UA @ lucian @ c:irua:119896 Serial 1977  
Permanent link to this record
 

 
Author van Vaeck, L.; van Roy, W.; Gijbels, R. openurl 
  Title Laser ionization mass spectrometry for the characterization of solid materials Type A1 Journal article
  Year 1993 Publication (up) Analusis : chimie analytique, méthodes physiques d'analyse, composition de la matière Abbreviated Journal  
  Volume 21 Issue Pages 53-75  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Paris Editor  
  Language Wos A1993KQ28400013 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0365-4877 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 10 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:6170 Serial 1790  
Permanent link to this record
 

 
Author Hamidi-Asl, E.; Daems, D.; De Wael, K.; Van Camp, G.; Nagels, L.J. url  doi
openurl 
  Title Concentration related response potentiometric titrations to study the interaction of small molecules with large biomolecules Type A1 Journal article
  Year 2014 Publication (up) Analytical chemistry Abbreviated Journal Anal Chem  
  Volume 86 Issue 24 Pages 12243-12249  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract In the present article, the utility of a special potentiometric titration approach for recognition and calculation of biomolecule/small molecule interactions is reported. This approach is fast, sensitive, reproducible and inexpensive in comparison to the other methods for the determination of the association constant values (Ka) and the interaction energies (ΔG). The potentiometric titration measurement is based on the use of a classical polymeric membrane indicator electrode in a solution of the small molecule ligand. The biomolecule is used as a titrant. The potential is measured versus a reference electrode and transformed to a concentration related signal over the entire concentration interval, also at low concentrations, where the mV (y-axis) versus logcanalyte (x-axis) potentiometric calibration curve is not linear. In the procedure, the Ka is calculated for the interaction of cocaine with a cocaine binding aptamer and with an anti-cocaine antibody. To study the selectivity and cross-reactivity, other oligonucleotides and aptamers are tested, as well as other small ligand molecules such as tetrakis (4-chlorophenyl)borate, metergoline, lidocaine, and bromhexine. The calculated Ka compared favorably to the value reported in the literature using SPR. The potentiometric titration approach called Concentration related Response Potentiometry, is used to study molecular interaction for 7 macromolecular target molecules and 4 small molecule ligands.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000346683900048 Publication Date 2014-11-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited 10 Open Access  
  Notes ; Financial support for this work was provided by the University of Antwerp by granting L.J.N., K.D.W, G.V.C., and Ronny Blust a POC interdisciplinary research project. ; Approved Most recent IF: 6.32; 2014 IF: 5.636  
  Call Number UA @ admin @ c:irua:120164 Serial 5548  
Permanent link to this record
 

 
Author De Wael, K.; Daems, D.; Van Camp, G.; Nagels, L.J. doi  openurl
  Title The use of potentiometric sensors to study (bio)molecular interactions Type A1 Journal article
  Year 2012 Publication (up) Analytical chemistry Abbreviated Journal Anal Chem  
  Volume 84 Issue 11 Pages 4921-4927  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Potentiometric sensors were used to study molecular interactions in liquid environments, with sensorgram methodology. This is demonstrated with a lipophilic rubber-, and with a collagen based hydrogel sensor coating. The investigated molecules were promazine and tartaric acid respectively. The sensors were placed in a hydrodynamic wall jet system for the recording of sensorgrams. mV sensor responses were first converted to a signal, expressing the concentration of adsorbed organic ions. Using a linearization method, a pseudo first order kinetic model of adsorption was shown to fit the experimental results perfectly. Kass, kon and koff values were calculated.. The technique can be used over 4 decades of concentration, and it is very sensitive to low MW compounds as well as to multiply charged large biomolecules. This study is the first to demonstrate the application of potentiometric sensors as an alternative and complement to SPR methods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000304783100041 Publication Date 2012-04-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited 10 Open Access  
  Notes ; Financial support for this work was provided by the University of Antwerp by granting D.D. a BOF interdisciplinary research project. We thank J. Everaert for his help in interpreting the results. K.D.W. and D.D. contributed equally to this work. ; Approved Most recent IF: 6.32; 2012 IF: 5.695  
  Call Number UA @ admin @ c:irua:97520 Serial 5898  
Permanent link to this record
 

 
Author Kundu, P.; Heidari, H.; Bals, S.; Ravishankar, N.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Formation and thermal stability of gold-silica nanohybrids : insight into the mechanism and morphology by electron tomography Type A1 Journal article
  Year 2014 Publication (up) Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume 53 Issue 15 Pages 3970-3974  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Gold-silica hybrids are appealing in different fields of applications like catalysis, sensorics, drug delivery, and biotechnology. In most cases, the morphology and distribution of the heterounits play significant roles in their functional behavior. Methods of synthesizing these hybrids, with variable ordering of the heterounits, are replete; however, a complete characterization in three dimensions could not be achieved yet. A simple route to the synthesis of Au-decorated SiO2 spheres is demonstrated and a study on the 3D ordering of the heterounits by scanning transmission electron microscopy (STEM) tomography is presentedat the final stage, intermediate stages of formation, and after heating the hybrid. The final hybrid evolves from a soft self-assembled structure of Au nanoparticles. The hybrid shows good thermal stability up to 400 degrees C, beyond which the Au particles start migrating inside the SiO2 matrix. This study provides an insight in the formation mechanism and thermal stability of the structures which are crucial factors for designing and applying such hybrids in fields of catalysis and biotechnology. As the method is general, it can be applied to make similar hybrids based on SiO2 by tuning the reaction chemistry as needed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000333634800036 Publication Date 2014-03-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited 10 Open Access OpenAccess  
  Notes This research has received funding from the European Community’s Seventh Framework Program (ERC; grant number 246791)— COUNTATOMS, COLOURATOMS, as well as from the IAP 7/05 Programme initiated by the Belgian Science Policy Office. Funding from the Department of Science and Technology (DST) is also acknowledged.; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 11.994; 2014 IF: 11.261  
  Call Number UA @ lucian @ c:irua:117186 Serial 1251  
Permanent link to this record
 

 
Author Vanmeert, F.; Hendriks, E.; van der Snickt, G.; Monico, L.; Dik, J.; Janssens, K. doi  openurl
  Title Chemical Mapping by Macroscopic X-ray Powder Diffraction (MA-XRPD) of Van Gogh's Sunflowers : identification of areas with higher degradation risk Type A1 Journal article
  Year 2018 Publication (up) Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume 57 Issue 25 Pages 7418-7422  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The discoloration rate of chrome yellow (CY), a class of synthetic inorganic pigments (PbCr1-xSxO4) frequently used by Van Gogh and his contemporaries, strongly depends on its sulfate content and on its crystalline structure (either monoclinic or orthorhombic). Macroscopic X-Ray powder diffraction imaging of selected areas on Van Gogh's Sunflowers (Van Gogh Museum, Amsterdam) revealed the presence of two subtypes of CY: the light-fast monoclinic PbCrO4 (LF-CY) and the light-sensitive monoclinic PbCr1-xSxO4 (x approximate to 0.5; LS-CY). The latter was encountered in large parts of the painting (e.g., in the pale-yellow background and the bright-yellow petals, but also in the green stems and flower hearts), thus indicating their higher risk for past or future darkening. Overall, it is present in more than 50% of the CY regions. Preferred orientation of LS-CY allows observation of a significant ordering of the elongated crystallites along the direction of Van Gogh's brush strokes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000434949200023 Publication Date 2018-03-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited 10 Open Access  
  Notes ; The authors acknowledge financial support from BELSPO (Brussels) S2-ART, the NWO (The Hague) Science4Arts “ReVisRembrandt” project, the GOA Project Solarpaint (University of Antwerp Research Council), and the Interreg Smart*Light project. Raman analyses were performed using the European MOLAB platform, which is financially supported by the Horizon 2020 Programme (IPERION CH Grant 654028). The authors thank the staff of the Van Gogh Museum for their collaboration. ; Approved Most recent IF: 11.994  
  Call Number UA @ admin @ c:irua:153185 Serial 5517  
Permanent link to this record
 

 
Author Miliani, C.; Monico, L.; Melo, M.J.; Fantacci, S.; Angelin, E.M.; Romani, A.; Janssens, K. pdf  doi
openurl 
  Title Photochemistry of Artists' Dyes and Pigments : towards better understanding and prevention of colour change in works of art Type A1 Journal article
  Year 2018 Publication (up) Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume 57 Issue 25 Pages 7324-7334  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The absorption of light gives a pigment its colour and its reason for being, but it also creates excited states, that is, new molecules with an energy excess that can be dissipated through degradation pathways. Photodegradation processes provoke long-term, cumulative and irreversible colour changes (fading, darkening, blanching) of which the prediction and prevention are challenging tasks. Of all the environmental risks that affect heritage materials, light exposure is the only one that cannot be controlled without any impact on the optimal display of the exhibit. Light-induced alterations are not only associated with the pigment itself but also with its interactions with support/binder and, in turn, are further complicated by the nature of the environmental conditions. In this Minireview we investigate how chemistry, encompassing multi-scale analytical investigations of works of art, computational modelling and physical and chemical studies contributes to improve our prediction of artwork appearance before degradation and to establish effective preventive conservation strategies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000434949200006 Publication Date 2018-04-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited 10 Open Access  
  Notes ; We acknowledge: ACS and APS for the permission to adapt Figure 1c,d; RSC to adapt Figures 1e, 3c,d and 4a; Wiley and IUCr to adapt Figures 3b and 4b-d; for the detail of a Andean textile in Figure 5, Museum of Fine Arts, Boston, USA; for the illuminated initial in Figure 6, Torre do Tombo (ANTT). Financial support from the H2020 project IPERION-CH (GA. 654028) is gratefully acknowledged. ; Approved Most recent IF: 11.994  
  Call Number UA @ admin @ c:irua:153184 Serial 5769  
Permanent link to this record
 

 
Author Ozaydin, H.D.; Sahin, H.; Senger, R.T.; Peeters, F.M. doi  openurl
  Title Formation and diffusion characteristics of Pt clusters on Graphene, 1H-MoS2 and 1T-TaS2 Type A1 Journal article
  Year 2014 Publication (up) Annalen der Physik Abbreviated Journal Ann Phys-Berlin  
  Volume 526 Issue 9-10 Pages 423-429  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Many experiments have revealed that the surfaces of graphene and graphene-like structures can play an active role as a host surface for clusterization of transition metal atoms. Motivated by these observations, we investigate theoretically the adsorption, diffusion and magnetic properties of Pt clusters on three different two-dimensional atomic crystals using first principles density functional theory. We found that monolayers of graphene, molybdenum disulfide (1H-MoS2) and tantalum disulfide (1T-TaS2) provide different nucleation characteristics for Pt cluster formation. At low temperatures, while the bridge site is the most favorable site where the growth of a Pt cluster starts on graphene, top-Mo and top-Ta sites are preferred on 1H-MoS2 and 1T-TaS2, respectively. Ground state structures and magnetic properties of Pt-n clusters (n= 2,3,4) on three different monolayer crystal structures are obtained. We found that the formation of Pt-2 dimer and a triangle-shaped Pt-3 cluster perpendicular to the surface are favored over the three different surfaces. While bent rhombus shaped Pt-4 is formed on graphene, the formation of tetrahedral shaped clusters are more favorable on 1H-MoS2 and 1T-TaS2. Our study of the formation of Pt-n clusters on three different monolayers provides a gateway for further exploration of nanocluster formations on various surfaces.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Leipzig Editor  
  Language Wos 000343873700015 Publication Date 2014-06-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-3804; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.039 Times cited 10 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. is supported by a FWO Pegasus Long Marie Curie Fellowship. ; Approved Most recent IF: 3.039; 2014 IF: 3.048  
  Call Number UA @ lucian @ c:irua:121180 Serial 1247  
Permanent link to this record
 

 
Author Iyikanat, F.; Sahin, H.; Senger, R.T.; Peeters, F.M. url  doi
openurl 
  Title Ag and Au atoms intercalated in bilayer heterostructures of transition metal dichalcogenides and graphene Type A1 Journal article
  Year 2014 Publication (up) APL materials Abbreviated Journal Apl Mater  
  Volume 2 Issue 9 Pages 092801  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The diffusive motion of metal nanoparticles Au and Ag on monolayer and between bilayer heterostructures of transition metal dichalcogenides and graphene are investigated in the framework of density functional theory. We found that the minimum energy barriers for diffusion and the possibility of cluster formation depend strongly on both the type of nanoparticle and the type of monolayers and bilayers. Moreover, the tendency to form clusters of Ag and Au can be tuned by creating various bilayers. Tunability of the diffusion characteristics of adatoms in van der Waals heterostructures holds promise for controllable growth of nanostructures. (C) 2014 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000342568000020 Publication Date 2014-08-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2166-532X ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.335 Times cited 10 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. H.S. is supported by a FWO Pegasus Marie Curie Fellowship. F.I. and R.T.S. acknowledge the support from TUBITAK Project No. 111T318. ; Approved Most recent IF: 4.335; 2014 IF: NA  
  Call Number UA @ lucian @ c:irua:119950 Serial 82  
Permanent link to this record
 

 
Author Cidu, R.; Fanfani, L.; Shand, P.; Edmunds, W.M.; Van 't dack, L.; Gijbels, R. doi  openurl
  Title Hydrogeochemical exploration for gold in the Osilo area, Sardinia, Italy Type A1 Journal article
  Year 1995 Publication (up) Applied geochemistry Abbreviated Journal Appl Geochem  
  Volume 10 Issue Pages 517-530  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos A1995TP12700003 Publication Date 2002-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0883-2927; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.268 Times cited 10 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:12273 Serial 1536  
Permanent link to this record
 

 
Author Kálna, K.; Mo×ko, M.; Peeters, F.M. openurl 
  Title Electron capture in GaAs quantum wells via electron-electron and optic phonon scattering Type A1 Journal article
  Year 1996 Publication (up) Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 68 Issue Pages 117-119  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos A1996TM84700040 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 10 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:15802 Serial 912  
Permanent link to this record
 

 
Author Verreck, D.; Verhulst, A.S.; Sorée, B.; Collaert, N.; Mocuta, A.; Thean, A.; Groeseneken, G. doi  openurl
  Title Improved source design for p-type tunnel field-effect transistors : towards truly complementary logic Type A1 Journal article
  Year 2014 Publication (up) Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 105 Issue 24 Pages 243506  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Complementary logic based on tunnel field-effect transistors (TFETs) would drastically reduce power consumption thanks to the TFET's potential to obtain a sub-60 mV/dec subthreshold swing (SS). However, p-type TFETs typically do not meet the performance of n-TFETs for direct bandgap III-V configurations. The p-TFET SS stays well above 60 mV/dec, due to the low density of states in the conduction band. We therefore propose a source configuration in which a highly doped region is maintained only near the tunnel junction. In the remaining part of the source, the hot carriers in the exponential tail of the Fermi-Dirac distribution are blocked by reducing the doping degeneracy, either with a source section with a lower doping concentration or with a heterostructure. We apply this concept to n-p-i-p configurations consisting of In0.53Ga0.47As and an InP-InAs heterostructure. 15-band quantum mechanical simulations predict that the configurations with our source design can obtain sub-60 mV/dec SS, with an on-current comparable to the conventional source design. (C) 2014 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000346643600076 Publication Date 2014-12-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951;1077-3118; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 10 Open Access  
  Notes ; D. Verreck acknowledges the support of a Ph.D. stipend from the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen). This work was supported by imec's Industrial Affiliation Program. ; Approved Most recent IF: 3.411; 2014 IF: 3.302  
  Call Number UA @ lucian @ c:irua:122798 Serial 1568  
Permanent link to this record
 

 
Author Yang, W.; Chang, K.; Wu, X.G.; Zheng, H.Z.; Peeters, F.M.; url  doi
openurl 
  Title Interplay between s-d exchange interaction and Rashba effect: spin-polarized transport Type A1 Journal article
  Year 2006 Publication (up) Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 89 Issue 13 Pages  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000240875800069 Publication Date 2006-09-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 10 Open Access  
  Notes Approved Most recent IF: 3.411; 2006 IF: 3.977  
  Call Number UA @ lucian @ c:irua:61009 Serial 1703  
Permanent link to this record
 

 
Author Costamagna, S.; Schulz, A.; Covaci, L.; Peeters, F. doi  openurl
  Title Partially unzipped carbon nanotubes as magnetic field sensors Type A1 Journal article
  Year 2012 Publication (up) Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 100 Issue 23 Pages 232104-232104,3  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The conductance through graphene nanoribbons (GNR) connected to a partially unzipped carbon nanotube (CNT) is studied in the presence of an external magnetic field applied parallel to the long axis of the tube by means of non-equilibrium Green's function technique. We consider CNTs that are partially unzipped to form armchair-GNR/zigzag-CNT/armchair-GNR or zigzag-GNR/armchair-CNT/zigzag-GNR junctions. We find that the inclusion of a longitudinal magnetic field affects the electronic states only in the CNT region, leading to the suppression of the conductance at low energies. We demonstrate that both types of junctions can be used as magnetic field sensors. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4726039]  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000305089900038 Publication Date 2012-06-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 10 Open Access  
  Notes ; L.C. acknowledges support from the Flemish Science Foundation (FWO-Vl) and S.C. from the Belgian Science Foundation (BELSPO). This work is supported by the ESF-EuroGRAPHENE Project CONGRAN. ; Approved Most recent IF: 3.411; 2012 IF: 3.794  
  Call Number UA @ lucian @ c:irua:99083 Serial 2556  
Permanent link to this record
 

 
Author Kalkert, C.; Krisponeit, J.-O.; Esseling, M.; Lebedev, O.I.; Moshnyaga, V.; Damaschke, B.; Van Tendeloo, G.; Samwer, K. pdf  doi
openurl 
  Title Resistive switching at manganite/manganite interfaces Type A1 Journal article
  Year 2011 Publication (up) Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 99 Issue 13 Pages 132512-132512,3  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We report bipolar resistive switching between the interfaces of manganite nanocolumns. La0.7Sr0.3MnO3 films were prepared on Al2O3 substrates, where the films grow in nanocolumns from the substrate to the surface. Conductive atomic force microscopy directly detects that the resistive switching is located at the boundaries of the grains. Furthermore, mesoscopic transport measurements reveal a tunnel magnetoresistance. In combination with the resistive switching, this leads to a total of four different resistive states.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000295618000052 Publication Date 2011-09-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 10 Open Access  
  Notes Approved Most recent IF: 3.411; 2011 IF: 3.844  
  Call Number UA @ lucian @ c:irua:91884 Serial 2881  
Permanent link to this record
 

 
Author Yang, W.; Chang, K.; Peeters, F.M. pdf  doi
openurl 
  Title Spin-polarized transport of two-dimensional electron gas embedded in a diluted magnetic semiconductor Type A1 Journal article
  Year 2005 Publication (up) Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 86 Issue 19 Pages 192107-3  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The spin-polarized transport property of a diluted magnetic semiconductor two-dimensional electron gas is investigated theoretically at low temperature. A large current polarization can be found in this system even at small magnetic fields and oscillates with increasing magnetic field while the carrier polarization is vanishingly small. The magnitude as well as the sign of the current polarization can be tuned by varying magnetic field, the electron density and the Mn concentration. (c) 2005 American Institute of Physics.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000229397900042 Publication Date 2005-05-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 10 Open Access  
  Notes Approved Most recent IF: 3.411; 2005 IF: 4.127  
  Call Number UA @ lucian @ c:irua:103163 Serial 3097  
Permanent link to this record
 

 
Author Dong, H.M.; Tao, Z.H.; Li, L.L.; Huang, F.; Xu, W.; Peeters, F.M. pdf  doi
openurl 
  Title Substrate dependent terahertz response of monolayer WS₂ Type A1 Journal article
  Year 2020 Publication (up) Applied Physics Letters Abbreviated Journal Appl Phys Lett  
  Volume 116 Issue 20 Pages 1-4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate experimentally the terahertz (THz) optoelectronic properties of monolayer (ML) tungsten disulfide (WS2) placed on different substrates using THz time-domain spectroscopy (TDS). We find that the THz optical response of n-type ML WS2 depends sensitively on the choice of the substrate. This dependence is found to be a consequence of substrate induced charge transfer, extra scattering centers, and electronic localization. Through fitting the experimental results with the Drude-Smith formula, we can determine the key sample parameters (e.g., the electronic relaxation time, electron density, and electronic localization factor) of ML WS2 on different substrates. The temperature dependence of these parameters is examined. Our results show that the THz TDS technique is an efficient non-contact method that can be utilized to characterize and investigate the optoelectronic properties of nano-devices based on ML WS2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000536282300001 Publication Date 2020-05-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4 Times cited 10 Open Access  
  Notes ; This work was supported by the Fundamental Research Funds for the Central Universities (Grant No. 2018GF09) and by the National Natural Science foundation of China (Nos. U1930116 and 11574319). ; Approved Most recent IF: 4; 2020 IF: 3.411  
  Call Number UA @ admin @ c:irua:170255 Serial 6620  
Permanent link to this record
 

 
Author Adriaensen, L.; Vangaever, F.; Gijbels, R. doi  openurl
  Title Organic SIMS: the influence of time on the ion yield enhancement by silver and gold deposition Type A1 Journal article
  Year 2004 Publication (up) Applied surface science Abbreviated Journal Appl Surf Sci  
  Volume 231/232 Issue Pages 256-260  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000222427700049 Publication Date 2004-04-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.387 Times cited 10 Open Access  
  Notes Approved Most recent IF: 3.387; 2004 IF: 1.497  
  Call Number UA @ lucian @ c:irua:46804 Serial 2510  
Permanent link to this record
 

 
Author Baskurt, M.; Eren, I.; Yagmurcukardes, M.; Sahin, H. pdf  doi
openurl 
  Title Vanadium dopant- and strain-dependent magnetic properties of single-layer VI₃ Type A1 Journal article
  Year 2020 Publication (up) Applied Surface Science Abbreviated Journal Appl Surf Sci  
  Volume 508 Issue Pages 144937-6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Motivated by the recent synthesis of two-dimensional VI3 [Kong et al. Adv. Mater. 31, 1808074 (2019)], we investigate the effect of V doping on the magnetic and electronic properties of monolayer VI3 by means of first-principles calculations. The dynamically stable semiconducting ferromagnetic (FM) and antiferromagnetic (AFM) phases of monolayer VI3 are found to display distinctive vibrational features that the magnetic state can be distinguished by Raman spectroscopy. In order to clarify the effect of experimentally observed excessive V atoms, the magnetic and electronic properties of the V-doped VI3 structures are analyzed. Our findings indicate that partially doped VI3 structures display FM ground state while the fully-doped structure exhibits AFM ground state. The fully-doped monolayer VI3 is found to be a semiconductor with a relatively larger band gap than its pristine structure. In addition, strain-dependent electronic and magnetic properties of fully- and partially-doped VI3 structures reveal that pristine monolayer displays a FM-to-AFM phase transition with robust semiconducting nature for 5% of compressive strain, while fully-doped monolayer VI3 structure possesses AFM-to-FM semiconducting transition at tensile strains larger than 4%. In contrast, the partially-doped VI3 monolayers are found to display robust FM ground state under biaxial strain. Its dopant and strain tunable electronic and magnetic nature makes monolayer VI3 a promising material for applications in nanoscale spintronic devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000516818700040 Publication Date 2019-12-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.7 Times cited 10 Open Access  
  Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. Acknowledges financial support from the TUBITAK under the project number 117F095. H.S. acknowledges support from Turkish Academy of Sciences under the GEBIP program. This work is supported by the Flemish Science Foundation (FWO-Vl) by a postdoctoral fellowship (M.Y.). ; Approved Most recent IF: 6.7; 2020 IF: 3.387  
  Call Number UA @ admin @ c:irua:168595 Serial 6652  
Permanent link to this record
 

 
Author Ke, X.; Bittencourt, C.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Possibilities and limitations of advanced transmission electron microscopy for carbon-based nanomaterials Type A1 Journal article
  Year 2015 Publication (up) Beilstein journal of nanotechnology Abbreviated Journal Beilstein J Nanotech  
  Volume 6 Issue 6 Pages 1541-1557  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract A major revolution for electron microscopy in the past decade is the introduction of aberration correction, which enables one to increase both the spatial resolution and the energy resolution to the optical limit. Aberration correction has contributed significantly to the imaging at low operating voltages. This is crucial for carbon-based nanomaterials which are sensitive to electron irradiation. The research of carbon nanomaterials and nanohybrids, in particular the fundamental understanding of defects and interfaces, can now be carried out in unprecedented detail by aberration-corrected transmission electron microscopy (AC-TEM). This review discusses new possibilities and limits of AC-TEM at low voltage, including the structural imaging at atomic resolution, in three dimensions and spectroscopic investigation of chemistry and bonding. In situ TEM of carbon-based nanomaterials is discussed and illustrated through recent reports with particular emphasis on the underlying physics of interactions between electrons and carbon atoms.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000357977300001 Publication Date 2015-07-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2190-4286; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.127 Times cited 10 Open Access  
  Notes 246791 Countatoms Approved Most recent IF: 3.127; 2015 IF: 2.670  
  Call Number c:irua:126857 Serial 2682  
Permanent link to this record
 

 
Author Khosravian, N.; Bogaerts, A.; Huygh, S.; Yusupov, M.; Neyts, E.C. url  doi
openurl 
  Title How do plasma-generated OH radicals react with biofilm components? Insights from atomic scale simulations Type A1 Journal article
  Year 2015 Publication (up) Biointerphases Abbreviated Journal Biointerphases  
  Volume 10 Issue 10 Pages 029501  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The application of nonthermal atmospheric pressure plasma is emerging as an alternative and efficient technique for the inactivation of bacterial biofilms. In this study, reactive molecular dynamics simulations were used to examine the reaction mechanisms of hydroxyl radicals, as key reactive oxygen plasma species in biological systems, with several organic molecules (i.e., alkane, alcohol, carboxylic acid, and amine), as prototypical components of biomolecules in the biofilm. Our results demonstrate that organic molecules containing hydroxyl and carboxyl groups may act as trapping agents for the OH radicals. Moreover, the impact of OH radicals on N-acetyl-glucosamine, as constituent component of staphylococcus epidermidis biofilms, was investigated. The results show how impacts of OH radicals lead to hydrogen abstraction and subsequent molecular damage. This study thus provides new data on the reaction mechanisms of plasma species, and particularly the OH radicals, with fundamental components of bacterial biofilms.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000357195600019 Publication Date 2014-12-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1934-8630;1559-4106; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.603 Times cited 10 Open Access  
  Notes Approved Most recent IF: 2.603; 2015 IF: 3.374  
  Call Number c:irua:121371 Serial 1492  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: