toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Tsuji, K.; Injuk, J.; Van Grieken, R. isbn  openurl
  Title X-ray spectrometry: recent technological advances Type ME1 Book as editor or co-editor
  Year 2004 Publication Abbreviated Journal  
  Volume Issue (up) Pages 616 p.  
  Keywords ME1 Book as editor or co-editor; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 0-471-48640-x Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:43876 Serial 8786  
Permanent link to this record
 

 
Author Van Alsenoy, W.; Bernard, P.; Van Grieken, R. openurl 
  Title Zware metalen in Noordzee- en Schelde-sedimenten Type A3 Journal article
  Year 1990 Publication Wtare Abbreviated Journal  
  Volume 5 Issue (up) Pages 113-121  
  Keywords A3 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:116829 Serial 8787  
Permanent link to this record
 

 
Author Conti, S.; Chaves, A.; Pandey, T.; Covaci, L.; Peeters, F.M.; Neilson, D.; Milošević, M.V. url  doi
openurl 
  Title Flattening conduction and valence bands for interlayer excitons in a moire MoS₂/WSe₂ heterobilayer Type A1 Journal article
  Year 2023 Publication Nanoscale Abbreviated Journal  
  Volume Issue (up) Pages 1-11  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract We explore the flatness of conduction and valence bands of interlayer excitons in MoS2/WSe2 van der Waals heterobilayers, tuned by interlayer twist angle, pressure, and external electric field. We employ an efficient continuum model where the moire pattern from lattice mismatch and/or twisting is represented by an equivalent mesoscopic periodic potential. We demonstrate that the mismatch moire potential is too weak to produce significant flattening. Moreover, we draw attention to the fact that the quasi-particle effective masses around the Gamma-point and the band flattening are reduced with twisting. As an alternative approach, we show (i) that reducing the interlayer distance by uniform vertical pressure can significantly increase the effective mass of the moire hole, and (ii) that the moire depth and its band flattening effects are strongly enhanced by accessible electric gating fields perpendicular to the heterobilayer, with resulting electron and hole effective masses increased by more than an order of magnitude – leading to record-flat bands. These findings impose boundaries on the commonly generalized benefits of moire twistronics, while also revealing alternative feasible routes to achieve truly flat electron and hole bands to carry us to strongly correlated excitonic phenomena on demand.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001047512300001 Publication Date 2023-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364; 2040-3372 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.7 Times cited Open Access Not_Open_Access: Available from 25.01.2024  
  Notes Approved Most recent IF: 6.7; 2023 IF: 7.367  
  Call Number UA @ admin @ c:irua:198290 Serial 8819  
Permanent link to this record
 

 
Author Parrilla, M.; Vanhooydonck, A.; Johns, M.; Watts, R.; De Wael, K. pdf  url
doi  openurl
  Title 3D-printed microneedle-based potentiometric sensor for pH monitoring in skin interstitial fluid Type A1 Journal article
  Year 2023 Publication Sensors and actuators : B : chemical Abbreviated Journal  
  Volume 378 Issue (up) Pages 133159-10  
  Keywords A1 Journal article; Engineering sciences. Technology; Internet Data Lab (IDLab); Product development; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Wearable electrochemical sensors are driven by the user-friendly capability of continuous monitoring of key biomarkers for diagnostic or therapeutic operations. Particularly, microneedle (MN)-based sensors can access the interstitial fluid (ISF) in the dermis layer of skin to carry out on-body transdermal detection of analytes. Interestingly, 3D-printing technology allows for rapid and versatile prototyping reaching micrometer resolution. Herein, for the first time, we explore 3D-printed hollow MN patches (1 mm height x 1 mm base with 0.3 mm hole) which are modified with conductive inks to develop a potentiometric sensor for pH monitoring. First, the piercing capability of 3D-printed MN patches is demonstrated by using the parafilm model and their insertion in porcine skin. Subsequently, the hollow MNs are filled with conductive inks to engineer a set of microelectrodes. Thereafter, the working and reference electrodes are properly modified with polyaniline and polyvinyl butyral, respectively, toward a highly stable potentiometric cell. A full in vitro characterization is performed within a broad range of pH (i.e. pH 4 to pH 9). Besides, the MN sensor is analytically assessed in phantom gel and pierced on porcine skin to evaluate the resilience of the MN sensor. Finally, the MN sensor is pierced on the forearm of a subject and tested for its on-body monitoring capability. Overall, 3D-printed MN-based potentiometric sensing brings a versatile and affordable technology to minimally-invasively monitor key physiological parameters in the body.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000904590500008 Publication Date 2022-12-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:192381 Serial 8824  
Permanent link to this record
 

 
Author Wang, Y.-T.; Wu, S.-M.; Luo, G.-Q.; Tian, G.; Wang, L.-Y.; Xiao, S.-T.; Wu, J.-X.; Wu, A.; Wu, K.-J.; Lenaerts, S.; Yang, X.-Y. pdf  doi
openurl 
  Title A core-shell confined Pd@TS-1 @meso-SiO2 catalyst and its synergy effect on styrene oxidation Type A1 Journal article
  Year 2023 Publication Applied catalysis : A : general Abbreviated Journal  
  Volume 650 Issue (up) Pages 119016-6  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Dual active sites from acidic zeolite and Pd are not only capable of catalyzing multiple type of reactions, but could also generate unique functions owing to the synergy between metals and acidic sites. However, there are only a few reports on the investigation of the synergy of acid/Pd dual sites in TS-1. Herein, TS-1 confined Pd catalyst with mesoporous silica shell (Pd@TS-1 @meso-SiO2) has been successfully synthesized and its synergy effect contributes to the enhanced conversion rate (19.2%) and selectivity (74.7%) on styrene oxidation. The interaction between Pd and TS-1 has been investigated by EPR and 1H NMR techniques, the experimental measurements show an obvious change in the signal distribution of weakly acidic terminal hydroxyls and hydrogen-bonding silanols. The schematic illustration of selective styrene oxidation in the model of Pd@TS-1 @meso-SiO2 is proposed to clarify the synergistic effect on styrene oxidation between TS-1 and Pd nanoparticles at an atomic-/nanoscale.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001015700000001 Publication Date 2022-12-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-860x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.5 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 5.5; 2023 IF: 4.339  
  Call Number UA @ admin @ c:irua:197805 Serial 8826  
Permanent link to this record
 

 
Author Kummamuru, N.B.; Watson, G.; Ciocarlan, R.-G.; Verbruggen, S.W.; Cool, P.; Van Der Voort, P.; Perreault, P. pdf  url
doi  openurl
  Title Accelerated methane storage in clathrate hydrates using mesoporous (Organo-) silica materials Type A1 Journal article
  Year 2023 Publication Fuel Abbreviated Journal  
  Volume 354 Issue (up) Pages 129403-129418  
  Keywords A1 Journal article; Engineering sciences. Technology; Laboratory of adsorption and catalysis (LADCA); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Methane (CH4) clathrate hydrates have gained much attention in the ever-growing search for novel energy storage methods; however, they are currently limited due to their poor water-to-hydrate conversions and slow formation kinetics. To surmount these bottlenecks, significant research has been centered on the design of novel methods (porous media). In this vein, the present work explores two hydrophobic mesoporous solids, an alkyl-grafted mesoporous silica (SBA-15 C8) and a periodic mesoporous organosilica (Ring-PMO), in their ability to promote CH4 clathrates. Both materials have shown to facilitate CH4 clathrate formation at mild operating conditions (6 MPa and 269–276 K). The study revealed that the maximal CH4 storage capacities are strongly linked to the critical/optimal quantity of water in the system which was determined to be at 130% and 200% of the pore volume for SBA-15 C8 and Ring-PMO, respectively. Up to 90% and 95% of the maximum water-to-hydrate conversions were achieved in 90 min at the lowest experimental temperature and critical water content for SBA-15 C8 and Ring-PMO, respectively. At these conditions, SBA-15 C8 and Ring-PMO showed a maximum gas uptake of 98.2 and 101.2 mmol CH4/mol H2O, respectively. Both the materials exhibited no chemical or morphological changes post-clathrate formations (characterized using FT-IR, N2 sorption, XRD, and TEM), inferring their viability as clathrate promoters for multiple cycles. An integrated multistep model was considered adequate for representing the hydrate crystallization kinetics and fits well with the experimental kinetic data with a low average absolute deviation in water-to-hydrate conversions among the three distinct kinetic models analyzed. Overall, the results from this study demonstrate hydrophobic porous materials as effective promoters of CH4 clathrates, which could make clathrate-based CH4 storage and transport technology industrially viable.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001059413200001 Publication Date 2023-08-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0016-2361 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.4 Times cited Open Access Not_Open_Access: Available from 07.02.2024  
  Notes Approved Most recent IF: 7.4; 2023 IF: 4.601  
  Call Number UA @ admin @ c:irua:197987 Serial 8829  
Permanent link to this record
 

 
Author Marchetti, A.; Beltran, V.; Storme, P.; Nuyts, G.; Van Der Meeren, L.; Skirtach, A.; Otten, E.; Debulpaep, M.; Watteeuw, L.; De Wael, K. pdf  doi
openurl 
  Title All that glitters is not gold : unraveling the material secrets behind the preservation of historical brass Type A1 Journal article
  Year 2023 Publication Journal of cultural heritage Abbreviated Journal  
  Volume 63 Issue (up) Pages 179-186  
  Keywords A1 Journal article; Engineering sciences. Technology; Art; History; Antwerp Cultural Heritage Sciences (ARCHES); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Brass is a relatively stable alloy but it tends to tarnish over time due to the interaction with the atmosphere. Thus, it is rare to observe centuries-old brass objects untouched by the passing of time. For this reason, the pristine appearance of hundreds of brass sequins in the Enclosed Gardens of Mechelen (reliquary altarpieces produced between 1530 and 1550) is remarkable. In this study, the chemical and metallographic characterization of such unexpectedly well-preserved objects is presented. The results revealed the reason for their stability to be a combination of high-quality materials (i.e. medium Zn content, low impurities) and optimal surface properties (i.e. high homogeneity, low roughness), indicating the high level of expertise of the craftsmen who produced them. Novel fundamental insights on the historical manufacturing method of metallic sequins were also obtained.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001058894000001 Publication Date 2023-08-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1296-2074 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.1 Times cited Open Access Not_Open_Access: Available from 15.08.2024  
  Notes Approved Most recent IF: 3.1; 2023 IF: 1.838  
  Call Number UA @ admin @ c:irua:198113 Serial 8830  
Permanent link to this record
 

 
Author Cánovas, R.; Daems, E.; Langley, A.R.; De Wael, K. pdf  url
doi  openurl
  Title Are aptamer-based biosensing approaches a good choice for female fertility monitoring? A comprehensive review Type A1 Journal article
  Year 2023 Publication Biosensors and bioelectronics Abbreviated Journal  
  Volume 220 Issue (up) Pages 114881-18  
  Keywords A1 Journal article; Engineering sciences. Technology; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract The WHO estimates that 8–10% of couples are facing fertility problems, often due to inaccuracy in predicting the female's ovulation period controlled by four key hormones. The quantification and monitoring of such key hormones are crucial for the early identification of infertility, but also in improving therapeutic management associated with hormonal imbalance. In this review, we extensively summarize and discuss: i) drawbacks of laboratory methods for fertility testing (costly, invasive, complex) and commercially available point-of-care tests (measuring only one/two of the four key hormones), ii) the understanding of different biosensors for fertility monitoring, and iii) an in-depth classification and overview of aptamer-based sensing of the hormones of interest. This review provides insights on hormone detection strategies for fertility, with a focus on the classification of the current ‘aptasensing’ strategies, aiming to assist as a basic guide for the development of accurate fertility window monitoring tools based on aptamers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000890547600004 Publication Date 2022-11-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0956-5663 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.6 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 12.6; 2023 IF: 7.78  
  Call Number UA @ admin @ c:irua:191711 Serial 8833  
Permanent link to this record
 

 
Author Xie, Y.; Van Tendeloo, M.; Zhu, W.; Peng, L.; Vlaeminck, S.E. pdf  doi
openurl 
  Title Autotrophic nitrogen polishing of secondary effluents : Alkaline pH and residual nitrate control S0-driven denitratation for downstream anammox treatment Type A1 Journal article
  Year 2023 Publication Journal of Water Process Engineering Abbreviated Journal  
  Volume 56 Issue (up) Pages 104402-104409  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Energy-lean nitrogen removal technologies, such as partial nitritation/anammox, often encounter effluent issues due to elevated nitrate and ammonium levels. This study proposed a novel autotrophic polishing strategy coupling sulfur-driven denitratation with anammox. To explore the denitratation potential in obtaining stable and sufficient nitrite accumulation, the effects of pH, residual nitrate level, and biomass-specific nitrate loading rate (BSNLR) were investigated in an S0-packed bed reactor at low hydraulic retention time (i.e., 0.2 h). Implementing pH and residual nitrate control strategies would be easier in practice than BSNLR control to polish secondary effluent. Alkaline pH values could realize successful nitrite accumulation without residual nitrate, and further intensify the accumulation under increased residual nitrate levels. The nitrate level was positively correlated with the nitrite accumulation efficiency. At pH 8.5 and nitrate concentration of 1.0 ± 0.8 mg N L−1, sulfur-driven denitratation could successfully maintain nitrite accumulation of 6.4 ± 1.0 mg NO2−-N L−1, ideally for the downstream anammox in case of residual ammonium levels of around 5 mg N L−1. Since Thiobacillus members play a key role in managing nitrite accumulation, their abundance should be guaranteed in the practical application.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001103341400001 Publication Date 2023-10-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2214-7144 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 7 Times cited Open Access Not_Open_Access: Available from 18.04.2024  
  Notes Approved Most recent IF: 7; 2023 IF: NA  
  Call Number UA @ admin @ c:irua:200036 Serial 8835  
Permanent link to this record
 

 
Author Raes, A.; Ninakanti, R.; Van den Bergh, L.; Borah, R.; Van Doorslaer, S.; Verbruggen, S.W. url  doi
openurl 
  Title Black titania by sonochemistry : a critical evaluation of existing methods Type A1 Journal article
  Year 2023 Publication Ultrasonics sonochemistry Abbreviated Journal  
  Volume 100 Issue (up) Pages 106601-106609  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL); Theory and Spectroscopy of Molecules and Materials (TSM²); Laboratory of adsorption and catalysis (LADCA)  
  Abstract In the field of photocatalysis, the fabrication of black titania is a booming topic, as it offers a system with improved solar light harvesting properties and increased overall efficiency. The darkening of white TiO2 powders can be ascribed to surface hydroxylation, oxygen vacancies, Ti3+ centres, or a combination thereof. A handful of studies suggests these defects can be conveniently introduced by acoustic cavitation, generated during sonochemical treatment of pristine TiO2 powders. In reproducing these studies, P25 TiO2 samples were ultrasonicated for various hours with a power density of 8000 W/L, resulting in powders that indeed became gradually darker with increasing sonication time. However, HAADF–STEM revealed that extensive erosion of the sonotrode tip took place and contaminated the samples, which appeared to be the primary reason for the observed colour change. This was confirmed by UV–Vis DRS and DRIFTS, that showed no significant alteration of the catalyst surface after sonication. EPR measurements showed that only an insignificant fraction of Ti3+ centres were produced, far less than in a TiO2 sample that was chemically reduced with NaBH4. No evidence of the presence oxygen vacancies could be found. The enhanced photocatalytic activities of ultrasonicated materials reported in literature can therefore not be ascribed to the synthesis of actual black (defected) TiO2, but rather to specific changes in morphology as a result of acoustic cavitation. Also, this study underlines the importance of considering probe erosion in sonochemical catalyst synthesis, which is an unavoidable side effect that can have an important impact on the catalyst appearance, properties and performance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001084391500001 Publication Date 2023-09-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1350-4177 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 8.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 8.4; 2023 IF: 4.218  
  Call Number UA @ admin @ c:irua:198848 Serial 8838  
Permanent link to this record
 

 
Author Zhu, W.; Van Tendeloo, M.; De Paepe, J.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Comparison of typical nitrite oxidizing bacteria suppression strategies and the effect on nitrous oxide emissions in a biofilm reactor Type A1 Journal article
  Year 2023 Publication Bioresource technology Abbreviated Journal  
  Volume 387 Issue (up) Pages 129607-129609  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In mainstream partial nitritation/anammox (PN/A), suppression of nitrite oxidizing bacteria (NOB) and mitigation of N2O emissions are two essential operational goals. The N2O emissions linked to three typical NOB suppression strategies were tested in a covered rotating biological contactor (RBC) biofilm system at 21 degrees C: (i) low dissolved oxygen (DO) concentrations, and treatments with (ii) free ammonia (FA), and (iii) free nitrous acids (FNA). Low emerged DO levels effectively minimized NOB activity and decreased N2O emissions, but NOB adaptation appeared after 200 days of operation. Further NOB suppression was successfully achieved by periodic (3 h per week) treatments with FA (29.3 & PLUSMN; 2.6 mg NH3-N L-1) or FNA (3.1 & PLUSMN; 0.3 mg HNO2-N L-1). FA treatment, however, promoted N2O emissions, while FNA did not affect these. Hence, biofilm PN/A should be operated at relatively low DO levels with periodic FNA treatment to maximize nitrogen removal efficiency while avoiding high greenhouse gas emissions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001063180200001 Publication Date 2023-08-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.4 Times cited Open Access Not_Open_Access: Available from 21.02.2024  
  Notes Approved Most recent IF: 11.4; 2023 IF: 5.651  
  Call Number UA @ admin @ c:irua:199051 Serial 8843  
Permanent link to this record
 

 
Author De Paepe, J.; Garcia Gragera, D.; Arnau Jimenez, C.; Rabaey, K.; Vlaeminck, S.E.; Gòdia, F. pdf  url
doi  openurl
  Title Continuous cultivation of microalgae yields high nutrient recovery from nitrified urine with limited supplementation Type A1 Journal article
  Year 2023 Publication Journal of environmental management Abbreviated Journal  
  Volume 345 Issue (up) Pages 118500-118510  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Microalgae can play a key role in the bioeconomy, particularly in combination with the valorisation of waste streams as cultivation media. Urine is an example of a widely available nutrient-rich waste stream, and alkaline stabilization and subsequent full nitrification in a bioreactor yields a stable nitrate-rich solution. In this study, such nitrified urine served as a culture medium for the edible microalga Limnospira indica. In batch cultivation, nitrified urine without additional supplements yielded a lower biomass concentration, nutrient uptake and protein content compared to modified Zarrouk medium, as standard medium. To enhance the nitrogen uptake efficiency and biomass production, nitrified urine was supplemented with potentially limiting elements. Limited amounts of phosphorus (36 mg L−1), magnesium (7.9 mg L−1), calcium (12.2 mg L−1), iron (2.0 mg L−1) and EDTA (88.5 mg Na2-EDTA.2H2O L−1) rendered the nitrified urine matrix as effective as modified Zarrouk medium in terms of biomass production (OD750 of 1.2), nutrient uptake (130 mg N L−1) and protein yield (47%) in batch culture. Urine precipitates formed by alkalinisation could in principle supply enough phosphorus, calcium and magnesium, requiring only external addition of iron, EDTA and inorganic carbon. Subsequently, the suitability of supplemented nitrified urine as a culture medium was confirmed in continuous Limnospira cultivation in a CSTR photobioreactor. This qualifies nitrified urine as a valuable and sustainable microalgae growth medium, thereby creating novel nutrient loops on Earth and in Space, i.e., in regenerative life support systems for human deep-space missions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001052880800001 Publication Date 2023-08-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0301-4797 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 8.7 Times cited Open Access Not_Open_Access: Available from 03.02.2024  
  Notes Approved Most recent IF: 8.7; 2023 IF: 4.01  
  Call Number UA @ admin @ c:irua:199049 Serial 8844  
Permanent link to this record
 

 
Author Perreault, P.; Van Hoecke, L.; Pourfallah, H.; Kummamuru, N.B.; Boruntea, C.-R.; Preuster, P. pdf  url
doi  openurl
  Title Critical challenges towards the commercial rollouts of a LOHC-based H2 economy Type A1 Journal article
  Year 2023 Publication Current opinion in green and sustainable chemistry Abbreviated Journal  
  Volume 41 Issue (up) Pages 100836-100838  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract This short review discusses recent developments related to the storage and release of hydrogen from liquid organic hydrogen carriers (LOHCs). It focusses on three areas of recent literature: the application and development of novel, alternative LOHC systems, process development and process integration in the storage and release of hydrogen from LOHCs, and the electrochemical conversion of LOHCs. For the novel LOHC systems, we briefly focus on reaction enthalpy and storage capacity as main KPIs for the comparison of those systems and discuss the technical availability on a relevant scale. In the field of process- and reactor development our emphasis lies on the power density of the chemical conversion units. The LOHC technology still requires further development to reach the necessary energy efficiency, flexibility and overall research maturity for market competitivity and commercial impact.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001019180100001 Publication Date 2023-05-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2452-2236 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.3 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 9.3; 2023 IF: NA  
  Call Number UA @ admin @ c:irua:196520 Serial 8845  
Permanent link to this record
 

 
Author Neven, L.; Barich, H.; Sleegers, N.; Cánovas, R.; Debruyne, G.; De Wael, K. pdf  url
doi  openurl
  Title Development of a combi-electrosensor for the detection of phenol by combining photoelectrochemistry and square wave voltammetry Type A1 Journal article
  Year 2022 Publication Analytica chimica acta Abbreviated Journal  
  Volume 1206 Issue (up) Pages 339732  
  Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract The high toxicity, endocrine-disrupting effects and low (bio)degradability commonly attributed to phenolic compounds have promoted their recognition as priority toxic pollutants. For this reason, the monitoring of these compounds in industrial, domestic and agricultural streams is crucial to prevent and decrease their toxicity in our daily life. To confront this relevant environmental issue, we propose the use of a combi-electrosensor which combines singlet oxygen (1O2)-based photoelectrochemistry (PEC) with square wave voltammetry (SWV). The high sensitivity of the PEC sensor (being a faster alternative for traditional COD measurements) ensures the detection of nmol L−1 levels of phenolic compounds while the SWV measurements (being faster than the color test kits) allow the differentiation between phenolic compounds. Herein, we report on the development of such a combi-electrosensor for the sensitive and selective detection of phenol (PHOH) in the presence of related phenolic compounds such as hydroquinone (HQ), bisphenol A (BPA), resorcinol (RC) and catechol (CC). The PEC sensor was able to determine the concentration of PHOH in spiked river samples containing only PHOH with a recovery between 96% and 111%. The SWV measurements elucidated the presence of PHOH, HQ and CC in the spiked samples containing multiple phenol compounds. Finally, the practicality of the combi-electrosensor set-up with a dual SPE containing two working electrodes and shared reference and counter electrodes was demonstrated. As a result, the combination of the two techniques is a powerful and valuable tool in the analysis of phenolic samples, since each technique improves the general performance by overcoming the inherent drawbacks that they display independently.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000793070200016 Publication Date 2022-03-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2670; 1873-4324 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:187499 Serial 8848  
Permanent link to this record
 

 
Author Campos, R.; Thiruvottriyur Shanmugam, S.; Daems, E.; Ribeiro, R.; De Wael, K. pdf  url
doi  openurl
  Title Development of an electrochemiluminescent oligonucleotide-based assay for the quantification of prostate cancer associated miR-141-3p in human serum Type A1 Journal article
  Year 2023 Publication Bioelectrochemistry: an international journal devoted to electrochemical aspects of biology and biological aspects of electrochemistry Abbreviated Journal  
  Volume 153 Issue (up) Pages 108495-108496  
  Keywords A1 Journal article; Engineering sciences. Technology; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract MicroRNAs (miRNAs) are small oligonucleotides (18–25 bases), biologically relevant for epigenetic regulation of key processes, particularly in association with cancer. Research effort has therefore been directed towards the monitoring and detection of miRNAs to progress (early) cancer diagnoses. Traditional detection strategies for miRNAs are expensive, with a lengthy time-to-result. In this study we develop an oligonucleotide-based assay using electrochemistry for the specific, selective and sensitive detection of a circulating miRNA (miR-141) associated with prostate cancer. In the assay, the excitation and readout of the signal are independent: an electrochemical stimulation followed by an optical readout. A ‘sandwich’ approach is incorporated, consisting of a biotinylated capture probe immobilised on streptavidin-functionalised surfaces and a detection probe labelled with digoxigenin. We show that the assay allows the detection of miR-141 in human serum, even in the presence of other miRNAs, with a LOD of 0.25 pM. The developed electrochemiluminescent assay has, therefore, the potential for efficient universal oligonucleotide target detection via the redesign of capture and detection probes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001031760700001 Publication Date 2023-06-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1567-5394 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 5 Times cited Open Access Not_Open_Access: Available from 01.01.2024  
  Notes Approved Most recent IF: 5; 2023 IF: 3.346  
  Call Number UA @ admin @ c:irua:197615 Serial 8849  
Permanent link to this record
 

 
Author Mendonça Verbinnen, C.D. openurl 
  Title Development of semiconductor-based photoelectrochemical sensing strategies for phenolic compounds in natural and supply water Type Doctoral thesis
  Year 2022 Publication Abbreviated Journal  
  Volume Issue (up) Pages 152 p.  
  Keywords Doctoral thesis; Engineering sciences. Technology; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract A wide variety of organic and inorganic compounds have been frequently released into the environment without control by industries and agricultural activities. This has caused significant impact on the development and health of living organisms, and biodiversity. Therefore, the challenge of monitoring and/or remediation of these contaminants remains. This thesis presents the development of three sensing strategies based on photoelectrochemical sensors to monitor phenolic contaminants. The well-known semiconductors TiO2 and ZnO were used for building novel setups for nM analysis of phenolic compounds in water. The setups employing TiO2-based photosensors were integrated into a photoelectrochemical flow cell. The flow system favored higher sensitivity of the method by periodic wash sequences of the electrode, significantly reducing the electrode fouling. Firstly, a straightforward method was developed based on the immobilization of TiO2 on screen printed graphite electrodes. Under UV light, the developed photosensor presented high performance for the detection of 4- aminophenol. A second study was developed by impregnating gold nanoparticles into TiO2 structure. The incorporation of gold nanoparticles can broaden the light absorption region of TiO2 and improve its photocatalytic activity for the detection of hydroquinone under visible light. In both systems, the detection was possible due to the presence of reactive oxygen species at the surface of TiO2 upon light, which participate in the oxidation process of the analyte. By applying a reductive potential, the oxidized form of the analyte gets reduced and a measurable amperometric response proportional to the initial analyte concentration is recorded. The third proposed setup is a ZnO-based photosensor for the quantification of 4-nitrophenol under UVA light. Nanostructured ZnO was electrochemically synthesized on FTO glass without the use of catalysts or seed layer. A post-growth annealing treatment significantly improved ZnO nanorods physicochemical properties. Subsequent modification of ZnO nanorods with a photosensitizer (perylene acid) increased the photocurrent response and the sensitivity. In this system, the detection mechanism is based on the decrease of the photocurrent response at the presence of an electron harvesting molecule, such as 4-nitrophenol. The decrease in photocurrent is proportional to the increase of 4-nitrophenol concentration in the solution. The applicability of the photoelectrochemical semiconductor-based sensing setups was verified to analyze phenolic compounds in natural and supply water samples. The proposed robust and sensitive approaches were designed for the on-site monitoring of phenolic compounds. The encouraging results confirm the potential of these photosensors as promising tools for tracelevel sensing purposes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:186763 Serial 8850  
Permanent link to this record
 

 
Author Vizarim, N.P. url  openurl
  Title Dynamic behavior of Skyrmions under the influence of periodic pinning in chiral magnetic infinite thin films Type Doctoral thesis
  Year 2023 Publication Abbreviated Journal  
  Volume Issue (up) Pages 212 p.  
  Keywords Doctoral thesis; Condensed Matter Theory (CMT)  
  Abstract The miniaturization of transistors for application in new processors and logic devices poses a significant challenge in the field of materials. Spintronics, which relies on controlled movement of magnetic nanostructures, offers a promising solution. Among the candidates, magnetic skyrmions are considered one of the most promising. These chiral spin structures, characterized by topological protection and enhanced stability compared to vortices or magnetic bubbles, have been extensively studied. To advance in the control of skyrmion motion, essential for practical applications, we investigated their dynamic behavior in a two-dimensional chiral magnet at zero temperature. Our study focused on the influence of periodic arrays of pinning centers. The simulations considered skyrmions as point-like particles considering the following interactions: skyrmion-skyrmion interactions, interactions with pinning center arrays, a current of polarized spins, and the Magnus force. We conducted calculations for scenarios involving a single skyrmion as well as different skyrmion density values in the material. The aim was to explore possibilities for controlled skyrmion motion, investigate different dynamic regimes, and examine collective effects. The results demonstrate that by adjusting the size, strength, and density of the pinning centers, we can effectively control the motion of individual skyrmions and manage the flow of multiple skyrmions. Furthermore, we discovered that periodic arrays of pinning centers can facilitate topological selection when different species of skyrmions with distinct Magnus components are present. Employing alternating currents, we observed the significant role of the ratchet effect in the skyrmion dynamics. By fine-tuning the amplitudes of the alternating currents, we achieved direct and controlled motion of skyrmions in specific directions. These findings hold potential for advancing our understanding of skyrmion dynamics and can inspire future technological applications involving these quasi-particles. Overall, we anticipate that our results will be valuable to the scientific community, contributing to a deeper comprehension of skyrmion dynamics and paving the way for future technological applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:198101 Serial 8852  
Permanent link to this record
 

 
Author Perreault, P.; Preuster, P. pdf  doi
openurl 
  Title Editorial hydrogen production storage and use Type Editorial
  Year 2023 Publication Current opinion in green and sustainable chemistry Abbreviated Journal  
  Volume 44 Issue (up) Pages 100861-100863  
  Keywords Editorial; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In the pursuit of clean and sustainable energy sources, hydrogen has emerged as a key contender, offering high energy density and the potential to serve as a carbon-neutral fuel. However, one of the major challenges associated with hydrogen is efficient and safe storage and transportation. In this Special Edition, we delve into the exciting developments in the upcoming hydrogen economy, from its sustainable production to chemical hydrogen storage. Some of our reviews focus on particular technologies namely on liquid organic hydrogen carriers (LOHCs) and the utilization of ammonia as a hydrogen carrier.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001079651000001 Publication Date 2023-08-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2452-2236 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 9.3 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 9.3; 2023 IF: NA  
  Call Number UA @ admin @ c:irua:198505 Serial 8853  
Permanent link to this record
 

 
Author Verbruggen, S.W.; Mul, G. pdf  doi
openurl 
  Title Editorial overview : photocatalysis 2022 shining light on a diversity of research opportunities Type Editorial
  Year 2023 Publication Current opinion in green and sustainable chemistry Abbreviated Journal  
  Volume 42 Issue (up) Pages 100838-2  
  Keywords Editorial; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001034184800001 Publication Date 2023-06-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2452-2236 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 9.3 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 9.3; 2023 IF: NA  
  Call Number UA @ admin @ c:irua:197220 Serial 8854  
Permanent link to this record
 

 
Author Montiel, F.N.; Parrilla, M.; Sleegers, N.; Van Durme, F.; van Nuijs, A.L.N.; De Wael, K. pdf  url
doi  openurl
  Title Electrochemical sensing of amphetamine-type stimulants (pre)-precursors to fight against the illicit production of synthetic drugs Type A1 Journal article
  Year 2022 Publication Electrochimica acta Abbreviated Journal  
  Volume 436 Issue (up) Pages 141446-11  
  Keywords A1 Journal article; Engineering sciences. Technology; Toxicological Centre; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract The illicit drug precursor market for the manufacture of amphetamine-type stimulants (ATS), mainly amphetamine, methamphetamine and methylenedioxymethamphetamine (MDMA), has emerged quickly in the last years. The evidence of a more complex and sophisticated drug market underlines the pressing need for new on-site methods to quickly detect precursors of synthetic drugs, with electrochemical analysis as a promising technique. Herein, the electrochemical fingerprints of ten common ATS precursors-3-oxo-2-phenylbutanenitrile (APAAN), 3-oxo-2-phenylbutanamide (APAA), methyl 3-oxo-2-phenylbutanoate (MAPA), benzyl methyl ketone (BMK), 1-(1,3-benzodioxol-5-yl)propan-2-one (PMK), ephedrine, pseudoephedrine, safrole, sassafras oil and piperonal- are reported for the first time. The electrochemical screening disclosed the redox inactivity of BMK, which is an essential starting material for the production of ATS. Therefore, the local derivatization of BMK at an electrode surface by reductive amination is presented as a feasible solution to enrich its electrochemical fingerprint. To prove that, the resulting mixture was analyzed using a set of chromatographic techniques to understand the reaction mechanism and to identify possible electrochemical active products. Two reaction products (i.e. methamphetamine and 1-phenylpropan-2-ol) were found and characterized using mass spectrometry and electrochemical methods. Subsequently, the optimization of the reaction parameters was carefully addressed to set the portable electrochemical sensing strategy. Ultimately, the analysis concept was validated for the qualitative identification of ATS precursors in seizures from a forensic institute. Overall, the electrochemical approach demonstrates to be a useful and affordable analytical tool for the early identification of ATS precursors to prevent trafficking and drug manufacture in clandestine laboratories.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000914833800003 Publication Date 2022-10-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:191622 Serial 8858  
Permanent link to this record
 

 
Author Wang, L.; Shi, P.; Chen, L.; Gielis, J.; Niklas, K.J. pdf  url
doi  openurl
  Title Evidence that Chinese white olive (Canarium album(Lour.) DC.) fruits are solids of revolution Type A1 Journal article
  Year 2023 Publication Botany letters Abbreviated Journal  
  Volume Issue (up) Pages 1-7  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Although many fruit geometries resemble a solid of revolution, this assumption has rarely been rigorously examined. To test this assumption, 574 fruits of Canarium album (Lour.) DC. which appear to have an ellipsoidal shape, were examined to determine the validity of a general avian-based egg-shape equation, referred to as the explicit Preston equation (EPE). The assumption that the C. album fruit geometry is a solid of revolution is tested by applying the volume formula for a solid of revolution using the EPE. The goodness of fit of the EPE was assessed using the adjusted root-mean-square error (RMSEadj). The relationship between the observed volume (Vobs) of each fruit, as measured by water displacement in a graduated cylinder, and the predicted volumes (Vpre) based on the EPE was also evaluated using the equation Vpre = slope * Vobs. All the RMSEadj values were smaller than 0.05, which demonstrated the validity of the EPE based on C. album fruit profiles. The 95% confidence interval of the slope of Vpre vs. Vobs included 1.0, indicating that there was no significant difference between Vpre and Vobs. The data confirm that C. album fruits are solids of revolution. This study provides a new approach for calculating the volume and surface area of geometrically similar fruits, which can be extended to other species with similar fruit geometries to further explore the ontogeny and evolution of angiosperm reproductive organs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001033135400001 Publication Date 2023-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2381-8107; 2381-8115 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.5 Times cited Open Access Not_Open_Access: Available from 24.01.2024  
  Notes Approved Most recent IF: 1.5; 2023 IF: NA  
  Call Number UA @ admin @ c:irua:198001 Serial 8864  
Permanent link to this record
 

 
Author Zhu, W.; Van Tendeloo, M.; Alloul, A.; Vlaeminck, S.E. pdf  doi
openurl 
  Title Feasibility of a return-sludge nursery concept for mainstream anammox biostimulation : creating optimal conditions for anammox to recover and grow in a parallel tank Type A1 Journal article
  Year 2023 Publication Bioresource technology Abbreviated Journal  
  Volume 385 Issue (up) Pages 129359-12  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract To overcome limiting anammox activity under sewage treatment conditions, a return-sludge nursery concept is proposed. This concept involves blending sludge reject water treated with partial nitritation with mainstream effluent to increase the temperature, N levels, and electrical conductivity (EC) of the anammox nursery reactor, which sludge periodically passes through the return sludge line of the mainstream system. Various nursery frequencies were tested in two 2.5 L reactors, including 0.5-2 days of nursery treatment per 3.5-14 days of the total operation. Bioreactor experiments showed that nursery increased nitrogen removal rates during mainstream operation by 33-38%. The increased anammox activity can be partly (35-60%) explained by higher temperatures. Elevated EC, higher nitrogen concentrations, and a putative synergy and/or unknown factor were responsible for 15-16%, 12-14%, and 10-36%, respectively. A relatively stable microbial community was observed, dominated by a “Candidatus Brocadia” member. This new concept boosted activity and sludge growth, which may facilitate mainstream anammox implementations based on partial nitritation/anammox or partial nitrification/denitratation/anammox.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001031586400001 Publication Date 2023-06-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 11.4 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 11.4; 2023 IF: 5.651  
  Call Number UA @ admin @ c:irua:198259 Serial 8866  
Permanent link to this record
 

 
Author Hassani, H. url  openurl
  Title First-principles study of polarons in WO₃ Type Doctoral thesis
  Year 2023 Publication Abbreviated Journal  
  Volume Issue (up) Pages 181 p.  
  Keywords Doctoral thesis; Condensed Matter Theory (CMT)  
  Abstract Polarons are quasiparticles emerging in materials from the interaction of extra charge carriers with the surrounding atomic lattice. They appear in a wide va- riety of compounds and can have a profound impact on their properties, making the concept of a polaron a central and ubiquitous topic in material science. Al- though the concept is known for about 75 years, the origin of polarons is not yet fully elucidated. This thesis focuses on WO 3 as a well-known prototypical system for studying polarons, which inherent polaronic nature is linked to its remark- able electrical and chromic properties. The primary objective of this research is to provide a comprehensive atomistic description and understanding of polaron formation in WO 3 using first-principles density functional theory (DFT) calcula- tions. Additionally, the investigation explores the interactions between polarons and the possibility of bipolaron formation. Following a systematic strategy, we first extensively analyze the dielectric and lattice dynamical properties of WO 3 in both the room-temperature P 2 1 /n and ground-state P 2 1 /c phases. Our specific focus is on characterizing the zone-center phonons, which serve as the founda- tion for identifying the phonon modes involved in the polaron formation and charge localization process. Subsequently, we examine the impact of structural distortions on the electronic structure of WO 3 to elucidate the interplay between structural distortions and electronic properties, thereby laying the groundwork for understanding electron-phonon couplings. By incorporating these critical fac- tors, we address our primary research goals. The most common explanation for the polaron formation is associated with the electrostatic screening of the extra charge by the polarizable lattice. Here, we show that, even in ionic crystals, this is not necessarily the case. We demonstrate that polarons in this compound arise primarily from non-polar atomic distortions. We then unveil that this unexpected behavior originates from the undoing of distortive atomic motions, which lowers the bandgap. As such, we coin the name of anti-distortive polaron and validate its appearance through a simple quantum-dot model, in which charge localization is the result of balancing structural, electronic, and confinement energy costs. Then, we also study the polaron-polaron interaction and present the formation of the antiferromagnetic W 4+ bipolaronic state with relatively large formation energy. Our analysis of the W 4+ bipolaronic distortions on the global structure reveals the same behavior as in experiments where the highly distorted monoclinic phase transforms into a tetragonal phase as a function of doping. Additionally, leveraging our previous findings on asymmetric polaronic distortion and examin- ing different merging orientations, we stabilize the antiferromagnetic W 5+ -W 5+ bipolaronic state with an energy lower than the W 4+ state. This thesis clari- fies the formation of unusual medium-size 2D polarons and bipolarons in WO3,which might be relevant to the whole family of ABO 3 perovskites, to which WO 3 is closely related. The simplicity of the concept provides also obvious guidelines for tracking similar behavior in other families of compounds.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:198169 Serial 8868  
Permanent link to this record
 

 
Author Lian, M.; Shi, P.; Zhang, L.; Yao, W.; Gielis, J.; Niklas, K.J. pdf  url
doi  openurl
  Title A generalized performance equation and its application in measuring the Gini index of leaf size inequality Type A1 Journal article
  Year 2023 Publication Trees: structure and function Abbreviated Journal  
  Volume 37 Issue (up) Pages 1555-1565  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The goal of this study is to provide a rigorous tool to quantify the inequality of the leaf size distribution of an individual plant, thereby serving as a reference trait for quantifying plant adaptations to local environmental conditions. The tool to be presented and tested employs three components: (1) a performance equation (PE), which can produce flexible asymmetrical and symmetrical bell-shaped curves, (2) the Lorenz curve (i.e., the cumulative proportion of leaf size vs. the cumulative proportion of number of leaves), which is the basis for calculating, and (3) the Gini index, which measures the inequality of leaf size distribution. We sampled 12 individual plants of a dwarf bamboo and measured the area and dry mass of each leaf of each plant. We then developed a generalized performance equation (GPE) of which the PE is a special case and fitted the Lorenz curve to leaf size distribution using the GPE and PE. The GPE performed better than the PE in fitting the Lorenz curve. We compared the Gini index of leaf area distribution with that of leaf dry mass distribution and found that there was a significant difference between the two indices that might emerge from the scaling relationship between leaf dry mass and area. Nevertheless, there was a strong correlation between the two Gini indices (r2 = 0.9846). This study provides a promising tool based on the GPE for quantifying the inequality of leaf size distributions across individual plants and can be used to quantify plant adaptations to local environmental conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001069570200001 Publication Date 2023-08-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0931-1890; 1432-2285 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.3 Times cited Open Access Not_Open_Access: Available from 26.02.2024  
  Notes Approved Most recent IF: 2.3; 2023 IF: 1.842  
  Call Number UA @ admin @ c:irua:199562 Serial 8874  
Permanent link to this record
 

 
Author Moro, G.; Campos, R.; Daems, E.; Moretto, L.M.; De Wael, K. pdf  url
doi  openurl
  Title Haem-mediated albumin biosensing : towards voltammetric detection of PFOA Type A1 Journal article
  Year 2023 Publication Bioelectrochemistry: an international journal devoted to electrochemical aspects of biology and biological aspects of electrochemistry Abbreviated Journal  
  Volume 152 Issue (up) Pages 108428-7  
  Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract The haem group is a promising redox probe for the design of albumin-based voltammetric sensors. Among the endogenous ligands carried by human serum albumin (hSA), haem is characterised by a reversible redox behaviour and its binding kinetics strongly depend on hSA’s conformation, which, in turn, depends on the presence of other ligands. In this work, the potential applicability of haem, especially hemin, as a redox probe was first tested in a proof-of-concept study using perfluorooctanoic acid (PFOA) as model analyte. PFOA is known to bind hSA by occupying Sudlow’s I site (FA7) which is spatially related to the haem-binding site (FA1). The latter undergoes a conformational change, which is expected to affect hemin’s binding kinetics. To verify this hypothesis, hemin:albumin complexes in the presence/absence of PFOA were first screened by UV–Vis spectroscopy. Once the complex formation was verified, haem was further characterised via electrochemical methods to estimate its electron transfer kinetics. The hemin:albumin:PFOA system was studied in solution, with the aim of describing the multiple equilibria at stake and designing an electrochemical assay for PFOA monitoring. This latter could be integrated with protein-based bioremediation approaches for the treatment of per- and polyfluoroalkyl substances polluted waters. Overall, our preliminary results show how hemin can be applied as a redox probe in albumin-based voltammetric sensing strategies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000971630400001 Publication Date 2023-03-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1567-5394 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 5 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5; 2023 IF: 3.346  
  Call Number UA @ admin @ c:irua:195069 Serial 8876  
Permanent link to this record
 

 
Author Moro, G.; Foumthuim, C.J.D.; Spinaci, M.; Martini, E.; Cimino, D.; Balliana, E.; Lieberzeit, P.; Romano, F.; Giacometti, A.; Campos, R.; De Wael, K.; Moretto, L.M. pdf  doi
openurl 
  Title How perfluoroalkyl substances modify fluorinated self-assembled monolayer architectures : an electrochemical and computational study Type A1 Journal article
  Year 2022 Publication Analytica chimica acta Abbreviated Journal  
  Volume 1204 Issue (up) Pages 339740-12  
  Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract There is an urgent need for sensing strategies to screen perfluoroalkyl substances (PFAS) in aqueous matrices. These strategies must be applicable in large-scale monitoring plans to face the ubiquitous use of PFAS, their wide global spread, and their fast evolution towards short-chain, branched molecules. To this aim, the changes in fluorinated self-assembled monolayers (SAM) with different architectures (pinholes/defects-free and with randomized pinholes/defects) were studied upon exposure to both long and short-chain PFAS. The applicability of fluorinated SAM in PFAS sensing was evaluated. Changes in the SAM structures were characterised combining electrochemical impedance spectroscopy and voltam-metric techniques. The experimental data interpretation was supported by molecular dynamics simu-lations to gain a more in-depth understanding of the interaction mechanisms involved. Pinhole/defect-free fluorinated SAM were found to be applicable to long-chain PFAS screening within switch-on sensing strategy, while a switch-off sensing strategy was reported for screening of both short/long-chain PFAS. These strategies confirmed the possibility to play on fluorophilic interactions when designing PFAS screening methods.(c) 2022 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000789493000010 Publication Date 2022-03-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2670; 1873-4324 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:188658 Serial 8880  
Permanent link to this record
 

 
Author Ag, K.R.; Minja, A.C.; Ninakanti, R.; Van Hal, M.; Dingenen, F.; Borah, R.; Verbruggen, S.W. pdf  url
doi  openurl
  Title Impact of soot deposits on waste gas-to-electricity conversion in a TiO₂/WO₃-based photofuel cell Type A1 Journal article
  Year 2023 Publication Chemical engineering journal Abbreviated Journal  
  Volume 470 Issue (up) Pages 144390-13  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract An unbiased photo-fuel cell (PFC) is a device that integrates the functions of a photoanode and a cathode to achieve simultaneous light-driven oxidation and dark reduction reactions. As such, it generates electricity while degrading pollutants like volatile organic compounds (VOCs). The photoanode is excited by light to generate electron-hole pairs, which give rise to a photocurrent, and are utilized to oxidise organic pollutants simultaneously. Here we have systematically studied various TiO2/WO3 photoanodes towards their photocatalytic soot degradation performance, PFC performance in the presence of VOCs, and the combination of both. The latter thus mimics an urban environment where VOCs and soot are present simultaneously. The formation of a type-II heterojunction after the addition of a thin TiO2 top layer over a dense WO3 bottom layer, improved both soot oxidation efficiency as well as photocurrent generation, thus paving the way towards low-cost PFC technology for energy recovery from real polluted air.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001030456200001 Publication Date 2023-06-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 15.1 Times cited Open Access Not_Open_Access: Available from 29.12.2023  
  Notes Approved Most recent IF: 15.1; 2023 IF: 6.216  
  Call Number UA @ admin @ c:irua:197222 Serial 8882  
Permanent link to this record
 

 
Author Wittner, N. url  openurl
  Title Improving and characterising solid-state fungal pretreatment by Phanerochaete chrysosporium for sugar production from poplar wood Type Doctoral thesis
  Year 2023 Publication Abbreviated Journal  
  Volume Issue (up) Pages 206 p.  
  Keywords Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Biochemical Wastewater Valorization & Engineering (BioWaVE)  
  Abstract Pretreatment is a critical step in the conversion of lignocellulose into biofuels and biochemicals. During pretreatment, the recalcitrance of lignocellulose is reduced, e.g. by removing lignin, thereby making the carbohydrates more accessible for enzymatic saccharification. Fungal delignification by white-rot fungi is a biotechnological alternative to chemical/physicochemical methods, which is carried out in solid-state fermentation with mild reaction conditions and without the formation of microbial inhibitors. However, fungal pretreatment presents some challenges, such as long pretreatment time, non-selective and low delignification, low enzymatic digestibility and feedstock sterilisation requirement, making its commercial implementation challenging compared to conventional methods. This study investigates the possibility of improving and characterising the solid-state fungal pretreatment of poplar wood by Phanerochaete chrysosporium. The individual and combined effects of MnSO4 and CuSO4 supplements on the delignification of sterilised wood are investigated using response surface methodology to improve the degree and selectivity of fungal delignification. Spore-inoculated solid-state fermentations are carried out for 4 weeks in sterile vented bottles. The mechanism of the concerted action of the metal ions on lignin degradation is then elucidated by relating fungal growth and ligninolytic enzyme activities to lignocellulose degradation as a function of pretreatment time. The optimised metal-supplemented system is then applied to the pretreatment of non-sterilised wood using different inoculation techniques (spores and pre-colonised substrate), nutrients (metal ions with or without glucose and sodium nitrate) and cultivation environments (sterile aerated bottles and open trays). The fermentations are then characterised using infrared spectroscopy, in particular NIR and ATR-FTIR spectroscopy, with the aim of developing rapid lignin quantification methods as an alternative to conventional wet chemical methods. Finally, the feasibility of producing fermentable sugars from sterilised and non-sterilised poplar wood using fungal pretreatment is evaluated through a techno-economic analysis. Supplementing the pretreatment system with 2.01 µmol CuSO4 and 0.77 µmol MnSO4 g-1 wood resulted in 1.9-fold higher lignin degradation, 2.3-fold higher delignification selectivity value and 2.9-fold higher glucose yield. The improved delignification could be explained by the concerted action of Mn2+ and Cu2+ ions, with Mn2+ ions inducing and Cu2+ prolonging manganese peroxidase production responsible for delignification. Fungal pretreatment at non-sterile conditions was obtained using trays in a simple solid-state fermentation set-up without sterile aeration. A 1:3 ratio of pre-colonised and untreated wood was applied for inoculation and only Cu2+, Mn2+ and sodium nitrate as supplements. Remarkably, this technology resulted in a comparably high glucose yield (28.51 ± 0.28%) to the traditional method using sterilised wood, sterile aeration and spores as inoculum, while reducing the amount of wood to be sterilised by 71.2%. Infrared spectroscopy-based methods with high coefficients of determination (R_CV  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:197185 Serial 8883  
Permanent link to this record
 

 
Author Van Putte, N. url  openurl
  Title Improving groundwater dynamics : a key factor for successful tidal marsh restoration Type Doctoral thesis
  Year 2023 Publication Abbreviated Journal  
  Volume Issue (up) Pages 166 p.  
  Keywords Doctoral thesis; Sustainable Energy, Air and Water Technology (DuEL); Ecosphere  
  Abstract Tidal marshes take up and release certain elements from and to the river water. Hence, they act as a filter, improving the estuarine water quality. This filtering function depends on the interaction between the marsh soil and water that infiltrates into the marsh platform at high tide and seeps out of the creek banks at low tide. In the past centuries, many tidal marshes disappeared due to large scale land reclamations, together with their associated ecosystem services. Nowadays, tidal marshes are increasingly restored on formerly embanked agricultural areas to regain these ecosystem services. Here, we studied the effect of historical agricultural land use on the contribution of restored tidal marshes to water quality improvement, and we investigated several solutions to stimulate the water quality improving function in newly restored tidal marshes. In restored tidal marshes, the soil is often compacted due to the historical agricultural land use, leading to a reduced organic matter content and micro- and macroporosity. In this compacted soil, groundwater flow is hindered, leading to a more waterlogged soil and reduced groundwater dynamics in the restored marsh as compared to a natural marsh. The depth of groundwater drainage and the groundwater flow velocity have important implications for the processes that contribute to water quality improvement, e.g. removal of nitrogen, phosphorus retention and silica cycling. Where groundwater drains deeper, i.e. in the vicinity of tidal creeks and in a more porous soil, these processes are promoted. We suggest that, in newly restored tidal marshes, the soil porosity can be increased by amending the soil (e.g. with organic matter), and the distance to the nearest tidal creek can be reduced by creek excavation. Numerical modelling showed that the largest gain in groundwater dynamics and seepage was attained when both measures were applied together. The effect of organic soil amendments on groundwater dynamics and nutrient cycling was further explored in a large scale in situ mesocosm experiment. Where the soil was amended, groundwater drained deeper and nitrogen removal increased. For new tidal marsh restoration projects, we advise to conduct an explorative soil study. When the soil is heavily compacted, design measures, such as creek initiation and organic soil amendments can be applied to jumpstart the contribution to water quality improvement of newly restored tidal marshes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:196965 Serial 8884  
Permanent link to this record
 

 
Author Phuttaro, C.; Krishnan, S.; Saritpongteeraka, K.; Charnnok, B.; Diels, L.; Chaiprapat, S. pdf  doi
openurl 
  Title Integrated poultry waste management by co-digestion with perennial grass : effects of mixing ratio, pretreatments, reaction temperature, and effluent recycle on biomethanation yield Type A1 Journal article
  Year 2023 Publication Biochemical engineering journal Abbreviated Journal  
  Volume 196 Issue (up) Pages 108937-12  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract This work aims to enhance the efficiency of integrated poultry waste management in bio-circular-green economy by maximizing the co-digestion of chicken manure and its digestate-grown biomass. In a series of batch assays, Napier grass (NG) was mixed with chicken manure (CM) at various proportions (100:0, 80:20, 60:40, 50:50, 40:60, 20:80 and 0:100) to identify co-substrate synergism, followed by physiochemical conditioning (size reduction and ultrasonication) of NG before co-digestion. Results indicated that NG mix of at least 80% was required to gain a full methanation potential of the individual substrates; no synergistic ratio above unity was found. However, the combined effect of size reduction and sonication was found to markedly improve the cosubstrate's biodegradability by 88.7%. The findings were then used to run continuous co-digestion at various operating regimes. In optimal continuous co-digestion condition, NG particle size of 0.6-2.4 mm combined with sonication intensity at 1111 kJ/kgTS improved biomethanation yield as high as 106.3%. Sub-thermophilic digestion at 45 degrees C was shown to give a higher and more stable CH4 yield than at 55 degrees C. Finally, it was also found that recycling liquid effluent at 40% to replace freshwater in feed, although showed no significant difference in CH4 yield (& alpha; = 0.05), noticeably increased system buffer capacity. This optimized biodegradation regime could give co-digestion waste management a higher overall plant efficiency and economic return.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001054826200001 Publication Date 2023-04-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1369-703x; 1873-295x ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.9 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 3.9; 2023 IF: 2.892  
  Call Number UA @ admin @ c:irua:199209 Serial 8887  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: