toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Siriwardane, E.M.D.; Demiroglu, I.; Sevik, C.; Peeters, F.M.; Çakir, D. pdf  url
doi  openurl
  Title Assessment of sulfur-functionalized MXenes for li-ion battery applications Type A1 Journal article
  Year 2020 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 124 Issue 39 Pages 21293-21304  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The surface termination of MXenes greatly determines the electrochemical properties and ion kinetics on their surfaces. So far, hydroxyl-, oxygen-, and fluorine-terminated MXenes have been widely studied for energy storage applications. Recently, sulfur-functionalized MXene structures, which possess low diffusion barriers, have been proposed as candidate materials to enhance battery performance. We performed first-principles calculations on the structural, stability, electrochemical, and ion dynamic properties of Li-adsorbed sulfur-functionalized groups 3B, 4B, 5B, and 6B transition-metal (M)-based MXenes (i.e., M2CS2 with M = Sc, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W). We performed phonon calculations, which indicated that all of the above M2CS2 MXenes, except for Sc, are dynamically stable at T = 0 K. The ground-state structure of each M2CS2 monolayer depends on the type of M atom. For instance, while sulfur prefers to sit at the FCC site on Ti2CS2, it occupies the HCP site of Cr-based MXene. We determined the Li adsorption configurations at different concentrations using the cluster expansion method. The highest maximum open-circuit voltages were computed for the group 4B element (i.e., Ti, Zr, and Hf)-based M2CS2, which are larger than 2.1 V, while their average voltages are approximately 1 V. The maximum voltage for the group 6B element (i.e., Cr, Mo, W)-based M2CS2 is less than 1 V, and the average voltage is less than 0.71 V. We found that S functionalization is helpful for capacity improvements over the O-terminated MXenes. In this respect, the computed storage gravimetric capacity may reach up to 417.4 mAh/g for Ti2CS2 and 404.5 mAh/g for V2CS2. Ta-, Cr-, Mo-, and W-based M2CS2 MXenes show very low capacities, which are less than 100 mAh/g. The Li surface diffusion energy barriers for all of the considered MXenes are less than 0.22 eV, which is favorable for high charging and discharging rates. Finally, ab initio molecular dynamic simulations performed at 400 K and bond-length analysis with respect to Li concentration verify that selected promising systems are robust against thermally induced perturbations that may induce structural transformations or distortions and undesirable Li release.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000577151900008 Publication Date 2020-09-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 15 Open Access  
  Notes (down) ; Computational resources were provided by the HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules Foundation. This work was supported, in part, by The Scientific and Technological Research Council of Turkey (TUBITAK) under contract no. 118F512 and the Air Force Office of Scientific Research under award no. FA9550-19-1-7048. This work was performed in part at the Center for Nanoscale Materials, a U.S. Department of Energy Office of Science User. Use of the Center for Nanoscale Materials, an Office of Science user facility, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-06CH11357. This work was supported, in part, by The Scientific and Technological Research Council of Turkey (TUBITAK) under contract no. 118C026. ; Approved Most recent IF: 3.7; 2020 IF: 4.536  
  Call Number UA @ admin @ c:irua:172693 Serial 6452  
Permanent link to this record
 

 
Author Yagmurcukardes, M.; Peeters, F.M. url  doi
openurl 
  Title Stable single layer of Janus MoSO: strong out-of-plane piezoelectricity Type A1 Journal article
  Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 101 Issue 15 Pages 155205-155208  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using density functional theory based first-principles calculations, we predict the dynamically stable 1H phase of a Janus single layer composed of S-Mo-O atomic layers. It is an indirect band gap semiconductor exhibiting strong polarization arising from the charge difference on the two surfaces. In contrast to 1H phases of MoS2 and MoO2, Janus MoSO is found to possess four Raman active phonon modes and a large out-of-plane piezoelectric coefficient which is absent in fully symmetric single layers of MoS2 and MoO2. We investigated the electronic and phononic properties under applied biaxial strain and found an electronic phase transition with tensile strain while the conduction band edge displays a shift when under compressive strain. Furthermore, single-layer MoSO exhibits phononic stability up to 5% of compressive and 11% of tensile strain with significant phonon shifts. The phonon instability is shown to arise from the soft in-plane and out-of-plane acoustic modes at finite wave vector. The large strain tolerance of Janus MoSO is important for nanoelastic applications. In view of the dynamical stability even under moderate strain, we expect that Janus MoSO can be fabricated in the common 1H phase with a strong out-of-plane piezoelectric coefficient.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000528507900003 Publication Date 2020-04-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 49 Open Access  
  Notes (down) ; Computational resources were provided by the Flemish Supercomputer Center (VSC). M.Y. is supported by the Flemish Science Foundation (FWO-Vl) through a postdoctoral fellowship. ; Approved Most recent IF: 3.7; 2020 IF: 3.836  
  Call Number UA @ admin @ c:irua:169566 Serial 6614  
Permanent link to this record
 

 
Author Çakir, D.; Peeters, F.M.; Sevik, C. doi  openurl
  Title Mechanical and thermal properties of h-MX2 (M = Cr, Mo, W; X = O, S, Se, Te) monolayers : a comparative study Type A1 Journal article
  Year 2014 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 104 Issue 20 Pages 203110  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using density functional theory, we obtain the mechanical and thermal properties of MX2 monolayers (where M = Cr, Mo, W and X = O, S, Se, Te). The C-centered phonon frequencies (i.e., A(1), A(2)'', E ', and E ''), relative frequency values of A(1), and E ' modes, and mechanical properties (i.e., elastic constants, Young modulus, and Poisson's ratio) display a strong dependence on the type of metal and chalcogenide atoms. In each chalcogenide (metal) group, transition-metal dichalcogenides (TMDCs) with W (O) atom are found to be much stiffer. Consistent with their stability, the thermal expansion of lattice constants for TMDCs with O (Te) is much slower (faster). Furthermore, in a heterostructure of these materials, the difference of the thermal expansion of lattice constants between the individual components becomes quite tiny over the whole temperature range. The calculated mechanical and thermal properties show that TMDCs are promising materials for heterostructures. (C) 2014 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000337140800063 Publication Date 2014-05-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951;1077-3118; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 130 Open Access  
  Notes (down) ; Cem Sevik acknowledges the support from Scientific and Technological Research Council of Turkey (TUBITAK-113F096) and Anadolu University (BAP-1306F261 and -1306F281) to this project. We would also like to thank the ULAKBIM High Performance and Grid Computing Center for a generous time allocation for our projects. D. C. was supported by a FWO Pegasus-short Marie Curie Fellowship. Part of this work was supported by the Methusalem foundation of the Flemish Government. ; Approved Most recent IF: 3.411; 2014 IF: 3.302  
  Call Number UA @ lucian @ c:irua:118379 Serial 1974  
Permanent link to this record
 

 
Author Schoeters, B.; Neyts, E.C.; Khalilov, U.; Pourtois, G.; Partoens, B. url  doi
openurl 
  Title Stability of Si epoxide defects in Si nanowires : a mixed reactive force field/DFT study Type A1 Journal article
  Year 2013 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 15 Issue 36 Pages 15091-15097  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Modeling the oxidation process of silicon nanowires through reactive force field based molecular dynamics simulations suggests that the formation of Si epoxide defects occurs both at the Si/SiOx interface and at the nanowire surface, whereas for flat surfaces, this defect is experimentally observed to occur only at the interface as a result of stress. In this paper, we argue that the increasing curvature stabilizes the defect at the nanowire surface, as suggested by our density functional theory calculations. The latter can have important consequences for the opto-electronic properties of thin silicon nanowires, since the epoxide induces an electronic state within the band gap. Removing the epoxide defect by hydrogenation is expected to be possible but becomes increasingly difficult with a reduction of the diameter of the nanowires.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000323520600029 Publication Date 2013-07-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 3 Open Access  
  Notes (down) ; BS gratefully acknowledges financial support of the IWT, Institute for the Promotion of Innovation by Science and Technology in Flanders, via the SBO project “SilaSol”. This work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish government and the Universiteit Antwerpen. ; Approved Most recent IF: 4.123; 2013 IF: 4.198  
  Call Number UA @ lucian @ c:irua:110793 Serial 3130  
Permanent link to this record
 

 
Author Verberck, B.; Okazaki, T.; Tarakina, N.V. doi  openurl
  Title Ordered and disordered packing of coronene molecules in carbon nanotubes Type A1 Journal article
  Year 2013 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 15 Issue 41 Pages 18108-18114  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Monte Carlo simulations of coronene molecules in single-walled carbon nanotubes (SWCNTs) and dicoronylene molecules in SWCNTs are performed. Depending on the diameter D of the encapsulating SWCNT, regimes favoring the formation of ordered, one-dimensional (1D) stacks of tilted molecules (D <= 1.7 nm for coronene@SWCNT, 1.5 nm <= D <= 1.7 nm for dicoronylene@SWCNT) and regimes with disordered molecular arrangements and increased translational mobilities enabling the thermally induced polymerization of neighboring molecules resulting in the formation of graphene nanoribbons (GNRs) are observed. The results show that the diameter of the encapsulating nanotube is a crucial parameter for the controlled synthesis of either highly ordered 1D structures or GNR precursors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000325400600045 Publication Date 2013-09-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 9 Open Access  
  Notes (down) ; B.V. is a Postdoctoral Fellow of the Research Foundation Flanders (FWO-VI). N.V.T. acknowledges funding by the Bavarian Ministry of Sciences, Research and the Arts. ; Approved Most recent IF: 4.123; 2013 IF: 4.198  
  Call Number UA @ lucian @ c:irua:112212 Serial 2502  
Permanent link to this record
 

 
Author Bafekry, A.; Mortazavic, B.; Shayesteh, S.F. pdf  doi
openurl 
  Title Band gap and magnetism engineering in Dirac half-metallic Na2C nanosheet via layer thickness, strain and point defects Type A1 Journal article
  Year 2019 Publication Journal of magnetism and magnetic materials Abbreviated Journal J Magn Magn Mater  
  Volume 491 Issue 491 Pages 165565  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Na2C is a novel two-dimensional material with Dirac Half-metal (DHM) characteristic, exhibiting a combination of single-spin massless Dirac fermions and half-semimetal. In this paper based on the first-principles calculations, we studied the mechanical, electronic, magnetic and optical properties of Na2C nanosheet. The elastic modulus of Na2C was measured to 18.5 N/m and isotropic, whereas it shows anisotropic tensile strengths of 2.85 and 2.04 N/m, for the loading along the zigzag and armchair directions, respectively. We found that Na2C, is a DHM with band gap of 0.7 eV in the up-spin channel and has 2 mu(B) magnetic moment per unit cell. In addition, we investigated the effects of number of atomic layers (thickness), electric field and strain on the possibility of further tuning of the electronic and magnetic properties of Na2C. Our calculations show that by increasing the number of layers from monolayer to bulk, a transition from DHM to ferromagnetic metal occurs with a high magnetic moments in the range of 16-30 mu(B). With applying an electric field on the Na2C bilayer (within the ferromagnetic and anti-ferromagnetic orders), energy band gap is slightly increased. In addition our results indicate that the electronic structure can be significantly modified by applying the mechanical straining. In this regard, under the biaxial strain (from 0% to – 8%) or large uniaxial strains (> – 6%), we observed the DHM to ferromagnetic-metal transition. Moreover, vacancy defects and atom substitutions can also effect the electronic and magnetic properties of Na2C nanosheet. Defective Na2C with single and double vacancies, was found to show the metallic response. With various atom substitutions this nanosheet exhibits; ferromagnetic-metal (Si and Be) with 5.2 and 3 mu(B); dilute-magnetic semiconductor (B and N) with 3 and 7 mu(B) magnetic moments, respectively. In the case of B or N atoms replacing the native C atom, the down-spin channel yields about 1 eV band gap. Interestingly, replacing the Na atoms in the native Na2C lattice with the Li can result in the formation of magnetic topological insulator phase with nontrivial band gap in the down-spin channel (25 meV and 0.15 eV) and up-spin channel (0.75 eV), in addition exhibit 8 mu(B) magnetic moment in the ground state.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000486396100010 Publication Date 2019-07-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-8853 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.63 Times cited 13 Open Access  
  Notes (down) ; B. M. appreciates the funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germanys Excellence Strategy within the Cluster of Excellence PhoenixD (EXC 2122, Project ID 390833453). We acknowledge OpenMX team for OpenMX code. ; Approved Most recent IF: 2.63  
  Call Number UA @ admin @ c:irua:163697 Serial 5408  
Permanent link to this record
 

 
Author Mortazavi, B.; Bafekry, A.; Shahrokhi, M.; Rabczuk, T.; Zhuang, X. pdf  doi
openurl 
  Title ZnN and ZnP as novel graphene-like materials with high Li-ion storage capacities Type A1 Journal article
  Year 2020 Publication Materials today energy Abbreviated Journal  
  Volume 16 Issue Pages Unsp 100392-8  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract In this work, we employed first-principles density functional theory (DFT) calculations to investigate the dynamical and thermal stability of graphene-like ZnX (X = N, P, As) nanosheets. We moreover analyzed the electronic, mechanical and optical properties of these novel two-dimensional (2D) systems. Acquired phonon dispersion relations reveal the absence of imaginary frequencies and thus confirming the dynamical stability of predicted monolayers. According to ab-initio molecular dynamics results however only ZnN and ZnP exhibit the required thermally stability. The elastic modulus of ZnN, ZnP and ZnAs are estimated to be 31, 21 and 17 N/m, respectively, and the corresponding tensile strengths values are 6.0, 4.9 and 4.0 N/m, respectively. Electronic band structure analysis confirms the metallic electronic character for the predicted monolayers. Results for the optical characteristics also indicate a reflectivity of 100% at extremely low energy levels, which is desirable for photonic and optoelectronic applications. According to our results, graphene-like ZnN and ZnP nanosheets can yield high capacities of 675 and 556 mAh/g for Li-ion storage, respectively. Acquired results confirm the stability and acceptable strength of ZnN and ZnP nanosheets and highlight their attractive application prospects in optical and energy storage systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000539083500049 Publication Date 2020-02-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2468-6069 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.3 Times cited 13 Open Access  
  Notes (down) ; B. M. and X. Z. appreciate the funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy within the Cluster of Excellence PhoenixD (EXC 2122, Project ID 390833453). ; Approved Most recent IF: 9.3; 2020 IF: NA  
  Call Number UA @ admin @ c:irua:169752 Serial 6655  
Permanent link to this record
 

 
Author Kao, K.-H.; Verhulst, A.S.; Van de Put, M.; Vandenberghe, W.G.; Sorée, B.; Magnus, W.; De Meyer, K. doi  openurl
  Title Tensile strained Ge tunnel field-effect transistors: k\cdot p material modeling and numerical device simulation Type A1 Journal article
  Year 2014 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 115 Issue 4 Pages 044505-44508  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Group IV based tunnel field-effect transistors generally show lower on-current than III-V based devices because of the weaker phonon-assisted tunneling transitions in the group IV indirect bandgap materials. Direct tunneling in Ge, however, can be enhanced by strain engineering. In this work, we use a 30-band k.p method to calculate the band structure of biaxial tensile strained Ge and then extract the bandgaps and effective masses at Gamma and L symmetry points in k-space, from which the parameters for the direct and indirect band-to-band tunneling (BTBT) models are determined. While transitions from the heavy and light hole valence bands to the conduction band edge at the L point are always bridged by phonon scattering, we highlight a new finding that only the light-holelike valence band is strongly coupling to the conduction band at the Gamma point even in the presence of strain based on the 30-band k.p analysis. By utilizing a Technology Computer Aided Design simulator equipped with the calculated band-to-band tunneling BTBT models, the electrical characteristics of tensile strained Ge point and line tunneling devices are self-consistently computed considering multiple dynamic nonlocal tunnel paths. The influence of field-induced quantum confinement on the tunneling onset is included. Our simulation predicts that an on-current up to 160 (260) mu A/mu m can be achieved along with on/off ratio > 10(6) for V-DD = 0.5V by the n-type (p-type) line tunneling device made of 2.5% biaxial tensile strained Ge. (C) 2014 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000331210800113 Publication Date 2014-01-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979;1089-7550; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 26 Open Access  
  Notes (down) ; Authors would like to thank Dr. Mohammad Ali Pourghaderi for useful discussions on the nonparabolicity. Authors would also like to thank Professor Eddy Simoen and Dr. Yosuke Shimura for useful discussions about the validity of modeled bandgaps and effective masses. This work was also supported by IMEC's Industrial Affiliation Program. ; Approved Most recent IF: 2.068; 2014 IF: 2.183  
  Call Number UA @ lucian @ c:irua:115800 Serial 3505  
Permanent link to this record
 

 
Author Dzhurakhalov, A.A.; Peeters, F.M. pdf  doi
openurl 
  Title Structure and energetics of hydrogen chemisorbed on a single graphene layer to produce graphane Type A1 Journal article
  Year 2011 Publication Carbon Abbreviated Journal Carbon  
  Volume 49 Issue 10 Pages 3258-3266  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Integrated Molecular Plant Physiology Research (IMPRES)  
  Abstract Chemisorption of hydrogen on graphene is studied using atomistic simulations with the second generation of reactive empirical bond order Brenner inter-atomic potential. The lowest energy adsorption sites and the most important metastable sites are determined. The H concentration is varied from a single H atom, to clusters of H atoms up to full coverage. We found that when two or more H atoms are present, the most stable configurations of H chemisorption on a single graphene layer are ortho hydrogen pairs adsorbed on one side or on both sides of the graphene sheet. The latter has the highest hydrogen binding energy. The next stable configuration is the orthopara pair combination, and then para hydrogen pairs. The structural changes of graphene caused by chemisorbed hydrogen are discussed and are compared with existing experimental data and other theoretical calculations. The obtained results will be useful for nanoengineering of graphene by hydrogenation and for hydrogen storage.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000291959300014 Publication Date 2011-04-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 46 Open Access  
  Notes (down) ; A.D. thanks M.W. Zhao for a useful correspondence. This work was supported by the Belgian Science Policy (IAP) and the Flemish Science Foundation (FWO-VI). ; Approved Most recent IF: 6.337; 2011 IF: 5.378  
  Call Number UA @ lucian @ c:irua:90877 Serial 3275  
Permanent link to this record
 

 
Author Wendelen, W.; Dzhurakhalov, A.A.; Peeters, F.M.; Bogaerts, A. pdf  doi
openurl 
  Title Combined molecular dynamics: continuum study of phase transitions in bulk metals under ultrashort pulsed laser irradiation Type A1 Journal article
  Year 2010 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 114 Issue 12 Pages 5652-5660  
  Keywords A1 Journal article; Integrated Molecular Plant Physiology Research (IMPRES); Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The phase transition processes induced by ultrashort, 100 fs pulsed laser irradiation of Au, Cu, and Ni are studied by means of a combined atomistic-continuum approach. A moderately low absorbed laser fluence range, from 200 to 600 J/m2 is considered to study phase transitions by means of a local and a nonlocal order parameter. At low laser fluences, the occurrence of layer-by-layer evaporation has been observed, which suggests a direct solid to vapor transition. The calculated amount of molten material remains very limited under the conditions studied, especially for Ni. Therefore, our results show that a kinetic equation that describes a direct solid to vapor transition might be the best approach to model laser-induced phase transitions by continuum models. Furthermore, the results provide more insight into the applicability of analytical superheating theories that were implemented in continuum models and help the understanding of nonequilibrium phase transitions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000275855600044 Publication Date 2010-01-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 2 Open Access  
  Notes (down) ; A.D. gratefully acknowledges Professor M. Hot (ULB, Brussels) for the basic MD-code that was modified further for the laser-induced melting processes. W.W, and A.D. are thankful to Professor L.V. Zhigilei for useful discussions and advices. The calculations were performed on the CALCUA computing facility of the University of Antwerp. This work was supported by the Belgian Science Policy (IAP). ; Approved Most recent IF: 4.536; 2010 IF: 4.524  
  Call Number UA @ lucian @ c:irua:81391 Serial 402  
Permanent link to this record
 

 
Author Varykhalov, A.; Marchenko, D.; Sanchez-Barriga, J.; Scholz, M.R.; Verberck, B.; Trauzettel, B.; Wehling, T.O.; Carbone, C.; Rader, O. url  doi
openurl 
  Title Intact dirac cones at broken sublattice symmetry : photoemission study of graphene on Ni and Co Type A1 Journal article
  Year 2012 Publication Physical review X Abbreviated Journal Phys Rev X  
  Volume 2 Issue 4 Pages 041017-10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The appearance of massless Dirac fermions in graphene requires two equivalent carbon sublattices of trigonal shape. While the generation of an effective mass and a band gap at the Dirac point remains an unresolved problem for freestanding extended graphene, it is well established by breaking translational symmetry by confinement and by breaking sublattice symmetry by interaction with a substrate. One of the strongest sublattice-symmetry-breaking interactions with predicted and measured band gaps ranging from 400 meV to more than 3 eV has been attributed to the interfaces of graphene with Ni and Co, which are also promising spin-filter interfaces. Here, we apply angle-resolved photoemission to epitaxial graphene on Ni (111) and Co(0001) to show the presence of intact Dirac cones 2.8 eV below the Fermi level. Our results challenge the common belief that the breaking of sublattice symmetry by a substrate and the opening of the band gap at the Dirac energy are in a straightforward relation. A simple effective model of a biased bilayer structure composed of graphene and a sublattice-symmetry-broken layer, corroborated by density-functional-theory calculations, demonstrates the general validity of our conclusions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication College Park, Md Editor  
  Language Wos 000312703200001 Publication Date 2012-12-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2160-3308; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.789 Times cited 86 Open Access  
  Notes (down) ; A. V. acknowledges helpful discussions with N. Sandler. This work was supported by SPP 1459 of the Deutsche Forschungsgemeinschaft. B. V. acknowledges support from the Research Foundation Flanders (FWO-Vlaanderen). B. T. and T. O. W. would like to thank the KITP at Santa Barbara for hospitality during the completion of this work. ; Approved Most recent IF: 12.789; 2012 IF: 6.711  
  Call Number UA @ lucian @ c:irua:105964 Serial 1677  
Permanent link to this record
 

 
Author de Sousa, A.A.; Chaves, A.; Pereira, T.A.S.; Farias, G.A.; Peeters, F.M. doi  openurl
  Title Quantum tunneling between bent semiconductor nanowires Type A1 Journal article
  Year 2015 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 118 Issue 118 Pages 174301  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We theoretically investigate the electronic transport properties of two closely spaced L-shaped semiconductor quantum wires, for different configurations of the output channel widths as well as the distance between the wires. Within the effective-mass approximation, we solve the time-dependent Schrodinger equation using the split-operator technique that allows us to calculate the transmission probability, the total probability current, the conductance, and the wave function scattering between the energy subbands. We determine the maximum distance between the quantum wires below which a relevant non-zero transmission is still found. The transmission probability and the conductance show a strong dependence on the width of the output channel for small distances between the wires. (C) 2015 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000364584200020 Publication Date 2015-11-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 7 Open Access  
  Notes (down) ; A. A. Sousa was financially supported by CAPES, under the PDSE Contract No. BEX 7177/13-5. T. A. S. Pereira was financially supported by PRONEX/CNPq/FAPEMAT 850109/2009 and by CAPES under process BEX 3299/13-9. This work was financially supported by PRONEX/CNPq/FUNCAP, the Science Without Borders program and the bilateral project CNPq-FWO. ; Approved Most recent IF: 2.068; 2015 IF: 2.183  
  Call Number UA @ lucian @ c:irua:129544 Serial 4234  
Permanent link to this record
 

 
Author Van Boxem, R.; Partoens, B.; Verbeeck, J. url  doi
openurl 
  Title Rutherford scattering of electron vortices Type A1 Journal article
  Year 2014 Publication Physical review : A : atomic, molecular and optical physics Abbreviated Journal Phys Rev A  
  Volume 89 Issue 3 Pages 032715-32719  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract By considering a cylindrically symmetric generalization of a plane wave, the first-order Born approximation of screened Coulomb scattering unfolds two new dimensions in the scattering problem: transverse momentum and orbital angular momentum of the incoming beam. In this paper, the elastic Coulomb scattering amplitude is calculated analytically for incoming Bessel beams. This reveals novel features occurring for wide-angle scattering and quantitative insights for small-angle vortex scattering. The result successfully generalizes the well-known Rutherford formula, incorporating transverse and orbital angular momentum into the formalism.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000333690500008 Publication Date 2014-03-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1050-2947;1094-1622; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.925 Times cited 34 Open Access  
  Notes (down) 312483-Esteem2; N246791 – Countatoms; 278510 Vortex; esteem2jra1; esteem2jra3 ECASJO_; Approved Most recent IF: 2.925; 2014 IF: 2.808  
  Call Number UA @ lucian @ c:irua:115562UA @ admin @ c:irua:115562 Serial 2936  
Permanent link to this record
 

 
Author Van Boxem, R.; Verbeeck, J.; Partoens, B. pdf  url
doi  openurl
  Title Spin effects in electron vortex states Type A1 Journal article
  Year 2013 Publication Europhysics letters Abbreviated Journal Epl-Europhys Lett  
  Volume 102 Issue 4 Pages 40010-40016  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract The recent experimental realization of electron vortex beams opens up a wide research domain previously unexplored. The present paper explores the relativistic properties of these electron vortex beams, and quantifies deviations from the scalar wave theory. It is common in electron optics to use the Schrodinger equation neglecting spin. The present paper investigates the role of spin and the total angular momentum J(z) and how it pertains to the vortex states. As an application, we also investigate if it is possible to use holographic reconstruction to create novel total angular momentum eigenstates in a transmission electron microscope. It is demonstrated that relativistic spin coupling effects disappear in the paraxial limit, and spin effects in holographically created electron vortex beams can only be exploited by using specialized magnetic apertures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Paris Editor  
  Language Wos 000321118600011 Publication Date 2013-06-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0295-5075;1286-4854; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.957 Times cited 11 Open Access  
  Notes (down) 312483 Esteem2; N246791 Countatoms; 278510 Vortex; esteem2jra1; esteem2jra3 ECASJO_; Approved Most recent IF: 1.957; 2013 IF: 2.269  
  Call Number UA @ lucian @ c:irua:109852 Serial 3087  
Permanent link to this record
 

 
Author Barbier, M.; Vasilopoulos, P.; Peeters, F.M.; Pereira, J.M. doi  openurl
  Title Band structure, density of states, and transmission in graphene bilayer superlattices Type A1 Journal article
  Year 2009 Publication AIP conference proceedings Abbreviated Journal  
  Volume 1199 Issue Pages 547-548  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The energy spectrum and density of states of graphene bilayer superlattices (SLs) are evaluated. We take into account doping and/or gating of the layers as well as tunnel coupling between them. In addition, we evaluate the transmission through such SLs and through single or double barriers. The transmission exhibits a strong dependence on the direction of the incident wave vector.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos 000281590800258 Publication Date 2010-01-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes (down) Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:84893 Serial 217  
Permanent link to this record
 

 
Author Maistrenko, Y.L.; Vasylenko, A.; Sudakov, O.; Levchenko, R.; Maistrenko, V.L. doi  openurl
  Title Cascades of multiheaded chimera states for coupled phase oscillators Type A1 Journal article
  Year 2014 Publication International journal of bifurcation and chaos in applied sciences and engineering Abbreviated Journal Int J Bifurcat Chaos  
  Volume 24 Issue 8 Pages 1440014  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Chimera state is a recently discovered dynamical phenomenon in arrays of nonlocally coupled oscillators, that displays a self-organized spatial pattern of coexisting coherence and incoherence. We discuss the appearance of the chimera states in networks of phase oscillators with attractive and with repulsive interactions, i.e. when the coupling respectively favors synchronization or works against it. By systematically analyzing the dependence of the spatiotemporal dynamics on the level of coupling attractivity/repulsivity and the range of coupling, we uncover that different types of chimera states exist in wide domains of the parameter space as cascades of the states with increasing number of intervals of irregularity, so-called chimera's heads. We report three scenarios for the chimera birth: (1) via saddle-node bifurcation on a resonant invariant circle, also known as SNIC or SNIPER, (2) via blue-sky catastrophe, when two periodic orbits, stable and saddle, approach each other creating a saddle-node periodic orbit, and (3) via homoclinic transition with complex multistable dynamics including an “eight-like” limit cycle resulting eventually in a chimera state.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Singapore Editor  
  Language Wos 000341494900015 Publication Date 2014-08-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0218-1274;1793-6551; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.329 Times cited Open Access  
  Notes (down) Approved Most recent IF: 1.329; 2014 IF: 1.078  
  Call Number UA @ lucian @ c:irua:119303 Serial 285  
Permanent link to this record
 

 
Author Peeters, F.M.; Partoens, B.; Schweigert, V.A.; Schweigert, I.V. pdf  openurl
  Title Classical atomic bilayers Type H1 Book chapter
  Year 1998 Publication Abbreviated Journal  
  Volume Issue Pages 523-527  
  Keywords H1 Book chapter; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Plenum Press Place of Publication New York Editor  
  Language Wos 000083193600095 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record;  
  Impact Factor Times cited Open Access  
  Notes (down) Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:24177 Serial 363  
Permanent link to this record
 

 
Author Peeters, F.M.; Vasilopoulos, P. url  doi
openurl 
  Title Electrical and thermal properties of a two-dimensional electron gas in a one-dimensional periodic potential Type A1 Journal article
  Year 1992 Publication Physical review: B Abbreviated Journal Phys Rev B  
  Volume 46 Issue Pages 4667-4680  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1992JK72500032 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.736 Times cited 148 Open Access  
  Notes (down) Approved INSTRUMENTS & INSTRUMENTATION 31/56 Q3 # NUCLEAR SCIENCE & TECHNOLOGY 9/32 Q2 # PHYSICS, PARTICLES & FIELDS 24/28 Q4 # SPECTROSCOPY 28/43 Q3 #  
  Call Number UA @ lucian @ c:irua:2998 Serial 890  
Permanent link to this record
 

 
Author Nikolaev, A.V.; Michel, K.H. doi  openurl
  Title Elusive s-f intrasite interactions and double exchange in solids: ferromagnetic versus nonmagnetic ground state Type A1 Journal article
  Year 2009 Publication Journal of experimental and theoretical physics Abbreviated Journal J Exp Theor Phys+  
  Volume 109 Issue 2 Pages 286-292  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract From the theory of many-electron states in atoms, we know that there exists a strong Coulomb repulsion, which results in the electronic term structure of atoms and is responsible for Hunds rules. By expanding the Coulomb on-site repulsion into a multipolar series, we derive this interaction and show that it is also present in solids as a correlation effect, which means that the interaction requires a multideterminant version of the Hartree-Fock method. Of particular interest is the case where this interaction couples states of localized ( f) and delocalized ( s) electrons. We show that the interaction is bilinear in the creation/annihilation operators for localized electrons and bilinear in the operators for conduction electrons. To study the coupling, we consider a simple model in the framework of an effective limited configuration interaction method with one localized f-electron and one itinerant s-electron per crystal site. The on-site multipole interaction between the f- and s-electrons is explicitly taken into account. It is shown that depending on the low-lying excitation spectrum imposed by the crystal electric field, the model can lead not only to ferromagnetism but also to a nonmagnetic state. The model is relevant for solids with localized and itinerant electron states.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Woodbury, N.Y. Editor  
  Language Wos 000270506500014 Publication Date 2009-09-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1063-7761;1090-6509; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.196 Times cited 3 Open Access  
  Notes (down) Approved Most recent IF: 1.196; 2009 IF: 0.871  
  Call Number UA @ lucian @ c:irua:79163 Serial 1027  
Permanent link to this record
 

 
Author Deo, P.S.; Schweigert, V.A.; Peeters, F.M. doi  openurl
  Title Hysteresis in mesoscopic superconducting disks: the Bean-Livingston barrier Type A1 Journal article
  Year 1999 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 59 Issue Pages 6039-6042  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000079254300016 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 59 Open Access  
  Notes (down) Approved Most recent IF: 3.836; 1999 IF: NA  
  Call Number UA @ lucian @ c:irua:24156 Serial 1545  
Permanent link to this record
 

 
Author Devreese, J.T.; Verbist, G.; Peeters, F.M. pdf  openurl
  Title Large bipolarons and high-Tc materials Type H3 Book chapter
  Year 1995 Publication Abbreviated Journal  
  Volume Issue Pages 385-391  
  Keywords H3 Book chapter; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Cambridge University Press Place of Publication Cambridge Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes (down) Approved no  
  Call Number UA @ lucian @ c:irua:11700 Serial 1778  
Permanent link to this record
 

 
Author Janssens, K.L.; Peeters, F.M.; Schweigert, V.A. doi  openurl
  Title Magnetic field dependence of the properties of excitons confined in a quantum disk Type A1 Journal article
  Year 2001 Publication Physica status solidi: B: basic research Abbreviated Journal Phys Status Solidi B  
  Volume 224 Issue Pages 763-768  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000168432100030 Publication Date 2004-11-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-1972;1521-3951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.674 Times cited 1 Open Access  
  Notes (down) Approved Most recent IF: 1.674; 2001 IF: 0.873  
  Call Number UA @ lucian @ c:irua:37311 Serial 1872  
Permanent link to this record
 

 
Author Deo, P.S.; Schweigert, V.A.; Peeters, F.M.; Geim, A.K. url  doi
openurl 
  Title Magnetization of mesoscopic superconducting discs Type A1 Journal article
  Year 1997 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 79 Issue Pages 4653-4656  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos A1997YK36500035 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 165 Open Access  
  Notes (down) Approved Most recent IF: 8.462; 1997 IF: 6.140  
  Call Number UA @ lucian @ c:irua:19275 Serial 1896  
Permanent link to this record
 

 
Author Deo, P.S.; Peeters, F.M.; Schweigert, V.A. doi  openurl
  Title Mesoscopic superconducting disks Type A1 Journal article
  Year 1999 Publication Superlattices and microstructures Abbreviated Journal Superlattice Microst  
  Volume 25 Issue Pages 1195-1211  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000082323800050 Publication Date 2002-09-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0749-6036; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.123 Times cited 22 Open Access  
  Notes (down) Approved Most recent IF: 2.123; 1999 IF: 0.649  
  Call Number UA @ lucian @ c:irua:26991 Serial 2001  
Permanent link to this record
 

 
Author Ivanov, V.A.; Betouras, J.J.; Peeters, F.M. pdf  openurl
  Title MgB2 : superconductivity and pressure effects Type P1 Proceeding
  Year 2003 Publication Abbreviated Journal  
  Volume Issue Pages 35-46  
  Keywords P1 Proceeding; Condensed Matter Theory (CMT)  
  Abstract We present a Ginzburg-Landau theory for a two-band superconductor with emphasis on MgB2. We propose experiments which lead to identification of the possible scenarios: whether both sigma- and pi-bands superconduct or sigma-alone. According to the second scenario a microscopic theory of superconducting MgB2 is proposed based on the strongly interacting or-electrons and non-correlated pi-electrons of boron ions. The kinematic and Coulomb interactions of sigma-electrons provide the superconducting state with an anisotropic gap of s(*)-wave symmetry. The critical temperature T-c has a non-monotonic dependence on the distance r between the centers of gravity of sigma- and pi-bands. The position of MgB2 on a bell-shaped curve T-c (r) is identified in the overdoped region. The derived superconducting density of electronic states is in agreement with available experimental and theoretical data. It is argued that the effects of pressure are crucial to identify the microscopic origin of superconductivity in MgB2. Possibilities for increase of T, are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Dordrecht Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume 106 Series Issue Edition  
  ISSN 1-4020-1372-8 ISBN Additional Links UA library record; WoS full record;  
  Impact Factor Times cited Open Access  
  Notes (down) Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:94869 Serial 2020  
Permanent link to this record
 

 
Author Ariskin, D.A.; Schweigert, I.V.; Alexandrov, A.L.; Bogaerts, A.; Peeters, F.M. doi  openurl
  Title Modeling of chemical processes in the low pressure capacitive radio frequency discharges in a mixture of Ar/C2H2 Type A1 Journal article
  Year 2009 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 105 Issue 6 Pages 063305,1-063305,9  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We study the properties of a capacitive 13.56 MHz discharge with a mixture of Ar/C<sub>2</sub>H<sub>2</sub> taking into account the plasmochemistry and growth of heavy hydrocarbons. A hybrid model was developed to combine the kinetic description for electron motion and the fluid approach for negative and positive ion transports and plasmochemical processes. A significant change in plasma parameters related to injection of 5.8% portion of acetylene in argon was observed and analyzed. We found that the electronegativity of the mixture is about 30%. The densities of negatively and positively charged heavy hydrocarbons are sufficiently large to be precursors for the formation of nanoparticles in the discharge volume.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000264774000059 Publication Date 2009-03-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 21 Open Access  
  Notes (down) Approved Most recent IF: 2.068; 2009 IF: 2.072  
  Call Number UA @ lucian @ c:irua:74496 Serial 2121  
Permanent link to this record
 

 
Author Payette, C.; Partoens, B.; Yu, G.; Gupta, J.A.; Austing, D.G.; Nair, S.V.; Amaha, S.; Tarucha, S. doi  openurl
  Title Modeling single-particle energy levels and resonance currents in a coherent electronic quantum dot mixer Type A1 Journal article
  Year 2009 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 94 Issue 22 Pages 222101,1-22101,3  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We present model calculations based on a coherent tunneling picture, which reproduce well both the single-particle energy level position and the resonant current strength at two typical anticrossings, one involving two levels and the other three levels in a coherent mixer composed of two weakly coupled vertical quantum dots. An essential ingredient is the inclusion of higher degree terms to account for deviations from an ideal elliptical parabolic confining potential in realistic dots. We also calculate density plots of the mixed states for the modified potential.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000266674300024 Publication Date 2009-06-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 5 Open Access  
  Notes (down) Approved Most recent IF: 3.411; 2009 IF: 3.554  
  Call Number UA @ lucian @ c:irua:77380 Serial 2139  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Milošević, M.V.; Peeters, F.M. doi  openurl
  Title Non commensurate vortex lattices in a composite antidot lattice or dc current Type A1 Journal article
  Year 2008 Publication Physica: C : superconductivity Abbreviated Journal Physica C  
  Volume 468 Issue 7/10 Pages 809-812  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000257355300070 Publication Date 2008-03-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.404 Times cited 2 Open Access  
  Notes (down) Approved Most recent IF: 1.404; 2008 IF: 0.740  
  Call Number UA @ lucian @ c:irua:70075 Serial 2343  
Permanent link to this record
 

 
Author Geim, A.K.; Grigorieva, I.V.; Dubonos, S.V.; Lok, J.G.S.; Maan, J.C.; Filippov, A.E.; Peeters, F.M. doi  openurl
  Title Phase transitions in individual sub-micrometre superconductors Type A1 Journal article
  Year 1997 Publication Nature Abbreviated Journal Nature  
  Volume 390 Issue Pages 259-262  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1997YG66700054 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 40.137 Times cited 370 Open Access  
  Notes (down) Approved Most recent IF: 40.137; 1997 IF: 27.368  
  Call Number UA @ lucian @ c:irua:19265 Serial 2595  
Permanent link to this record
 

 
Author Peeters, F.M. pdf  openurl
  Title Semiconductor Type H3 Book chapter
  Year 1997 Publication Abbreviated Journal  
  Volume Issue Pages 350-352  
  Keywords H3 Book chapter; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher McGraw-Hill Place of Publication New York Editor  
  Language Wos 000077204000044 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes (down) Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:19308 Serial 2982  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: