|   | 
Details
   web
Records
Author Moshnyaga, V.; Damaschke, B.; Shapoval, O.; Belenchuk, A.; Faupel, J.; Lebedev, O.I.; Verbeeck, J.; Van Tendeloo, G.; Mücksch, M.; Tsurkan, V.; Tidecks, R.; Samwer, K.
Title Corrigendum: Structural phase transition at the percolation threshold in epitaxial (La0.7Ca0.3MnO3)1-x:(MgO)x nanocomposite films Type A1 Journal article
Year 2005 Publication Nature materials Abbreviated Journal Nat Mater
Volume 4 Issue Pages 104
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1476-1122 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 39.737 Times cited Open Access
Notes (up) Approved Most recent IF: 39.737; 2005 IF: 15.941
Call Number UA @ lucian @ c:irua:54856 Serial 530
Permanent link to this record
 

 
Author Frederickx, P.; Verbeeck, J.; Schryvers, D.; Helary, D.; Darque-Ceretti, E.
Title Nanoparticles in lustre reconstructions Type P1 Proceeding
Year 2005 Publication Abbreviated Journal
Volume Issue Pages 169-175
Keywords P1 Proceeding; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication s.l. Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes (up) Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:55689 Serial 2262
Permanent link to this record
 

 
Author Lebedev, O.; Verbeeck, J.; Van Tendeloo, G.; Shapoval, O.; Belenchuk, A.; Moshnyaga, V.; Damaschke, B.; Samwer, K.
Title Structural phase transition in (La0.67Ca0.33MnO3)1-x: (MgO)x composite film Type H3 Book chapter
Year 2002 Publication Abbreviated Journal
Volume Issue Pages 1013-1014
Keywords H3 Book chapter; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication s.l. Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes (up) Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:54843 Serial 3248
Permanent link to this record
 

 
Author Liao, Z.L.; Green, R.J.; Gauquelin, N.; Gonnissen, J.; Van Aert, S.; Verbeeck, J.; et al.
Title Engineering properties by long range symmetry propagation initiated at perovskite heterostructure interface Type A1 Journal article
Year 2016 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater
Volume Issue Pages 1-25
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In epitaxial thin film systems, the crystal structure and its symmetry deviate from the bulk counterpart due to various mechanisms such as epitaxial strain and interfacial structural coupling, which induce an accompanying change in their properties. In perovskite materials, the crystal symmetry can be described by rotations of 6-fold coordinated transition metal oxygen octahedra, which are found to be altered at interfaces. Here, we unravel how the local oxygen octahedral coupling (OOC) at perovskite heterostructural interfaces initiates a different symmetry in epitaxial films and provide design rules to induce various symmetries in thin films by careful selecting appropriate combinations of substrate/buffer/film. Very interestingly we discovered that these combinations lead to symmetry changes throughout the full thickness of the film. Our results provide a deep insight into understanding the origin of induced crystal symmetry in a perovskite heterostructure and an intelligent route to achieve unique functional properties.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1616-301x ISBN Additional Links UA library record
Impact Factor 12.124 Times cited Open Access
Notes (up) Approved Most recent IF: 12.124
Call Number UA @ lucian @ c:irua:134842 Serial 4176
Permanent link to this record
 

 
Author Hoang, D.-Q.; Korneychuk, S.; Sankaran, K.J.; Pobedinskas, P.; Drijkoningen, S.; Turner, S.; Van Bael, M.K.; Verbeeck, J.; Nicley, S.S.; Haenen, K.
Title Direct nucleation of hexagonal boron nitride on diamond : crystalline properties of hBN nanowalls Type A1 Journal article
Year 2017 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 127 Issue Pages 17-24
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Hexagonal boron nitride (hBN) nanowalls were deposited by unbalanced radio frequency sputtering on (100)-oriented silicon, nanocrystalline diamond films, and amorphous silicon nitride (Si3N4) membranes. The hBN nanowall structures were found to grow vertically with respect to the surface of all of the substrates. To provide further insight into the nucleation phase and possible lattice distortion of the deposited films, the structural properties of the different interfaces were characterized by transmission electron microscopy. For Si and Si3N4 substrates, turbostratic and amorphous BN phases form a clear transition zone between the substrate and the actual hBN phase of the bulk nanowalls. However, surprisingly, the presence of these phases was suppressed at the interface with a nanocrystalline diamond film, leading to a direct coupling of hBN with the diamond surface, independent of the vertical orientation of the diamond grain. To explain these observations, a growth mechanism is proposed in which the hydrogen terminated surface of the nanocrystalline diamond film leads to a rapid formation of the hBN phase during the initial stages of growth, contrary to the case of Si and Si3N4 substrates. (C) 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454 ISBN Additional Links UA library record; ; WoS full record; WoS citing articles
Impact Factor 5.301 Times cited Open Access OpenAccess
Notes (up) Approved Most recent IF: 5.301
Call Number UA @ lucian @ c:irua:142398 Serial 4645
Permanent link to this record
 

 
Author Conings, B.; Babayigit, A.; Klug, M.; Bai, S.; Gauquelin, N.; Sakai, N.; Wang, J.T.-W.; Verbeeck, J.; Boyen, H.-G.; Snaith, H.
Title Getting rid of anti-solvents: gas quenching for high performance perovskite solar cells Type P1 Proceeding
Year 2018 Publication 2018 Ieee 7th World Conference On Photovoltaic Energy Conversion (wcpec)(a Joint Conference Of 45th Ieee Pvsc, 28th Pvsec & 34th Eu Pvsec) Abbreviated Journal
Volume Issue Pages
Keywords P1 Proceeding; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract As the field of perovskite optoelectronics developed, a plethora of strategies has arisen to control their electronic and morphological characteristics for the purpose of producing high efficiency devices. Unfortunately, despite this wealth of deposition approaches, the community experiences a great deal of irreproducibility between different laboratories, batches and preparation methods. Aiming to address this issue, we developed a simple deposition method based on gas quenching that yields smooth films for a wide range of perovskite compositions, in single, double, triple and quadruple cation varieties, and produces planar heterojunction devices with competitive efficiencies, so far up to 20%.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000469200401163 Publication Date 2018-12-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-5386-8529-7 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes (up) Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:160468 Serial 5365
Permanent link to this record
 

 
Author Guzzinati, G.; Ghielens, W.; Mahr, C.; Béché, A.; Rosenauer, A.; Calders, T.; Verbeeck, J.
Title Electron Bessel beam diffraction patterns, line scan of Si/SiGe multilayer Type Dataset
Year 2019 Publication Abbreviated Journal
Volume Issue Pages
Keywords Dataset; ADReM Data Lab (ADReM); Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes (up) Approved no
Call Number UA @ admin @ c:irua:169114 Serial 6865
Permanent link to this record
 

 
Author Guzzinati, G.; Das, P.P.; Zompra, A., A.; Nicopoulos, S.; Verbeeck, J.
Title Electron energy loss spectra of several organic compounds Type Dataset
Year 2020 Publication Abbreviated Journal
Volume Issue Pages
Keywords Dataset; Electron microscopy for materials research (EMAT)
Abstract We placed crystals of different compounds to explore the possibility of fingerprinting them through EELS. Here are representative datasets of 7 different compounds: b-cyclodextrin hexacarboxy cyclohexane tannin TH-15 peptide TH-27 peptide two different forms of piroxicam The datasets were collected at EMAT, using a monochromated FEI Titan3 TEM, within the scope of an EUSMI request. More information as well as analysis methodologies adopted for the data are detailed in the paper: Das et al. “Reliable Characterization of Organic & Pharmaceutical Compounds with High Resolution Monochromated EEL Spectroscopy”, Polymers 2020, 12(7), 1434.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes (up) Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:180654 Serial 6866
Permanent link to this record
 

 
Author Guzzinati, G.; Béché, A.; McGrouther, D.; Verbeeck, J.
Title Rotation of electron beams in the presence of localised, longitudinal magnetic fields Type Dataset
Year 2019 Publication Abbreviated Journal
Volume Issue Pages
Keywords Dataset; Electron microscopy for materials research (EMAT)
Abstract Electron Bessel beams have been generated by inserting an annular aperture in the illumination system of a TEM. These beams have passed through a localised magnetic field. As a result a low amount of image rotation (which is expected to be proportional to the longitudinal component of the magnetic field) is observed in the far field. A measure of this rotation should give access to the magneti field. The two datasets have been acquired in a FEI Titan3 microscope, operated at 300kV. The file focalseries.tif contains a series of images acquired varying the magnetic field through the objective lens. The file lineprofile.ser contains a series of images acquired by scanning the beam over a sample with several magnetised nanopillars. For reference, check the associated publication.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes (up) Approved no
Call Number UA @ admin @ c:irua:169135 Serial 6883
Permanent link to this record
 

 
Author Jannis, D.; Müller-Caspary, K.; Béché, A.; Oelsner, A.; Verbeeck, J.
Title Spectrocopic coincidence experiment in transmission electron microscopy Type Dataset
Year 2019 Publication Abbreviated Journal
Volume Issue Pages
Keywords Dataset; Electron microscopy for materials research (EMAT)
Abstract This dataset contains individual EEL and EDX events where for every event (electron or X-ray), their energy and time of arrival is stored. The experiment was performed in a transmission electron microscope (Tecnai Osiris) at 200 keV. The material investigated is an Al-Mg-Si-Cu alloy. The 'full_dataset.mat' contains the full dataset and the 'subset.mat' has the first five frames of the full dataset. The attached 'EELS-EDX.ipynb' is a jupyter notebook file. This file describes the data processing in order to observe the temporal correlation between the electrons and X-rays.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes (up) Approved no
Call Number UA @ admin @ c:irua:169112 Serial 6888
Permanent link to this record
 

 
Author Annys, A.; Jannis, D.; Verbeeck, J.
Title Core-loss EELS dataset and neural networks for element identification Type Dataset
Year 2023 Publication Abbreviated Journal
Volume Issue Pages
Keywords Dataset; Electron microscopy for materials research (EMAT)
Abstract We present a large dataset containing simulated core-loss electron energy loss spectroscopy (EELS) spectra with the elemental content as ground-truth labels. Additionally we present some neural networks trained on this data for element identification.  The simulated dataset contains zero padded core-loss spectra from 0 to 3072 eV, which represents 107 core-loss edges through all 80 elements from Be up to Bi. The core-loss edges are calculated from the generalised oscillator strength (GOS) database presented by Zhang et al.[1] Generic fine structures using lifetime broadened peaks are used to imitate fine structure due to solid-state effects in experimental spectra. Generic low-loss regions are used to imitate the effect of multiple scattering. Each spectrum contains at least one edge of a given query element and possibly additional edges depending on samples drawn from The Materials Project [2]. The dataset contains for each of the 80 elements: 7000 training spectra, 1500 test spectra, 600 validation spectra and 100 spectra representing only the query element. This results in a total 736 000 labeled spectra. Code on how to  – read the simulated data – transform HDF5 format to TFRecord format – train and evaluate neural networks using the simulated data – use the trained networks for automated element identification is available on GitHub at arnoannys/EELS_ID A full report on the simulation of the dataset and the training and evaluation of the neural networks can be found at:                    Annys, A., Jannis, D. & Verbeeck, J. Deep learning for automated materials characterisation in core-loss electron energy loss spectroscopy. Sci Rep 13, 13724 (2023). https://doi.org/10.1038/s41598-023-40943-7 [1] Zezhong Zhang, Ivan Lobato, Daen Jannis, Johan Verbeeck, Sandra Van Aert, & Peter Nellist. (2023). Generalised oscillator strength for core-shell electron excitation by fast electrons based on Dirac solutions (1.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.7729585 [2] Anubhav Jain, Shyue Ping Ong, Geoffroy Hautier, Wei Chen, William Davidson Richards, Stephen Dacek, Shreyas Cholia, Dan Gunter, David Skinner, Gerbrand Ceder, Kristin A. Persson; Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater 1 July 2013; 1 (1): 011002. [https://doi.org/10.1063/1.4812323](https://doi.org/10.1063/1.4812323)
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes (up) Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:203391 Serial 9015
Permanent link to this record
 

 
Author Zhang, Z.; Lobato, I.; Brown, H.; Jannis, D.; Verbeeck, J.; Van Aert, S.; Nellist, P.
Title Generalised oscillator strength for core-shell electron excitation by fast electrons based on Dirac solutions Type Dataset
Year 2023 Publication Abbreviated Journal
Volume Issue Pages
Keywords Dataset; Electron microscopy for materials research (EMAT)
Abstract Inelastic excitation as exploited in Electron Energy Loss Spectroscopy (EELS) contains a rich source of information that is revealed in the scattering process. To accurately quantify core-loss EELS, it is common practice to fit the observed spectrum with scattering cross-sections calculated using experimental parameters and a Generalized Oscillator Strength (GOS) database [1].   The GOS is computed using Fermi’s Golden Rule and orbitals of bound and excited states. Previously, the GOS was based on Hartree-Fock solutions [2], but more recently Density Functional Theory (DFT) has been used [3]. In this work, we have chosen to use the Dirac equation to incorporate relativistic effects and have performed calculations using Flexible Atomic Code (FAC) [4]. This repository contains a tabulated GOS database based on Dirac solutions for computing double differential cross-sections under experimental conditions.   We hope the Dirac-based GOS database can benefit the EELS community for both academic use and industry integration.   Database Details: – Covers all elements (Z: 1-108) and all edges – Large energy range: 0.01 – 4000 eV – Large momentum range: 0.05 -50 Å-1 – Fine log sampling: 128 points for energy and 256 points for momentum – Data format: GOSH [3]   Calculation Details: – Single atoms only; solid-state effects are not considered – Unoccupied states before continuum states of ionization are not considered; no fine structure – Plane Wave Born Approximation – Frozen Core Approximation is employed; electrostatic potential remains unchanged for orthogonal states when – core-shell electron is excited – Self-consistent Dirac–Fock–Slater iteration is used for Dirac calculations; Local Density Approximation is assumed for electron exchange interactions; continuum states are normalized against asymptotic form at large distances – Both large and small component contributions of Dirac solutions are included in GOS – Final state contributions are included until the contribution of the previous three states falls below 0.1%. A convergence log is provided for reference.   Version 1.1 release note: – Update to be consistent with GOSH data format [3], all the edges are now within a single hdf5 file. A notable change in particular, the sampling in momentum is in 1/m, instead of previously in 1/Å. Great thanks to Gulio Guzzinati for his suggestions and sending conversion script.  Version 1.2 release note: – Add “File Type / File version” information [1] Verbeeck, J., and S. Van Aert. Ultramicroscopy 101.2-4 (2004): 207-224. [2] Leapman, R. D., P. Rez, and D. F. Mayers. The Journal of Chemical Physics 72.2 (1980): 1232-1243. [3] Segger, L, Guzzinati, G, & Kohl, H. Zenodo (2023). doi:10.5281/zenodo.7645765 [4] Gu, M. F. Canadian Journal of Physics 86(5) (2008): 675-689.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access Not_Open_Access
Notes (up) Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:203392 Serial 9042
Permanent link to this record
 

 
Author Grünewald, L.; Chezganov, D.; De Meyer, R.; Orekhov, A.; Van Aert, S.; Bogaerts, A.; Bals, S.; Verbeeck, J.
Title Supplementary Information for “In-situ Plasma Studies using a Direct Current Microplasma in a Scanning Electron Microscope” Type Dataset
Year 2023 Publication Abbreviated Journal
Volume Issue Pages
Keywords Dataset; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Supplementary information for the article “In-situ Plasma Studies using a Direct Current Microplasma in a Scanning Electron Microscope” containing the videos of in-situ SEM imaging (mp4 files), raw data/images, and Jupyter notebooks (ipynb files) for data treatment and plots. Link to the preprint: https://doi.org/10.48550/arXiv.2308.15123 Explanation of the data files can be found in the Information.pdf file. The Videos folder contains the in-situ SEM image series mentioned in the paper. If there are any questions/bugs, feel free to contact me at lukas.grunewaldatuantwerpen.be
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access Not_Open_Access
Notes (up) Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:203389 Serial 9100
Permanent link to this record
 

 
Author Xu, H.; Li, H.; Gauquelin, N.; Chen, X.; Wu, W.-F.; Zhao, Y.; Si, L.; Tian, D.; Li, L.; Gan, Y.; Qi, S.; Li, M.; Hu, F.; Sun, J.; Jannis, D.; Yu, P.; Chen, G.; Zhong, Z.; Radovic, M.; Verbeeck, J.; Chen, Y.; Shen, B.
Title Giant tunability of Rashba splitting at cation-exchanged polar oxide interfaces by selective orbital hybridization Type A1 Journal article
Year 2024 Publication Advanced materials Abbreviated Journal
Volume Issue Pages
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The 2D electron gas (2DEG) at oxide interfaces exhibits extraordinary properties, such as 2D superconductivity and ferromagnetism, coupled to strongly correlated electrons in narrow d-bands. In particular, 2DEGs in KTaO3 (KTO) with 5d t2g orbitals exhibit larger atomic spin-orbit coupling and crystal-facet-dependent superconductivity absent for 3d 2DEGs in SrTiO3 (STO). Herein, by tracing the interfacial chemistry, weak anti-localization magneto-transport behavior, and electronic structures of (001), (110), and (111) KTO 2DEGs, unambiguously cation exchange across KTO interfaces is discovered. Therefore, the origin of the 2DEGs at KTO-based interfaces is dramatically different from the electronic reconstruction observed at STO interfaces. More importantly, as the interface polarization grows with the higher order planes in the KTO case, the Rashba spin splitting becomes maximal for the superconducting (111) interfaces approximately twice that of the (001) interface. The larger Rashba spin splitting couples strongly to the asymmetric chiral texture of the orbital angular moment, and results mainly from the enhanced inter-orbital hopping of the t2g bands and more localized wave functions. This finding has profound implications for the search for topological superconductors, as well as the realization of efficient spin-charge interconversion for low-power spin-orbitronics based on (110) and (111) KTO interfaces. An unambiguous cation exchange is discovered across the interfaces of (001), (110), and (111) KTaO3 2D electron gases fabricated at room temperature. Remarkably, the (111) interfaces with the highest superconducting transition temperature also turn out to show the strongest electron-phonon interaction and the largest Rashba spin splitting. image
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001219658400001 Publication Date 2024-03-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes (up) Approved no
Call Number UA @ admin @ c:irua:206037 Serial 9152
Permanent link to this record
 

 
Author Joy, R.M.; Pobedinskas, P.; Bourgeois, E.; Chakraborty, T.; Goerlitz, J.; Herrmann, D.; Noel, C.; Heupel, J.; Jannis, D.; Gauquelin, N.; D'Haen, J.; Verbeeck, J.; Popov, C.; Houssiau, L.; Becher, C.; Nesladek, M.; Haenen, K.
Title Photoluminescence of germanium-vacancy centers in nanocrystalline diamond films : implications for quantum sensing applications Type A1 Journal article
Year 2024 Publication ACS applied nano materials Abbreviated Journal
Volume 7 Issue 4 Pages 3873-3884
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Point defects in diamond, promising candidates for nanoscale pressure- and temperature-sensing applications, are potentially scalable in polycrystalline diamond fabricated using the microwave plasma-enhanced chemical vapor deposition (MW PE CVD) technique. However, this approach introduces residual stress in the diamond films, leading to variations in the characteristic zero phonon line (ZPL) of the point defect in diamond. Here, we report the effect of residual stress on germanium-vacancy (GeV) centers in MW PE CVD nanocrystalline diamond (NCD) films fabricated using single crystal Ge as the substrate and solid dopant source. GeV ensemble formation indicated by the zero phonon line (ZPL) at similar to 602 nm is confirmed by room temperature (RT) photoluminescence (PL) measurements. PL mapping results show spatial nonuniformity in GeV formation along with other defects, including silicon-vacancy centers in the diamond films. The residual stress in NCD results in shifts in the PL peak positions. By estimating a stress shift coefficient of (2.9 +/- 0.9) nm/GPa, the GeV PL peak position in the NCD film is determined to be between 598.7 and 603.2 nm. A larger ground state splitting due to the strain on a GeV-incorporated NCD pillar at a low temperature (10 K) is also reported. We also report the observation of intense ZPLs at RT that in some cases could be related to low Ge concentration and the surrounding crystalline environment. In addition, we also observe thicker microcrystalline diamond (MCD) films delaminate from the Ge substrate due to film residual stress and graphitic phase at the diamond/Ge substrate interface (confirmed by electron energy loss spectroscopy). Using this approach, a free-standing color center incorporated MCD film with dimensions up to 1 x 1 cm(2) is fabricated. Qualitative analysis using time-of-flight secondary ion mass spectroscopy reveals the presence of impurities, including Ge and silicon, in the MCD film. Our experimental results will provide insights into the scalability of GeV fabrication using the MW PE CVD technique and effectively implement NCD-based nanoscale-sensing applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001164609600001 Publication Date 2024-02-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2574-0970 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes (up) Approved no
Call Number UA @ admin @ c:irua:204826 Serial 9164
Permanent link to this record
 

 
Author Ni, S.; Houwman, E.; Gauquelin, N.; Chezganov, D.; Van Aert, S.; Verbeeck, J.; Rijnders, G.; Koster, G.
Title Stabilizing perovskite Pb(Mg0.33Nb0.67)O3-PbTiO3 thin films by fast deposition and tensile mismatched growth template Type A1 Journal article
Year 2024 Publication ACS applied materials and interfaces Abbreviated Journal
Volume 16 Issue 10 Pages 12744-12753
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Because of its low hysteresis, high dielectric constant, and strong piezoelectric response, Pb(Mg1/3Nb2/3)O-3-PbTiO3 (PMN-PT) thin films have attracted considerable attention for the application in PiezoMEMS, field-effect transistors, and energy harvesting and storage devices. However, it remains a great challenge to fabricate phase-pure, pyrochlore-free PMN-PT thin films. In this study, we demonstrate that a high deposition rate, combined with a tensile mismatched template layer can stabilize the perovskite phase of PMN-PT films and prevent the nucleation of passive pyrochlore phases. We observed that an accelerated deposition rate promoted mixing of the B-site cation and facilitated relaxation of the compressively strained PMN-PT on the SrTiO3 (STO) substrate in the initial growth layer, which apparently suppressed the initial formation of pyrochlore phases. By employing La-doped-BaSnO3 (LBSO) as the tensile mismatched buffer layer, 750 nm thick phase-pure perovskite PMN-PT films were synthesized. The resulting PMN-PT films exhibited excellent crystalline quality close to that of the STO substrate.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001176343700001 Publication Date 2024-02-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes (up) Approved no
Call Number UA @ admin @ c:irua:204754 Serial 9174
Permanent link to this record
 

 
Author Brognara, A.; Kashiwar, A.; Jung, C.; Zhang, X.; Ahmadian, A.; Gauquelin, N.; Verbeeck, J.; Djemia, P.; Faurie, D.; Dehm, G.; Idrissi, H.; Best, J.P.; Ghidelli, M.
Title Tailoring mechanical properties and shear band propagation in ZrCu metallic glass nanolaminates through chemical heterogeneities and interface density Type A1 Journal article
Year 2024 Publication Small Structures Abbreviated Journal
Volume Issue Pages 2400011-11
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The design of high‐performance structural thin films consistently seeks to achieve a delicate equilibrium by balancing outstanding mechanical properties like yield strength, ductility, and substrate adhesion, which are often mutually exclusive. Metallic glasses (MGs) with their amorphous structure have superior strength, but usually poor ductility with catastrophic failure induced by shear bands (SBs) formation. Herein, we introduce an innovative approach by synthesizing MGs characterized by large and tunable mechanical properties, pioneering a nanoengineering design based on the control of nanoscale chemical/structural heterogeneities. This is realized through a simplified model Zr 24 Cu 76 /Zr 61 Cu 39 , fully amorphous nanocomposite with controlled nanoscale periodicity ( Λ , from 400 down to 5 nm), local chemistry, and glass–glass interfaces, while focusing in‐depth on the SB nucleation/propagation processes. The nanolaminates enable a fine control of the mechanical properties, and an onset of crack formation/percolation (>1.9 and 3.3%, respectively) far above the monolithic counterparts. Moreover, we show that SB propagation induces large chemical intermixing, enabling a brittle‐to‐ductile transition when Λ  ≤ 50 nm, reaching remarkably large plastic deformation of 16% in compression and yield strength ≈2 GPa. Overall, the nanoengineered control of local heterogeneities leads to ultimate and tunable mechanical properties opening up a new approach for strong and ductile materials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2024-05-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2688-4062 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes (up) Approved no
Call Number UA @ admin @ c:irua:205798 Serial 9176
Permanent link to this record
 

 
Author Vávra, O.; Gaži, S.; Golubović, D.S.; Vávra, I.; Dérer, J.; Verbeeck, J.; Van Tendeloo, G.; Moshchalkov, V.V.
Title 0 and π phase Josephson coupling through an insulating barrier with magnetic impurities Type A1 Journal article
Year 2006 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 74 Issue 2 Pages 020502
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We have studied the temperature and field dependencies of the critical current I(C) in the Nb-Fe(0.1)Si(0.9)-Nb Josephson junction with a tunneling barrier formed by a paramagnetic insulator. We demonstrate that in these junctions coexistence of both the 0 and the pi states within one tunnel junction occurs, and leads to the appearance of a sharp cusp in the temperature dependence I(C)(T), similar to the I(C)(T) cusp found for the 0-pi transition in metallic pi junctions. This cusp is not related to the 0-pi temperature-induced transition itself, but is caused by the different temperature dependencies of the opposing 0 and pi supercurrents through the barrier.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000239426600010 Publication Date 2006-07-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 27 Open Access
Notes (up) Approved Most recent IF: 3.836; 2006 IF: 3.107
Call Number UA @ lucian @ c:irua:60087 c:irua:60087 c:irua:60087 c:irua:60087UA @ admin @ c:irua:60087 Serial 1
Permanent link to this record
 

 
Author Tan, H.; Turner, S.; Yucelen, E.; Verbeeck, J.; Van Tendeloo, G.
Title 2D atomic mapping of oxidation states in transition metal oxides by scanning transmission electron microscopy and electron energy-loss spectroscopy : reply Type Editorial
Year 2012 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 108 Issue 25 Pages 259702
Keywords Editorial; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000305568700038 Publication Date 2012-06-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record
Impact Factor 8.462 Times cited Open Access
Notes (up) Approved Most recent IF: 8.462; 2012 IF: 7.943
Call Number UA @ admin @ c:irua:100293 Serial 5370
Permanent link to this record
 

 
Author Bertoni, G.; Verbeeck, J.
Title Accuracy and precision in model based EELS quantification Type A1 Journal article
Year 2008 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 108 Issue 8 Pages 782-790
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We present results on model based quantification of electron energy loss spectra (EELS), focusing on the factors that influence accuracy and precision in determining chemical concentrations. Several sources of systematical errors are investigated. The spectrometer entrance aperture determines the collection angle, and the effects of its position with respect to the transmitted beam are investigated, taking into account the diffraction by the crystal structure. The effect of the orientation of the sample is tested experimentally and theoretically on SrTiO3, and finally, a simulated experiment on c-BN at different thicknesses confirms the superior results of the model based method with respect to the conventional method. A test on a set of experimental reference compounds is presented, showing that remarkably good accuracy can be obtained. Recommendations are given to achieve high accuracy and precision in practice. (C) 2008 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000258241900010 Publication Date 2008-02-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 44 Open Access
Notes (up) Approved Most recent IF: 2.843; 2008 IF: 2.629
Call Number UA @ lucian @ c:irua:70550UA @ admin @ c:irua:70550 Serial 42
Permanent link to this record
 

 
Author van den Broek, W.; Verbeeck, J.; de Backer, S.; Scheunders, P.; Schryvers, D.
Title Acquisition of the EELS data cube by tomographic reconstruction Type A1 Journal article
Year 2006 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 106 Issue 4/5 Pages 269-276
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract Energy filtered TEM, EFTEM, provides three-dimensional data, two spatial and one spectral dimension. We propose to acquire these data by measuring a series of images with a defocused energy filter. It will be shown that each image is a projection of the data on the detector and that reconstruction of the data out of a sufficient number of such projections using a tomographic reconstruction algorithm is possible. This technique uses only a fraction of the electron dose an energy filtered series (EFS) needs for the same spectral and spatial resolution and the same mean signal-to-noise ratio. (c) 2005 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000236042300003 Publication Date 2005-11-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 6 Open Access
Notes (up) Approved Most recent IF: 2.843; 2006 IF: 1.706
Call Number UA @ lucian @ c:irua:56910UA @ admin @ c:irua:56910 Serial 55
Permanent link to this record
 

 
Author Van Aert, S.; Verbeeck, J.; Bals, S.; Erni, R.; van Dyck, D.; Van Tendeloo, G.
Title Atomic resolution mapping using quantitative high-angle annular dark field scanning transmission electron microscopy Type A1 Journal article
Year 2009 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume 15 Issue S:2 Pages 464-465
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge, Mass. Editor
Language Wos 000208119100230 Publication Date 2009-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276;1435-8115; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.891 Times cited 1 Open Access
Notes (up) Approved Most recent IF: 1.891; 2009 IF: 3.035
Call Number UA @ lucian @ c:irua:96555UA @ admin @ c:irua:96555 Serial 178
Permanent link to this record
 

 
Author Verbeeck, J.; Van Aert, S.; Zhang, L.; Haiyan, T.; Schattschneider, P.; Rosenauer, A.
Title Computational aspects in quantitative EELS Type A1 Journal article
Year 2010 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume 16 Issue S:2 Pages 240-241
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge, Mass. Editor
Language Wos Publication Date 2010-08-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276;1435-8115; ISBN Additional Links UA library record
Impact Factor 1.891 Times cited Open Access
Notes (up) Approved Most recent IF: 1.891; 2010 IF: 3.259
Call Number UA @ lucian @ c:irua:96556UA @ admin @ c:irua:96556 Serial 454
Permanent link to this record
 

 
Author Bach, D.; Störmer, H.; Schneider, R.; Gerthsen, D.; Verbeeck, J.
Title EELS investigations of different niobium oxide phases Type A1 Journal article
Year 2006 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume 12 Issue 5 Pages 416-423
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Electron energy loss spectra in conjunction with near-edge fine structures of purely stoichiometric niobium monoxide (NbO) and niobium pentoxide (Nb2O5) reference materials were recorded. The structures of the niobium oxide reference materials were checked by selected area electron diffraction to ensure a proper assignment of the fine structures. NbO and Nb2O5 show clearly different energy loss near-edge fine structures of the Nb-M-4,M-5 and -M-2,M-3 edges and of the O-K edge, reflecting the specific local environments of the ionized atoms. To distinguish the two oxides in a quantitative manner, the intensities under the Nb-M-4,M-5 as well as Nb-M-2,M-3 edges and the O-K edge were measured and their ratios calculated. k-factors were also derived from these measurements.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge, Mass. Editor
Language Wos 000241181400007 Publication Date 2006-09-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276;1435-8115; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.891 Times cited 50 Open Access
Notes (up) Approved Most recent IF: 1.891; 2006 IF: 2.108
Call Number UA @ lucian @ c:irua:60979UA @ admin @ c:irua:60979 Serial 789
Permanent link to this record
 

 
Author Bach, D.; Schneider, R.; Gerthsen, D.; Verbeeck, J.; Sigle, W.
Title EELS of niobium and stoichiometric niobium-oxide phases: part 1: plasmon and Near-edges fine structure Type A1 Journal article
Year 2009 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume 15 Issue 6 Pages 505-523
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A comprehensive electron energy-loss spectroscopy study of niobium (Nb) and stable Nb-oxide phases (NbO, NbO2, Nb2O5) was carried out. In this work (Part I), the plasmons and energy-loss near-edge structures (ELNES) of all relevant Nb edges (Nb-N2,3, Nb-M4,5, Nb-M2,3, Nb-M1, and Nb-L2,3) up to energy losses of about 2600 eV and the O-K edge are analyzed with respect to achieving characteristic fingerprints of Nb in different formal oxidation states (0 for metallic Nb, +2 for NbO, +4 for NbO2, and +5 for Nb2O5). Chemical shifts of the Nb-N2,3, Nb-M4,5, Nb-M2,3, and Nb-L2,3 edges are extracted from the spectra that amount to about 4 eV as the oxidation state increases from 0 for Nb to +5 for Nb2O5. Four different microscopes, including a 200 keV ZEISS Libra with monochromator, were used. The corresponding wide range of experimental parameters with respect to the primary electron energy, convergence, and collection semi-angles as well as energy resolution allows an assessment of the influence of the experimental setup on the ELNES of the different edges. Finally, the intensity of the Nb-L2,3 white-line edges is correlated with niobium 4d-state occupancy in the different reference materials.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge, Mass. Editor
Language Wos 000272433200005 Publication Date 2009-10-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276;1435-8115; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.891 Times cited 55 Open Access
Notes (up) Approved Most recent IF: 1.891; 2009 IF: 3.035
Call Number UA @ lucian @ c:irua:80320UA @ admin @ c:irua:80320 Serial 790
Permanent link to this record
 

 
Author Halley, D.; Majjad, H.; Bowen, M.; Najjari, N.; Henry, Y.; Ulhaq-Bouillet, C.; Weber, W.; Bertoni, G.; Verbeeck, J.; Van Tendeloo, G.
Title Electrical switching in Fe/Cr/MgO/Fe magnetic tunnel junctions Type A1 Journal article
Year 2008 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 92 Issue 21 Pages 212115,1-3
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Hysteretic resistance switching is observed in epitaxial Fe/Cr/MgO/Fe magnetic tunnel junctions under bias voltage cycling between negative and positive values of about 1 V. The junctions switch back and forth between high- and low-resistance states, both of which depend on the device bias history. A linear dependence is found between the magnitude of the tunnel magnetoresistance and the crafted resistance of the junctions. To explain these results, a model is proposed that considers electron transport both by elastic tunneling and by defect-assisted transmission. (c) 2008 American Institute of Physics.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000256303500042 Publication Date 2008-06-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 33 Open Access
Notes (up) Approved Most recent IF: 3.411; 2008 IF: 3.726
Call Number UA @ lucian @ c:irua:69284UA @ admin @ c:irua:69284 Serial 894
Permanent link to this record
 

 
Author Verbeeck, J.; Lebedev, O.I.; Van Tendeloo, G.; Silcox, J.; Mercey, B.; Hervieu, M.; Haghiri-Gosnet, A.M.
Title Electron energy-loss spectroscopy study of a (LaMnO3)8(SrMnO3)4 heterostructure Type A1 Journal article
Year 2001 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 79 Issue 13 Pages 2037-2039
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract An epitaxially grown heterostructure consisting of alternating layers of LaMnO3 (8 unit cells) and SrMnO3 (4 unit cells) on a SrTiO3 substrate has been studied by a combination of electron energy-loss spectroscopy (EELS) and high-resolution transmission electron microscopy (HRTEM) on an atomic scale. Excitation edges of all elements are captured with subnanometer spatial accuracy, and parametrized to obtain chemical profiles. The fine-edge structure of O K and Mn L-2,L-3 edges are interpreted as signatures of the local electronic structure and show a spatial modulation of the concentration of holes with O 2p character. The chemical concentration is found to be different for the bottom and top interface of a SrMnO3 layer. HRTEM complements the EELS results and confirms the asymmetry of the interfaces. (C) 2001 American Institute of Physics.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000171015200036 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 19 Open Access
Notes (up) Approved Most recent IF: 3.411; 2001 IF: 3.849
Call Number UA @ lucian @ c:irua:54799UA @ admin @ c:irua:54799 Serial 933
Permanent link to this record
 

 
Author Radtke, G.; Botton, G.A.; Verbeeck, J.
Title Electron inelastic, scattering and anisotropy: the two-dimensional point of view Type A1 Journal article
Year 2006 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 106 Issue 11-12 Pages 1082-1090
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The measurement of the electronic structure of anisotropic materials using energy loss near edge structure (ELNES) spectroscopy is an important field of microanalysis in transmission electron microscopy. We present a novel method to study the angular dependence of electron inelastic scattering in anisotropic materials. This method has been applied to the study of 1s -> pi* and sigma* transitions on the carbon K edge in pyrolitic graphite. An excellent agreement between experimental and theoretical two-dimensional scattering patterns has been found. In particular, the need of a fully relativistic calculation of the inelastic scattering cross-section to explain the experimental results is demonstrated. (c) 2006 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000241592900018 Publication Date 2006-07-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 5 Open Access
Notes (up) Approved Most recent IF: 2.843; 2006 IF: 1.706
Call Number UA @ lucian @ c:irua:61381UA @ admin @ c:irua:61381 Serial 936
Permanent link to this record
 

 
Author Hamon, A.-L.; Verbeeck, J.; Schryvers, D.; Benedikt, J.; van den Sanden, R.M.C.M.
Title ELNES study of carbon K-edge spectra of plasma deposited carbon films Type A1 Journal article
Year 2004 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
Volume 14 Issue Pages 2030-2035
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Electron energy loss spectroscopy was used to investigate the bonding of plasma deposited carbon films. The experimental conditions include the use of a specific collection angle for which the shape of the spectra is free of the orientation dependency usually encountered in graphite due to its anisotropic structure. The first quantification process of the energy loss near-edge structure was performed by a standard fit of the collected spectrum, corrected for background and multiple scattering, with three Gaussian functions followed by a comparison with the graphite spectrum obtained under equivalent experimental conditions. In a second approach a fitting model directly incorporating the background subtraction and multiple scattering removal was applied. The final numerical results are interpreted in view of the deposition conditions of the films and the actual fitting procedure with the related choice of parameters.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000222312500017 Publication Date 2004-06-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.626 Times cited 61 Open Access
Notes (up) Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:48782UA @ admin @ c:irua:48782 Serial 1025
Permanent link to this record
 

 
Author Verbeeck, J.; van Dyck, D.; Van Tendeloo, G.
Title Energy-filtered transmission electron microscopy: an overview Type A1 Journal article
Year 2004 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal Spectrochim Acta B
Volume 59 Issue 10/11 Pages 1529-1534
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract This paper aims to give an overview of the technique of energy-filtered transmission electron microscopy (EFTEM). It explains the basic principles of the technique and points to the relevant literature for more detailed issues. Experimental examples are given to show the power of EFTEM to study the chemical composition of nanoscale samples in materials science. Advanced EFTEM applications like imaging spectroscopy and EFTEM tomography are briefly discussed. (C) 2004 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000224848000006 Publication Date 2004-10-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0584-8547; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.241 Times cited 37 Open Access
Notes (up) Approved Most recent IF: 3.241; 2004 IF: 3.086
Call Number UA @ lucian @ c:irua:54869UA @ admin @ c:irua:54869 Serial 1038
Permanent link to this record