toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Yagmurcukardes, M.; Peeters, F.M. url  doi
openurl 
  Title Stable single layer of Janus MoSO: strong out-of-plane piezoelectricity Type A1 Journal article
  Year (down) 2020 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 101 Issue 15 Pages 155205-155208  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using density functional theory based first-principles calculations, we predict the dynamically stable 1H phase of a Janus single layer composed of S-Mo-O atomic layers. It is an indirect band gap semiconductor exhibiting strong polarization arising from the charge difference on the two surfaces. In contrast to 1H phases of MoS2 and MoO2, Janus MoSO is found to possess four Raman active phonon modes and a large out-of-plane piezoelectric coefficient which is absent in fully symmetric single layers of MoS2 and MoO2. We investigated the electronic and phononic properties under applied biaxial strain and found an electronic phase transition with tensile strain while the conduction band edge displays a shift when under compressive strain. Furthermore, single-layer MoSO exhibits phononic stability up to 5% of compressive and 11% of tensile strain with significant phonon shifts. The phonon instability is shown to arise from the soft in-plane and out-of-plane acoustic modes at finite wave vector. The large strain tolerance of Janus MoSO is important for nanoelastic applications. In view of the dynamical stability even under moderate strain, we expect that Janus MoSO can be fabricated in the common 1H phase with a strong out-of-plane piezoelectric coefficient.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000528507900003 Publication Date 2020-04-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 49 Open Access  
  Notes ; Computational resources were provided by the Flemish Supercomputer Center (VSC). M.Y. is supported by the Flemish Science Foundation (FWO-Vl) through a postdoctoral fellowship. ; Approved Most recent IF: 3.7; 2020 IF: 3.836  
  Call Number UA @ admin @ c:irua:169566 Serial 6614  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: