toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author van Cleempoel, A.; Gijbels, R.; van den Heuvel, H.; Claeys, M. openurl 
  Title Analysis of C60 and C70 oxides by HPLC and low- and high-energy collision-induced dissocation tandem mass spectrometry Type P1 Proceeding
  Year 1997 Publication Proceedings Symposium on Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials, 191th Meeting of the Electrochemical Society, Montreal, Canada, 4-9 May 1997 Abbreviated Journal  
  Volume 4 Issue Pages 783-800  
  Keywords P1 Proceeding; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1997BJ44R00081 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 1 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:19150 Serial 99  
Permanent link to this record
 

 
Author Van Tendeloo, G.; Schryvers, D. openurl 
  Title Atomic structure of alloys close to phase transitions Type A1 Journal article
  Year 2000 Publication Nucleation and growth processes in materials Abbreviated Journal  
  Volume 580 Issue Pages 283-292  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000165506200043 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Additional Links UA library record; WoS full record;  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:48377 Serial 197  
Permanent link to this record
 

 
Author Shimizu, K.; Habazaki, H.; Bender, H.; Gijbels, R. openurl 
  Title The dawn of surface analysis that stands by the side users: ultra-thin film analysis by rf-GDOES Type A3 Journal article
  Year 2004 Publication Engineering materials Abbreviated Journal  
  Volume 52 Issue 9 Pages 97-101  
  Keywords A3 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:51978 Serial 607  
Permanent link to this record
 

 
Author Muto, S.; Schryvers, D. openurl 
  Title Electron-irridation-induced martensitic transformation in a Ni63Al37 observed in-situ by HREM Type A3 Journal article
  Year 1993 Publication MRS Japan: shape memory materials Abbreviated Journal  
  Volume 18 Issue B Pages 853-856  
  Keywords A3 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:48357 Serial 937  
Permanent link to this record
 

 
Author Schryvers, D.; Tanner, L.E. openurl 
  Title Electron microscopy of stress-induced martensite and pretransition microstructures in Ni62.5Al37.5 Type A3 Journal article
  Year 1992 Publication Shape memory materials and phenomena: fundamental aspects and applications Abbreviated Journal  
  Volume 246 Issue Pages 33-38  
  Keywords A3 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1992BW94E00005 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 5 Open Access  
  Notes Approved CHEMISTRY, PHYSICAL 54/144 Q2 # PHYSICS, ATOMIC, MOLECULAR & CHEMICAL 9/35 Q2 #  
  Call Number UA @ lucian @ c:irua:4367 Serial 964  
Permanent link to this record
 

 
Author Schryvers, D.; Ma, Y.; Toth, L.; Tanner, L.E. openurl 
  Title EM study of twinning in the Ni5Al3 bainitic phase Type A3 Journal article
  Year 1993 Publication Twinning in advanced materials Abbreviated Journal  
  Volume Issue Pages 395-402  
  Keywords A3 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1994BB13P00037 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Additional Links UA library record; WoS full record;  
  Impact Factor Times cited Open Access  
  Notes Approved PHYSICS, APPLIED 28/145 Q1 #  
  Call Number UA @ lucian @ c:irua:48358 Serial 1031  
Permanent link to this record
 

 
Author Veljkovic, D.; Tadić, M.; Peeters, F.M. openurl 
  Title Magnetoexcitons in type-II self-assembled quantum dots and quantum-dot superlattices Type A1 Journal article
  Year 2006 Publication Recent developments in advanced materials and processes Abbreviated Journal  
  Volume 518 Issue Pages 51-56  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Additional Links UA library record; WoS full record;  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:60841 Serial 1918  
Permanent link to this record
 

 
Author Cheng, J.P.; Zhang, X.B.; Ye, Y.; Tao, X.Y.; Liu, F.; Li, Y.; Van Tendeloo, G. openurl 
  Title Natural mineral-marine manganese nodule as a novel catalyst for the synthesis of carbon nanotubes Type A1 Journal article
  Year 2006 Publication Journal of Wuhan University of Technology: materials science edition Abbreviated Journal  
  Volume 21 Issue 1 Pages 29-31  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:57740 Serial 2286  
Permanent link to this record
 

 
Author Oleshko, V.P.; Gijbels, R.H.; van Daele, A.J.; Jacob, W.A. openurl 
  Title On estimation of the dielectric function of Ag(Br,I) nanocrystals by cryo-EELS (addendum) Type A3 Journal article
  Year 1999 Publication Nanostructered materials Abbreviated Journal  
  Volume 11 Issue Pages 687-688  
  Keywords A3 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:28332 Serial 2431  
Permanent link to this record
 

 
Author Schryvers, D.; Tanner, L.E. openurl 
  Title On the phase-like nature of the 7M structure in Ni-Al Type A3 Journal article
  Year 1993 Publication MRS Japan: shape memory materials Abbreviated Journal  
  Volume 18 Issue B Pages 849-852  
  Keywords A3 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1994BC69J00183 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 1 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:48356 Serial 2447  
Permanent link to this record
 

 
Author Nikolaev, A.V.; Prassides, K.; Michel, K.H. openurl 
  Title Phase transitions in AC60 (A=Rb, Cs) fullerides Type A3 Journal article
  Year 1997 Publication Recent advances in the chemistry and physics of fullerenes and related materials Abbreviated Journal  
  Volume 5 Issue Pages 450-460  
  Keywords A3 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:21182 Serial 2596  
Permanent link to this record
 

 
Author Vanhellemont, J.; Romano-Rodriguez, A.; Fedina, L.; van Landuyt, J.; Aseev, A. openurl 
  Title Point defect reactions in silicon studies in situ by high flux electron irradiation in high voltage transmission electron microscope Type A3 Journal article
  Year 1995 Publication Materials science and technology Abbreviated Journal  
  Volume 11 Issue Pages 1194-1204  
  Keywords A3 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1995TQ95100016 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 7 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:13297 Serial 2655  
Permanent link to this record
 

 
Author Tanner, L.E.; Shapiro, S.M.; Schryvers, D.; Noda, Y. openurl 
  Title Review of phonon behaviour and microstructural development leading to martensitic transformations in NixAl100-x alloys Type A3 Journal article
  Year 1992 Publication Shape memory materials and phenomena: fundamental aspects and applications Abbreviated Journal  
  Volume 246 Issue Pages 265-276  
  Keywords A3 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1992BW94E00038 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 4 Open Access  
  Notes Approved MATERIALS SCIENCE, MULTIDISCIPLINARY 96/271 Q2 #  
  Call Number UA @ lucian @ c:irua:4368 Serial 2904  
Permanent link to this record
 

 
Author Hadermann, J.; Palatinus, L. url  doi
openurl 
  Title Introducton to the special issue on electron crystallography Type Editorial
  Year 2019 Publication And Materials Abbreviated Journal  
  Volume 75 Issue 4 Pages 462-462  
  Keywords Editorial; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000480512600028 Publication Date 2019-08-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 2 Open Access  
  Notes ; ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:161845 Serial 5389  
Permanent link to this record
 

 
Author Crippa, F.; Rodriguez-Lorenzo, L.; Hua, X.; Goris, B.; Bals, S.; Garitaonandia, J.S.; Balog, S.; Burnand, D.; Hirt, A.M.; Haeni, L.; Lattuada, M.; Rothen-Rutishauser, B.; Petri-Fink, A. pdf  doi
openurl 
  Title Phase transformation of superparamagnetic iron oxide nanoparticles via thermal annealing : implications for hyperthermia applications Type A1 Journal article
  Year 2019 Publication ACS applied nano materials Abbreviated Journal  
  Volume 2 Issue 2 Pages 4462-4470  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Magnetic hyperthermia has the potential to play an important role in cancer therapy and its efficacy relies on the nanomaterials selected. Superparamagnetic iron oxide nanoparticles (SPIONs) are excellent candidates due to the ability of producing enough heat to kill tumor cells by thermal ablation. However, their heating properties depend strongly on crystalline structure and size, which may not be controlled and tuned during the synthetic process; therefore, a postprocessing is needed. We show how thermal annealing can be simultaneously coupled with ligand exchange to stabilize the SPIONs in polar solvents and to modify their crystal structure, which improves hyperthermia behavior. Using high-resolution transmission electron microscopy, X-ray diffraction, Mossbauer spectroscopy, vibrating sample magnetometry, and lock-in thermography, we systematically investigate the impact of size and ligand exchange procedure on crystallinity, their magnetism, and heating ability. We describe a valid and simple approach to optimize SPIONs for hyperthermia by carefully controlling the size, colloidal stability, and crystallinity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000477917700048 Publication Date 2019-06-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 18 Open Access Not_Open_Access  
  Notes ; This work was supported by the Swiss National Science Foundation through the National Center of Competence in Research Bio-Inspired Materials, the Adolphe Merkle Foundation, the University of Fribourg, and the European Society for Molecular Imaging (Grant E141200643). ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:161927 Serial 5393  
Permanent link to this record
 

 
Author Hadermann, J.; Abakumov, A.M. pdf  doi
openurl 
  Title Structure solution and refinement of metal-ion battery cathode materials using electron diffraction tomography Type A1 Journal article
  Year 2019 Publication And Materials Abbreviated Journal  
  Volume 75 Issue 4 Pages 485-494  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The applicability of electron diffraction tomography to the structure solution and refinement of charged, discharged or cycled metal-ion battery positive electrode (cathode) materials is discussed in detail. As these materials are often only available in very small amounts as powders, the possibility of obtaining single-crystal data using electron diffraction tomography (EDT) provides unique access to crucial information complementary to X-ray diffraction, neutron diffraction and high-resolution transmission electron microscopy techniques. Using several examples, the ability of EDT to be used to detect lithium and refine its atomic position and occupancy, to solve the structure of materials ex situ at different states of charge and to obtain in situ data on structural changes occurring upon electrochemical cycling in liquid electrolyte is discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000480512600002 Publication Date 2019-08-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 2 Open Access  
  Notes ; The following funding is acknowledged: Fonds Wetenschappelijk Onderzoek (grant No. G040116N); Russian Foundation of Basic Research (grant No. 17-03-00370-a). ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:161846 Serial 5397  
Permanent link to this record
 

 
Author Vishwakarma, M.; Varandani, D.; Hendrickx, M.; Hadermann, J.; Mehta, B.R. url  doi
openurl 
  Title Nanoscale photovoltage mapping in CZTSe/CuxSe heterostructure by using kelvin probe force microscopy Type A1 Journal article
  Year 2020 Publication Materials Research Express Abbreviated Journal  
  Volume 7 Issue 1 Pages 016418  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In the present work, kelvin probe force microscopy (KPFM) technique has been used to study the CZTSe/CuxSe bilayer interface prepared by multi-step deposition and selenization process of metal precursors. Transmission electron microscopy (TEM) confirmed the bilayer configuration of the CZTSe/CuxSe sample. Two configuration modes (surface mode and junction mode) in KPFM have been employed in order to measure the junction voltage under illumination conditions. The results show that CZTSe/CuxSe has small junction voltage of similar to 21 mV and the presence of CuxSe secondary phase in the CZTSe grain boundaries changes the workfunction of the local grain boundaries region. The negligible photovoltage difference between grain and grain boundaries in photovoltage image indicates that CuxSe phase deteriorates the higher photovoltage at grain boundaries normally observed in CZTSe based device. These results can be important for understanding the role of secondary phases in CZTSe based junction devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000520120900001 Publication Date 2019-12-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes ; Authors acknowledges support provided DST in the forms of InSOL and Indo-Swiss projects. We also acknowledge Joke Hadermann EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Belgium for helping in TEM measurements. M V Manoj Vishwakarma acknowledges IIT Delhi for MHRD fellowship. Prof B R Mehta acknowledges the support of the Schlumberger chair professorship. M V also acknowledges the support of DST-FIST Raman facility. ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:167843 Serial 6567  
Permanent link to this record
 

 
Author Liu, P.; Madsen, J.; Schiotz, J.; Wagner, J.B.; Hansen, T.W. url  doi
openurl 
  Title Reversible and concerted atom diffusion on supported gold nanoparticles Type A1 Journal article
  Year 2020 Publication Journal Of Physics-materials Abbreviated Journal  
  Volume 3 Issue 2 Pages 024009  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Traditionally, direct imaging of atom diffusion is only available by scanning tunneling microscopy and field ion microscopy on geometry-constrained samples: flat surfaces for STM and needle tips for FIM. Here we show time-resolved atomic-scale HRTEM investigations of CeO2-supported Au nanoparticle surfaces to characterize the surface dynamics of atom columns on gold nanoparticles. The observed surface dynamics have been categorized into four types: layer jumping, layer gliding, re-orientation and surface reconstruction. We successfully captured atoms moving in a concerted manner with a time resolution of 0.1 s. A quantitative approach for measuring the dynamics in various gaseous surroundings at elevated temperatures is presented. An approach for measuring quantitative electron beam effects on the surface dynamics is presented by counting atom column occupation as a function of time under a range of dose rates in high vacuum.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000560432800009 Publication Date 2020-03-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 2 Open Access OpenAccess  
  Notes ; ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:171320 Serial 6597  
Permanent link to this record
 

 
Author Jorgensen, M.; Shea, P.T.; Tomich, A.W.; Varley, J.B.; Bercx, M.; Lovera, S.; Cerny, R.; Zhou, W.; Udovic, T.J.; Lavallo, V.; Jensen, T.R.; Wood, B.C.; Stavila, V. url  doi
openurl 
  Title Understanding superionic conductivity in lithium and sodium salts of weakly coordinating closo-hexahalocarbaborate anions Type A1 Journal article
  Year 2020 Publication Chemistry of materials Abbreviated Journal  
  Volume 32 Issue 4 Pages 1475-1487  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Solid-state ion conductors based on closo-polyborate anions combine high ionic conductivity with a rich array of tunable properties. Cation mobility in these systems is intimately related to the strength of the interaction with the neighboring anionic network and the energy for reorganizing the coordination polyhedra. Here, we explore such factors in solid electrolytes with two anions of the weakest coordinating ability, [HCB11H5Cl6](-) and [HCB11H5Br6](-), and a total of 11 polymorphs are identified for their lithium and sodium salts. Our approach combines ab initio molecular dynamics, synchrotron X-ray powder diffraction, differential scanning calorimetry, and AC impedance measurements to investigate their structures, phase-transition behavior, anion orientational mobilities, and ionic conductivities. We find that M(HCB11H5X6) (M = Li, Na, X = Cl, Br) compounds exhibit order-disorder polymorphic transitions between 203 and 305 degrees C and display Li and Na superionic conductivity in the disordered state. Through detailed analysis, we illustrate how cation disordering in these compounds originates from a competitive interplay among the lattice symmetry, the anion reorientational mobility, the geometric and electronic asymmetry of the anion, and the polarizability of the halogen atoms. These factors are compared to other closo-polyborate-based ion conductors to suggest guidelines for optimizing the cation-anion interaction for fast ion mobility. This study expands the known solid-state poly(carba)borate-based materials capable of liquid-like ionic conductivities, unravels the mechanisms responsible for fast ion transport, and provides insights into the development of practical superionic solid electrolytes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000517351300014 Publication Date 2020-01-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 5 Open Access OpenAccess  
  Notes ; The authors gratefully acknowledge support from the Hydrogen Materials-Advanced Research Consortium (HyMARC), established as part of the Energy Materials Network under the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Office, under Contract no. AC04-94AL85000. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under Contract no. DE-NA-0003525. A portion of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract no. ACS2-07NA27344. We also gratefully thank Kyoung Kweon for useful discussions. The views and opinions of the authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. Neither the United States Government nor any agency thereof nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. The Danish council for independent research, technology and production, HyNanoBorN (4181-00462) and SOS-MagBat (9041-00226B) and NordForsk, The Nordic Neutron Science Program, project FunHy (81942), and the Carlsberg Foundation are acknowledged for funding. Affiliation with the Center for Integrated Materials Research (iMAT) at Aarhus University is gratefully acknowledged. V.L. acknowledges the NSF for partial support of this project (DMR-1508537). The authors would like to thank the Swiss-Norwegian beamlines (BM01) at the ESRF, Grenoble, for the help with the data collection, DESY for access to Petra III, at beamline P02.1, and Diamond for access to beamline I11. ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:167754 Serial 6645  
Permanent link to this record
 

 
Author Li, C.-F.; Zhao, K.; Liao, X.; Hu, Z.-Y.; Zhang, L.; Zhao, Y.; Mu, S.; Li, Y.; Li, Y.; Van Tendeloo, G.; Sun, C. pdf  url
doi  openurl
  Title Interface cation migration kinetics induced oxygen release heterogeneity in layered lithium cathodes Type A1 Journal article
  Year 2021 Publication Energy Storage Materials Abbreviated Journal  
  Volume 36 Issue Pages 115-122  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The irreversible release of the lattice oxygen in layered cathodes is one of the major degradation mechanisms of lithium ion batteries, which accounts for a number of battery failures including the voltage/capacity fade, loss of cation ions and detachment of the primary particles, etc. Oxygen release is generally attributed to the stepwise thermodynamic controlled phase transitions from the layered to spinel and rock salt phases. Here, we report a strong kinetic effect from the mobility of cation ions, whose migration barrier can be significantly modulated by the phase epitaxy at the degrading interface. It ends up with a clear oxygen release heterogeneity and completely different reaction pathways between the thin and thick areas, as well as the interparticle valence boundaries, both of which widely exist in the mainstream cathode design with the secondary agglomerates. This work unveils the origin of the heterogenous oxygen release in the layered cathodes. It also sheds light on the rational design of cathode materials with enhanced oxygen stability by suppressing the cation migration.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000620584300009 Publication Date 2020-12-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:176654 Serial 6730  
Permanent link to this record
 

 
Author Delalieux, F.; Tsuji, K.; Wagatsuma, K.; Van Grieken, R. doi  openurl
  Title Material analysis methods applied to the study of ancient monuments, works of art and artefacts Type A1 Journal article
  Year 2002 Publication Materials transactions Abbreviated Journal  
  Volume 43 Issue 9 Pages 2197-2200  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000178449800008 Publication Date 2005-10-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:40618 Serial 8208  
Permanent link to this record
 

 
Author Safdar, M.; Khan, S.U.; Jänis, J. pdf  url
doi  openurl
  Title Progress toward catalytic micro- and nanomotors for biomedical and environmental applications Type A1 Journal article
  Year 2018 Publication Advanced Materials Abbreviated Journal  
  Volume 30 Issue 24 Pages 1703660  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Synthetic micro‐ and nanomotors (MNMs) are tiny objects that can autonomously move under the influence of an appropriate source of energy, such as a chemical fuel, magnetic field, ultrasound, or light. Chemically driven MNMs are composed of or contain certain reactive material(s) that convert chemical energy of a fuel into kinetic energy (motion) of the particles. Several different materials have been explored over the last decade for the preparation of a wide variety of MNMs. Here, the discovery of materials and approaches to enhance the efficiency of chemically driven MNMs are reviewed. Several prominent applications of the MNMs, especially in the fields of biomedicine and environmental science, are also discussed, as well as the limitations of existing materials and future research directions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000436455800006 Publication Date 2018-02-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:175426 Serial 8424  
Permanent link to this record
 

 
Author Scandura, G.; Eid, S.; Alnajjar, A.A.; Paul, T.; Karanikolos, G.N.; Shetty, D.; Omer, K.; Alqerem, R.; Juma, A.; Wang, H.; Arafat, H.A.; Dumee, L.F. url  doi
openurl 
  Title Photo-responsive metal-organic frameworks – design strategies and emerging applications in photocatalysis and adsorption Type A1 Journal article
  Year 2023 Publication Materials Advances Abbreviated Journal  
  Volume 4 Issue 5 Pages 1258-1285  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Stimuli-responsive metal-organic frameworks (MOFs) are highly versatile porous materials with the ability to respond to different external stimuli, including temperature, pressure, pH, and light. The MOF properties can switch reversibly under specific light irradiation, opening the doors to various applications. This review focuses on design strategies to obtain photo-responsive MOFs, namely (i) encapsulation of photo-switchable molecules as guests in MOF porous structures, (ii) fabrication of MOF composites, (iii) post-synthesis modification, and (iv) synthesis of MOFs with photo-responsive ligands. The most recent reports from the literature are herein reviewed and analyzed in terms of material chemistry and performance. Comparisons between the different strategies are performed and future challenges are discussed. The critical aspect of the fatigue of photo-responsive MOFs applied for prolonged cycling of irradiation is also discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000938241000001 Publication Date 2023-02-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:199418 Serial 8913  
Permanent link to this record
 

 
Author Avetisyan, A.A.; Partoens, B.; Peeters, F.M. doi  openurl
  Title Electric field tuning of the band gap in four layers of graphene with different stacking order Type P1 Proceeding
  Year 2012 Publication Proceedings of the Society of Photo-optical Instrumentation Engineers T2 – Conference on Photonics and Micro and Nano-structured Materials, JUN 28-30, 2011, Yerevan, ARMENIA Abbreviated Journal  
  Volume Issue Pages 84140-84148  
  Keywords P1 Proceeding; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract We investigated the effect of different stacking order of the four graphene layer system on the induced band gap when positively charged top and negatively charged back gates are applied to the system. A tight-binding approach within a self-consistent Hartree approximation is used to calculate the induced charges on the different graphene layers. We show that the electric field does not open an energy gap if the multilayer graphene system contains a trilayer part with the ABA Bernal stacking.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000303856600012 Publication Date 2012-01-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume 8414 Series Issue Edition  
  ISSN (up) ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), and the BelgianScience Policy (IAP). One of us (A.A.A.) was supported by a fellowship from the Belgian Federal Science Policy Office (BELSPO). ; Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:113046 Serial 886  
Permanent link to this record
 

 
Author Djotyan, A.P.; Avetisyan, A.A.; Hao, Y.L.; Peeters, F.M. doi  openurl
  Title Shallow donor near a semiconductor surface in the presence of locally spherical scanning tunneling microscope tip Type P1 Proceeding
  Year 2012 Publication Proceedings of the Society of Photo-optical Instrumentation Engineers T2 – Conference on Photonics and Micro and Nano-structured Materials, JUN 28-30, 2011, Yerevan, ARMENIA Abbreviated Journal  
  Volume Issue Pages 84140-84148  
  Keywords P1 Proceeding; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract We developed a variational approach to investigate the ground state energy and the extend of the wavefunction of a neutral donor located near a semiconductor surface in the presence of scanning tunneling microscope (STM) metallic tip. We apply the effective mass approximation and use a variational wavefunction that takes into account the influence of all image charges that arise due to the presence of a metallic tip. The behavior of the ground state energy when the tip approaches the semiconductor surface is investigated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000303856600020 Publication Date 2012-01-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume 8414 Series Issue Edition  
  ISSN (up) ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), and the Belgian Science Policy. One of us (AAA) was supported by a fellowship from the Belgian Federal Science Policy Office (Belspo). ; Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:113047 Serial 2987  
Permanent link to this record
 

 
Author Colin D. Judge, Nicolas Gauquelin, Lori Walters, Mike Wright, James I. Cole, James Madden, Gianluigi A. Botton, Malcolm Griffiths pdf  doi
openurl 
  Title Intergranular fracture in irradiated Inconel X-750 containing very high concentrations of helium and hydrogen Type A1 Journal Article
  Year 2015 Publication Journal of Nuclear Materials Abbreviated Journal  
  Volume 457 Issue 457 Pages 165-172  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract In recent years, it has been observed that Inconel X-750 spacers in CANDU reactors exhibits lower ductility with reduced load carrying capacity following irradiation in a reactor environment. The fracture behaviour of ex-service material was also found to be entirely intergranular at high doses. The thermalized flux spectrum in a CANDU reactor leads to transmutation of 58Ni to 59Ni. The 59Ni itself has unusually high thermal neutron reaction cross-sections of the type: (n, γ), (n, p), and (n, α). The latter two reactions, in particular, contribute to a significant enhancement of the atomic displacements in addition to creating high concentrations of hydrogen and helium within the material. Microstructural examinations by transmission electron microscopy (TEM) have confirmed the presence of helium bubbles in the matrix and aligned along grain boundaries and matrix–precipitate interfaces. Helium bubble size and density are found to be highly dependent on the irradiation temperature and material microstructure; the bubbles are larger within grain boundary precipitates. TEM specimens extracted from fracture surfaces and crack tips provide information that is consistent with crack propagation along grain boundaries due to the presence of He bubbles.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000349169100022 Publication Date 2014-11-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Additional Links  
  Impact Factor Times cited 29 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number EMAT @ emat @ Serial 4540  
Permanent link to this record
 

 
Author Sathiya, M.; Jacquet, Q; Doublet, M.L; Karakulina, O.M.; Hadermann, J.; Tarascon, J.-M. pdf  url
doi  openurl
  Title A Chemical Approach to Raise Cell Voltage and Suppress Phase Transition in O3 Sodium Layered Oxide Electrodes Type A1 Journal article
  Year 2018 Publication Advanced energy materials Abbreviated Journal Adv. Energy Mater.  
  Volume Issue Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Sodium ion batteries (NIBs) are one of the versatile technologies for lowcost rechargeable batteries. O3-type layered sodium transition metal oxides (NaMO2, M = transition metal ions) are one of the most promising positive electrode materials considering their capacity. However, the use of O3 phases is limited due to their low redox voltage and associated multiple phase transitions which are detrimental for long cycling. Herein, a simple strategy is proposed to successfully combat these issues. It consists of the introduction of a larger, nontransition metal ion Sn4+ in NaMO2 to prepare a series of NaNi0.5Mn0.5−y SnyO2 (y = 0–0.5) compositions with attractive electrochemical performances, namely for y = 0.5, which shows a single-phase transition from O3 ⇔ P3 at the very end of the oxidation process. Na-ion NaNi0.5Sn0.5O2/C coin cells are shown to deliver an average cell voltage of 3.1 V with an excellent capacity retention as compared to an average stepwise voltage of ≈2.8 V and limited capacity retention for the pure NaNi0.5Mn0.5O2 phase. This study potentially shows the way to manipulate the O3 NaMO2 for facilitating their practical use in NIBs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000430163100013 Publication Date 2018-01-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 21.875 Times cited 28 Open Access OpenAccess  
  Notes M.S. and Q.J. contributed equally to this work. The authors thank Dr. Daniel Alves Dalla Corte and Sujoy Saha for electronic conductivity measurements and Prof. Dominique Larcher for fruitful discussions. Q.J. thanks the ANR “Deli-Redox” for Ph.D. funding. J.-M.T. acknowledges funding from the European Research Council (ERC) (FP/2014)/ERC Grant-Project 670116-ARPEMA. TGA analysis by Matthieu Courty, LRCS, Amiens, is greatly acknowledged. J.H. and O.M.K. acknowledge funding from FWO Vlaanderen project G040116N. Approved Most recent IF: NA  
  Call Number EMAT @ emat @c:irua:149515 Serial 4907  
Permanent link to this record
 

 
Author Schryvers, D.; Tanner, L.E. pdf  doi
isbn  openurl
  Title On the phase-like nature of the 7M structure in Ni-Al Type A3 Journal Article
  Year 1994 Publication Ecomaterials Abbreviated Journal  
  Volume Issue Pages 849-852  
  Keywords A3 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract The existence of the (52) stacking of the 7M martensite structure in Ni-Al is discussed in view of different experimental observations relating this structure to the premartensitic anomalies. It is concluded that the extreme fineness of the twinning is inherited from the wavelength of the premartensitic anomalies, while, given this dimension, the actual stacking tries to comply with stress free habit plane conditions by choosing the specific (52) stacking.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor Yamamoto, R.; Furubayashi, E.; Doi, Y.; Fang, R.; Liu, B.; Otsuka, K.; Liu, C.T.; Shimizu, K.; Suzuki, Y.; Van Humbeeck, J.; Fukai, Y.; Ono, S.; Suda, S.  
  Language Wos Publication Date 2013-12-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN 978-1-4832-8381-4 Additional Links  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number EMAT @ emat @ Serial 5052  
Permanent link to this record
 

 
Author Xia, C.; Pedrazo-Tardajos, A.; Wang, D.; Meeldijk, J.D.; Gerritsen, H.C.; Bals, S.; de Donega, C.M. url  doi
openurl 
  Title Seeded growth combined with cation exchange for the synthesis of anisotropic Cu2-xS/ZnS, Cu2-xS, and CuInS2 nanorods Type A1 Journal article
  Year 2021 Publication Chemistry of materials Abbreviated Journal  
  Volume 33 Issue 1 Pages 102-116  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Colloidal copper(I) sulfide (Cu2-xS) nanocrystals (NCs) have attracted much attention for a wide range of applications because of their unique optoelectronic properties, driving scientists to explore the potential of using Cu2-xS NCs as seeds in the synthesis of heteronanocrystals to achieve new multifunctional materials. Herein, we developed a multistep synthesis strategy toward Cu2-xS/ZnS heteronanorods. The Janus-type Cu2-xS/ZnS heteronanorods are obtained by the injection of hexagonal high-chalcocite Cu2-xS seed NCs in a hot zinc oleate solution in the presence of suitable surfactants, 20 s after the injection of sulfur precursors. The Cu2-xS seed NCs undergo rapid aggregation and coalescence in the first few seconds after the injection, forming larger NCs that act as the effective seeds for heteronucleation and growth of ZnS. The ZnS heteronucleation occurs on a single (100) facet of the Cu2-xS seed NCs and is followed by fast anisotropic growth along a direction that is perpendicular to the c-axis, thus leading to Cu2-xS/ZnS Janus-type heteronanorods with a sharp heterointerface. Interestingly, the high-chalcocite crystal structure of the injected Cu2-xS seed NCs is preserved in the Cu2-xS segments of the heteronanorods because of the highthermodynamic stability of this Cu2-xS phase. The Cu2-xS/ZnS heteronanorods are subsequently converted into single-component Cu2-xS and CuInS2 nanorods by postsynthetic topotactic cation exchange. This work expands the possibilities for the rational synthesis of colloidal multicomponent heteronanorods by allowing the design principles of postsynthetic heteroepitaxial seeded growth and nanoscale cation exchange to be combined, yielding access to a plethora of multicomponent heteronanorods with diameters in the quantum confinement regime.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000610984700009 Publication Date 2020-12-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 10 Open Access OpenAccess  
  Notes C.X. acknowledges China Scholarship Council (CSC) for the financial support (grant number 201406330055). C.d.M.D. acknowledges funding from the European Commission for access to the EMAT facilities (grant number EUSMI E180900184). D.W. acknowledges an Individual Fellowship funded by the Marie Sklodowska-Curie Actions (MSCA) in Horizon 2020 program (grant 894254 SuprAtom). S.B. acknowledges support by means of the ERC Consolidator grant no. 815128 REALNANO. The authors thank Donglong Fu for XRD measurements.; sygma Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:176587 Serial 6732  
Permanent link to this record
 

 
Author Van Tendeloo, G.; Bernaerts, D.; Amelinckx, S. openurl 
  Title Reduced dimensionality in different forms of carbon Type P1 Proceeding
  Year 1998 Publication Fullerenes and carbon based materials Abbreviated Journal  
  Volume Issue Pages 487-493  
  Keywords P1 Proceeding; Electron microscopy for materials research (EMAT)  
  Abstract Several TEM techniques are used to characterise the local structure of low dimensional forms of carbon. HREM is particularly useful to describe the defect structure of thin films of diamond or fullerenes and C-60-C-70 nanoclusters. A columnar form of graphite is analysed, mainly by electron diffraction which allowed us to propose a growth mechanism. Diffraction contrast dark field microscopy, in combination with electron diffraction, allows a detailed characterisation of carbon nanotubes; e.g. the chirality distribution of tubes in ropes of single wall tubes is studied by selected area electron diffraction. (C) 1998 Elsevier Science Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000079731900002 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume 68 Series Issue Edition  
  ISSN (up) 0-444-20512-8 ISBN Additional Links UA library record; WoS full record;  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:104348 Serial 2850  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: