|   | 
Details
   web
Records
Author Reyntjens, P.; Van de Put, M.; Vandenberghe, W.G.; Sorée, B.
Title Ultrascaled graphene-capped interconnects : a quantum mechanical study Type P1 Proceeding
Year 2023 Publication Proceedings of the IEEE ... International Interconnect Technology Conference T2 – IEEE International Interconnect Technology Conference (IITC) / IEEE, Materials for Advanced Metallization Conference (MAM), MAY 22-25, 2023, Dresden, Germany Abbreviated Journal
Volume Issue Pages 1-3
Keywords P1 Proceeding; Condensed Matter Theory (CMT)
Abstract In this theoretical study, we assess the impact of a graphene capping layer on the resistivity of defective, extremely scaled interconnects. We investigate the effect of graphene capping on the electronic transport in ultrascaled interconnects, in the presence of grain boundary defects in the metal layer. We compare the results obtained using our quantum mechanical model to a simple parallel-conductor model and find that the parallel-conductor model does not capture the effect of the graphene cap correctly. At 0.5 nm metal thickness, the parallel-conductor model underestimates the conductivity by 3.0% to 4.0% for single-sided and double sided graphene capping, respectively.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001027381700006 Publication Date 2023-06-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 979-83-503-1097-9 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:198343 Serial 8949
Permanent link to this record
 

 
Author de Barros, A.G.; Hasheminejad, N.; Kampen, J.K.; Vanlanduit, S.; Vuye, C.
Title Noise barriers as a road traffic noise intervention in an urban environment Type P1 Proceeding
Year 2021 Publication Abbreviated Journal
Volume Issue Pages 1-10
Keywords P1 Proceeding; Engineering sciences. Technology; Engineering Management (ENM); Condensed Matter Theory (CMT); Energy and Materials in Infrastructure and Buildings (EMIB); Social Epidemiology & Health Policy (SEHPO)
Abstract Intending to tackle road traffic noise in urban environments, noise barriers have been proven to effectively reduce environmental noise levels, leading to positive effects on noise perception by the exposed population. This work assesses the impacts of replacing an obsolete noise barrier in a site near a highway. The effects of this change were monitored via a combination of field surveys, acoustic measurements and noise maps. The results have shown that even though the barrier replacement led to a 4.1 dB reduction in the LA,eq,(15 min.), the annoyance levels of the respondents increased. Possibly, the expectations regarding the improvement of the noise barrier were not met, after a history of complaints. Additionally, existing exposure-response relationships were not successful in predicting the annoyance levels in this particular case. In this dataset, noise annoyance presented a weak link with reported health problems, while a strong correlation was found with the comfort level to perform activities outdoors. Questions regarding the COVID-19 pandemic showed that even though the respondents were spending more time at home, they were less annoyed due to road traffic noise in the period when circulation restrictions were in place.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 978-989-53387-0-2 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:180105 Serial 7004
Permanent link to this record
 

 
Author Milovanović, S.P.; Peeters, F.M.
Title Strained graphene structures : from valleytronics to pressure sensing Type P1 Proceeding
Year 2018 Publication Nanostructured Materials For The Detection Of Cbrn Abbreviated Journal
Volume Issue Pages 3-17 T2 - NATO Advanced Research Workshop on Nanos
Keywords P1 Proceeding; Pharmacology. Therapy; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Due to its strong bonds graphene can stretch up to 25% of its original size without breaking. Furthermore, mechanical deformations lead to the generation of pseudo-magnetic fields (PMF) that can exceed 300 T. The generated PMF has opposite direction for electrons originating from different valleys. We show that valley-polarized currents can be generated by local straining of multi-terminal graphene devices. The pseudo-magnetic field created by a Gaussian-like deformation allows electrons from only one valley to transmit and a current of electrons from a single valley is generated at the opposite side of the locally strained region. Furthermore, applying a pressure difference between the two sides of a graphene membrane causes it to bend/bulge resulting in a resistance change. We find that the resistance changes linearly with pressure for bubbles of small radius while the response becomes non-linear for bubbles that stretch almost to the edges of the sample. This is explained as due to the strong interference of propagating electronic modes inside the bubble. Our calculations show that high gauge factors can be obtained in this way which makes graphene a good candidate for pressure sensing.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000477758900001 Publication Date 2018-07-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 978-94-024-1306-9; 978-94-024-1304-5; 978-94-024-1303-8; 978-94-024-1303-8 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 6 Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:161972 Serial 8583
Permanent link to this record
 

 
Author Moldovan, D.; Peeters, F.M.
Title Atomic Collapse in Graphene Type P1 Proceeding
Year 2016 Publication Nanomaterials For Security Abbreviated Journal
Volume Issue Pages 3-17
Keywords P1 Proceeding; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract When the charge Z of an atom exceeds the critical value of 170, it will undergo a process called atomic collapse which triggers the spontaneous creation of electron-positron pairs. The high charge requirements have prevented the observation of this phenomenon with real atomic nuclei. However, thanks to the relativistic nature of the carriers in graphene, the same physics is accessible at a much lower scale. The atomic collapse analogue in graphene is realized using artificial nuclei which can be created via the deposition of impurities on the surface of graphene or using charged vacancies. These supercritically charged artificial nuclei trap electrons in a sequence of quasi-bound states which can be observed experimentally as resonances in the local density of states.
Address
Corporate Author Thesis
Publisher Springer Place of Publication Dordrecht Editor
Language Wos 000386506200001 Publication Date 2016-07-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 978-94-017-7593-9; 978-94-017-7591-5 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 3 Open Access
Notes ; ; Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:138237 Serial 4348
Permanent link to this record
 

 
Author Grangeiro de Barros, A.; Devroede, R.; Vanlanduit, S.; Vuye, C.; Kampen, J.K.
Title Acoustic simulation of noise barriers and prediction of annoyance for local residents Type P1 Proceeding
Year 2021 Publication Abbreviated Journal
Volume Issue Pages 1-8
Keywords P1 Proceeding; Engineering sciences. Technology; Engineering Management (ENM); Condensed Matter Theory (CMT); Energy and Materials in Infrastructure and Buildings (EMIB); Social Epidemiology & Health Policy (SEHPO)
Abstract Road traffic is the most widespread environmental noise source in Europe, proven to affect human health and well-being adversely. Noise barriers can be a very effective way to objectively reduce the noise levels to which the population is exposed, leading to positive effects on noise perception and quality of life. In this paper, surveys were used to assess subjective noise level indicators (annoyance and quality of life) from residents of the vicinity of a highway where obsolete noise barriers were to be replaced. %HA before the barrier replacement was measured from the surveys (26.8%) and estimated based on the acoustic simulation and two existing exposure/response relationships (14.6 and 18.8% before and 13.6 and 8.3% after). The difference in the measured %HA to those calculated from the ERRs shows that those models might not estimate %HA fairly for small samples or particular situations where high Lden is reported. Noise annoyance correlated differently with the quality of life indicators: a weak link was observed with health problems, while a strong correlation was found with the comfort level to perform activities outdoors. Objective noise measurements gave LA,eq,(15 min.) reductions of 4.1dB(A) due to the new barrier, while in acoustics models, calculated as Lday, expected this reduction to be 5.2 dB(A). After replacing the noise barriers, a second survey could still not be distributed due to the unknown effect of the COVID-19 measures that are still active
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 978-83-7880-799-5 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:181057 Serial 6969
Permanent link to this record
 

 
Author Deylgat, E.; Chen, E.; Sorée, B.; Vandenberghe, W.G.
Title Quantum transport study of contact resistance of edge- and top-contacted two-dimensional materials Type P1 Proceeding
Year 2023 Publication International Conference on Simulation of Semiconductor Processes and Devices : [proceedings] T2 – International Conference on Simulation of Semiconductor Processes and, Devices (SISPAD), SEP 27-29, 2023, Kobe, Japan Abbreviated Journal
Volume Issue Pages 45-48
Keywords P1 Proceeding; Condensed Matter Theory (CMT)
Abstract We calculate the contact resistance for an edge- and top-contacted 2D semiconductor. The contact region consists of a metal contacting a monolayer of MoS2 which is otherwise surrounded by SiO2. We use the quantum transmitting boundary method to compute the contact resistance as a function of the 2D semiconductor doping concentration. An effective mass Hamiltonian is used to describe the properties of the various materials. The electrostatic potentials are obtained by solving the Poisson equation numerically. We incorporate the effects of the image-force barrier lowering on the Schottky barrier and examine the impact on the contact resistance. At low doping concentrations, the contact resistance of the top contact is lower compared to edge contact, while at high doping concentrations, the edge contact exhibits lower resistance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001117703800012 Publication Date 2023-11-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 978-4-86348-803-8 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:202839 Serial 9079
Permanent link to this record
 

 
Author Reyntjens, P.D.; Tiwari, S.; Van de Put, M.L.; Sorée, B.; Vandenberghe, W.G.
Title Ab-initio study of magnetically intercalated Tungsten diselenide Type P1 Proceeding
Year 2020 Publication International Conference on Simulation of Semiconductor Processes and Devices : [proceedings] T2 – International Conference on Simulation of Semiconductor Processes and, Devices (SISPAD), SEP 23-OCT 06, 2020 Abbreviated Journal
Volume Issue Pages 97-100
Keywords P1 Proceeding; Condensed Matter Theory (CMT)
Abstract We theoretically investigate the effect of intercalation of third row transition metals (Co, Cr, Fe, Mn, Ti and V) in the layers of WSe2. Using density functional theory (DFT), we investigate the structural stability. We also compute the DFT energies of various magnetic spin configurations. Using these energies, we construct a Heisenberg Hamiltonian and perform a Monte Carlo study on each WSe2 + intercalant system to estimate the Curie or Neel temperature. We find ferromagnetic ground states for Ti and Cr intercalation, with Curie temperatures of 31K and 225K, respectively. In Fe-intercalated WSe2, we predict that antiferromagnetic ordering is present up to 564K. For V intercalation, we find that the system exhibits a double phase transition.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000636981000025 Publication Date 2020-11-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 978-4-86348-763-5 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:178345 Serial 7402
Permanent link to this record
 

 
Author Verreck, D.; Verhulst, A.S.; Van de Put, M.L.; Sorée, B.; Magnus, W.; Collaert, N.; Mocuta, A.; Groeseneken, G.
Title Self-consistent 30-band simulation approach for (non-)uniformly strained confined heterostructure tunnel field-effect transistors Type P1 Proceeding
Year 2017 Publication Simulation of Semiconductor Processes and, Devices (SISPAD)AND DEVICES (SISPAD 2017) Abbreviated Journal
Volume Issue Pages 29-32
Keywords P1 Proceeding; Condensed Matter Theory (CMT)
Abstract Heterostructures of III-V materials under a mechanical strain are being actively researched to enhance the performance of the tunnel field-effect transistor (TFET). In scaled III-V device structures, however, the interplay between the effects of strain and quantum confinement on the semiconductor band structure and hence the performance is highly non-trivial. We have therefore developed a computationally efficient quantum mechanical simulator Pharos, which enables self-consistent full-zone k.p-based simulations of III-V TFETs under a general non-uniform strain. We present the self-consistent procedure and demonstrate it on confined staggered bandgap GaAs0.5Sb0.5/In0.53Ga0.47As TFETs. We find a large performance degradation due to size-induced quantum confinement compared to non-confined devices. We show that some performance can be regained either by applying a uniform biaxial tensile strain or through the non-uniform strain profile at a lattice-mismatched heterostructure.
Address
Corporate Author Thesis
Publisher Ieee Place of Publication New york Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 978-4-86348-610-2 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:149949 Serial 4978
Permanent link to this record
 

 
Author Tiwari, S.; Van de Put, M.L.; Sorée, B.; Vandenberghe, W.G.
Title Ab initio modeling of few-layer dilute magnetic semiconductors Type P1 Proceeding
Year 2021 Publication International Conference on Simulation of Semiconductor Processes and Devices : [proceedings] T2 – International Conference on Simulation of Semiconductor Processes and, Devices (SISPAD), SEP 27-29, 2021, Dallas, TX Abbreviated Journal
Volume Issue Pages 141-145
Keywords P1 Proceeding; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract We present a computational model to model the magnetic structure of two-dimensional (2D) dilute-magnetic-semiconductors (DMS) both the monolayers and multilayers using first-principles density functional theory (DFT), as well as their magnetic phase transition as a function of temperature using Monte-Carlo simulations. Using our method, we model the magnetic structure of bulk, bilayer, and monolayer MoS2 substitutionally doped with Fe atoms. We find that the out-of-plane interaction in bilayer MoS2 is weakly ferromagnetic, whereas in bulk MoS2 it is strongly anti-ferromagnetic. Finally, we show that the magnetic order is more robust in bilayer Fe-doped MoS2 compared to the monolayer and results in a room-temperature FM at an atomic substitution of 14-16%.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000766985400034 Publication Date 2021-11-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 978-1-6654-0685-7 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:187291 Serial 7401
Permanent link to this record
 

 
Author Pourtois, G.; Dabral, A.; Sankaran, K.; Magnus, W.; Yu, H.; de de Meux, A.J.; Lu, A.K.A.; Clima, S.; Stokbro, K.; Schaekers, M.; Houssa, M.; Collaert, N.; Horiguchi, N.
Title Probing the intrinsic limitations of the contact resistance of metal/semiconductor interfaces through atomistic simulations Type P1 Proceeding
Year 2017 Publication Semiconductors, Dielectrics, And Metals For Nanoelectronics 15: In Memory Of Samares Kar Abbreviated Journal
Volume Issue Pages 303-311
Keywords P1 Proceeding; Engineering sciences. Technology; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this contribution, we report a fundamental study of the factors that set the contact resistivity between metals and highly doped semiconductors. We investigate the case of n-type doped Si contacted with amorphous TiSi combining first-principles calculations with Non-Equilibrium Green functions transport simulations. The intrinsic contact resistivity is found to saturate at similar to 2x10(-10) Omega.cm(2) with the doping concentration and sets an intrinsic limit to the ultimate contact resistance achievable for n-doped Si vertical bar amorphous-TiSi. This limit arises from the intrinsic properties of the semiconductor and of the metal such as their electron effective masses and Fermi energies. We illustrate that, in this regime, contacting metals with a heavy electron effective mass helps reducing the interface intrinsic contact resistivity.
Address
Corporate Author Thesis
Publisher Electrochemical soc inc Place of Publication Pennington Editor
Language Wos 000426271800028 Publication Date 2017-10-17
Series Editor Series Title Abbreviated Series Title
Series Volume 80 Series Issue 1 Edition
ISSN (down) 978-1-62332-470-4; 978-1-60768-818-1 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 1 Open Access Not_Open_Access
Notes ; ; Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:149966 Serial 4976
Permanent link to this record
 

 
Author Tiwari, S.; Van de Put, M.L.; Sorée, B.; Vandenberghe, W.G.
Title Carrier transport in a two-dimensional topological insulator nanoribbon in the presence of vacancy defects Type P1 Proceeding
Year 2018 Publication International Conference on Simulation of Semiconductor Processes and Devices : [proceedings] T2 – International Conference on Simulation of Semiconductor Processes and, Devices (SISPAD), SEP 24-26, 2018, Austin, TX Abbreviated Journal
Volume Issue Pages 92-96
Keywords P1 Proceeding; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract We model transport through two-dimensional topological insulator (TI) nanoribbons. To model the quantum transport, we employ the non-equilibrium Green's function approach. With the presented approach, we study the effect of lattice imperfections on the carrier transport. We observe that the topologically protected edge states of TIs are robust against a high percentage (2%) of vacancy defects. We also investigate tunneling of the edge states in two decoupled TI nanoribbons.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000516619300024 Publication Date 2018-12-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 978-1-5386-6790-3; 1946-1577; 978-1-5386-6791-0 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:181281 Serial 7579
Permanent link to this record
 

 
Author Kaintura, A.; Foss, K.; Couckuyt, I.; Dhaene, T.; Zografos, O.; Vaysset, A.; Sorée, B.
Title Machine Learning for Fast Characterization of Magnetic Logic Devices Type P1 Proceeding
Year 2018 Publication (edaps 2018) Abbreviated Journal
Volume Issue Pages
Keywords P1 Proceeding; Condensed Matter Theory (CMT)
Abstract Non-charge-based logic devices are promising candidates for future logic circuits. Interest in studying and developing these devices has grown dramatically in the past decade as they possess key advantages over conventional CMOS technology. Due to their novel designs, a large number of micromagnetic simulations are required to fully characterize the behavior of these devices. The number and complexity of these simulations place large computational requirements on device development. We use state-of-the-art machine learning techniques to expedite identification of their behavior. Several intelligent sampling strategies are combined with machine learning multi-class classification models. These techniques are applied to a recently developed exchange-driven magnetic logic scheme that utilizes direct exchange coupling as the main driver.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 978-1-5386-6592-3 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:160484 Serial 5219
Permanent link to this record
 

 
Author Bizindavyi, J.; Verhulst, A.S.; Sorée, B.; Groeseneken, G.
Title Impact of calibrated band-tails on the subthreshold swing of pocketed TFETs Type P1 Proceeding
Year 2018 Publication Conference digest T2 – 76th Device Research Conference (DRC), JUN 24-27, 2018, Santa Barbara, CA Abbreviated Journal
Volume Issue Pages
Keywords P1 Proceeding; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Ieee Place of Publication New york Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 978-1-5386-3028-0 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:153780 Serial 5106
Permanent link to this record
 

 
Author Bizindavyi, J.; Verhulst, A.S.; Sorée, B.; Groeseneken, G.
Title Impact of calibrated band-tails on the subthreshold swing of pocketed TFETs Type P1 Proceeding
Year 2018 Publication Conference digest T2 – 76th Device Research Conference (DRC), JUN 24-27, 2018, Santa Barbara, CA Abbreviated Journal
Volume Issue Pages
Keywords P1 Proceeding; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000444728400086 Publication Date 2018-09-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 978-1-5386-3028-0 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:153780 Serial 5217
Permanent link to this record
 

 
Author Verreck, D.; Verhulst, A.S.; Sorée, B.; Collaert, N.; Mocuta, A.; Thean, A.; Groeseneken, G.
Title Non-uniform strain in lattice-mismatched heterostructure tunnel field-effect transistors Type P1 Proceeding
Year 2016 Publication Solid-State Device Research (ESSDERC), European Conference T2 – 46th European Solid-State Device Research Conference (ESSDERC) / 42nd, European Solid-State Circuits Conference (ESSCIRC), SEP 12-15, 2016, Lausanne, SWITZERLAND Abbreviated Journal
Volume Issue Pages 412-415
Keywords P1 Proceeding; Condensed Matter Theory (CMT)
Abstract Because of its localized impact on the band structure, non-uniform strain at the heterojunction between lattice-mismatched materials has the potential to significantly enlarge the design space for tunnel-field effect transistors (TFET). However, the impact of a complex strain profile on TFET performance is difficult to predict. We have therefore developed a 2D quantum mechanical transport formalism capable of simulating the effects of a general non-uniform strain. We demonstrate the formalism for the GaAsxSb(1-x)/InyGa(1-y) As system and show that a performance improvement over a lattice-matched reference is indeed possible, allowing for relaxed requirements on the source doping. We also point out that the added design parameter of mismatch is not free, but limited by the desired effective bandgap at the tunnel junction.
Address
Corporate Author Thesis
Publisher Ieee Place of Publication New york Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 978-1-5090-2969-3 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:138233 Serial 4358
Permanent link to this record
 

 
Author Verhulst, A.S.; Verreck, D.; Smets, Q.; Kao, K.-H.; Van de Put, M.; Rooyackers, R.; Sorée, B.; Vandooren, A.; De Meyer, K.; Groeseneken, G.; Heyns, M.M.; Mocuta, A.; Collaert, N.; Thean, A.V.-Y.
Title Perspective of tunnel-FET for future low-power technology nodes Type P1 Proceeding
Year 2014 Publication 2014 Ieee International Electron Devices Meeting (iedm) Abbreviated Journal
Volume Issue Pages
Keywords P1 Proceeding; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Ieee Place of Publication New york Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 978-1-4799-8000-0 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:144789 Serial 4679
Permanent link to this record
 

 
Author Brammertz, G.; Buffiere, M.; Verbist, C.; Bekaert, J.; Batuk, M.; Hadermann, J.; et al.
Title Process variability in Cu2ZnSnSe4 solar cell devices: Electrical and structural investigations Type P1 Proceeding
Year 2015 Publication The conference record of the IEEE Photovoltaic Specialists Conference T2 – IEEE 42nd Photovoltaic Specialist Conference (PVSC), JUN 14-19, 2015, New Orleans, LA Abbreviated Journal
Volume Issue Pages
Keywords P1 Proceeding; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract We have fabricated 9.7% efficient Cu2ZnSnSe4/CdS/ZnO solar cells by H2Se selenization of sequentially sputtered metal layers. Despite the good efficiency obtained, process control appears to be difficult. In the present contribution we compare the electrical and physical properties of two devices with nominal same fabrication procedure, but 1% and 9.7% power conversion efficiency respectively. We identify the problem of the lower performing device to be the segregation of ZnSe phases at the backside of the sample. This ZnSe seems to be the reason for the strong bias dependent photocurrent observed in the lower performing devices, as it adds a potential barrier for carrier collection. The reason for the different behavior of the two nominally same devices is not fully understood, but speculated to be related to sputtering variability.
Address
Corporate Author Thesis
Publisher Ieee Place of Publication New york Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 978-1-4799-7944-8 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:132335 Serial 4229
Permanent link to this record
 

 
Author Moors, K.; Soree, B.; Tokei, Z.; Magnus, W.
Title Electron relaxation times and resistivity in metallic nanowires due to tilted grain boundary planes Type P1 Proceeding
Year 2015 Publication On Ultimate Integration On Silicon (eurosoi-ulis) Abbreviated Journal
Volume Issue Pages 201-204
Keywords P1 Proceeding; Condensed Matter Theory (CMT)
Abstract We calculate the resistivity contribution of tilted grain boundaries with varying parameters in sub-10nm diameter metallic nanowires. The results have been obtained with the Boltzmann transport equation and Fermi's golden rule, retrieving correct state-dependent relaxation times. The standard approximation schemes for the relaxation times are shown to fail when grain boundary tilt is considered. Grain boundaries tilted under the same angle or randomly tilted induce a resistivity decrease.
Address
Corporate Author Thesis
Publisher Ieee Place of Publication New york Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 978-1-4799-6911-1 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:144776 Serial 4651
Permanent link to this record
 

 
Author Van de Put, M.; Thewissen, M.; Magnus, W.; Sorée, B.; Sellier, J.M.
Title Spectral force approach to solve the time-dependent Wigner-Liouville equation Type P1 Proceeding
Year 2014 Publication 2014 International Workshop On Computational Electronics (iwce) Abbreviated Journal
Volume Issue Pages
Keywords P1 Proceeding; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Ieee Place of Publication New york Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 978-1-4799-5433-9 ISBN Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:122221 Serial 3071
Permanent link to this record
 

 
Author Moors, K.; Sorée, B.; Magnus, W.
Title Modeling and tackling resistivity scaling in metal nanowires Type P1 Proceeding
Year 2015 Publication International Conference on Simulation of Semiconductor Processes and Devices : [proceedings] T2 – International Conference on Simulation of Semiconductor Processes and, Devices (SISPAD), SEP 09-11, 2015, Washington, DC Abbreviated Journal
Volume Issue Pages 222-225
Keywords P1 Proceeding; Condensed Matter Theory (CMT)
Abstract A self-consistent analytical solution of the multi-subband Boltzmann transport equation with collision term describing grain boundary and surface roughness scattering is presented to study the resistivity scaling in metal nanowires. The different scattering mechanisms and the influence of their statistical parameters are analyzed. Instead of a simple power law relating the height or width of a nanowire to its resistivity, the picture appears to be more complicated due to quantum-mechanical scattering and quantization effects, especially for surface roughness scattering.
Address
Corporate Author Thesis
Publisher Ieee Place of Publication New york Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 978-1-4673-7860-4 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:135046 Serial 4205
Permanent link to this record
 

 
Author Carrillo-Nuñez, H.; Magnus, W.; Peeters, F.M.
Title A non-linear variational principle for the self-consistent solution of Poisson's equation and a transport equation in the local density approximation Type P1 Proceeding
Year 2010 Publication Abbreviated Journal
Volume Issue Pages 171-174
Keywords P1 Proceeding; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Ieee Place of Publication New York, N.Y. Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 978-1-4244-7699-2 ISBN Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:85824 Serial 2347
Permanent link to this record
 

 
Author Shanenko, A.A.; Croitoru, M.D.; Peeters, F.M.
Title Superconductivity in the quantum-size regime Type P1 Proceeding
Year 2008 Publication Abbreviated Journal
Volume Issue Pages 79-103
Keywords P1 Proceeding; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)
Abstract Recent technological advances resulted in high-quality superconducting metallic nanofilms and nanowires. The physical properties of such nanostructures are governed by the size-quantization of the transverse electron spectrum. This has a substantial impact on the basic superconducting characteristics, e.g., the order parameter, the critical temperature and the critical magnetic field. In the present paper we give an overview of our theoretical results on this subject. Based on a numerical self-consistent solution of the Bogoliubov-de Gennes equations, we investigate how the superconducting properties are modified in the quantum-size regime.
Address
Corporate Author Thesis
Publisher Place of Publication S.l. Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 978-1-4020-9144-5 ISBN Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:75944 Serial 3374
Permanent link to this record
 

 
Author Pereira, J.M., Jr.; Mlinar, V.; Peeters, F.M.; Vasilopoulos, P.
Title Graphene-based quantum wires Type P1 Proceeding
Year 2007 Publication AIP conference proceedings T2 – 28th International Conference on the Physics of Semiconductors (ICPS-28), JUL 24-28, 2006, Vienna, AUSTRIA Abbreviated Journal
Volume Issue Pages 721-722
Keywords P1 Proceeding; Condensed Matter Theory (CMT)
Abstract We investigate the properties of carriers in graphene-based quantum wires created by potential barriers, by means of analytical and numerical calculations. We obtain expressions for the energy spectrum as a function of barrier height, well width and linear momentum along the wire. The results demonstrate a direction-dependent resonant transmission across the potential well.
Address
Corporate Author Thesis
Publisher Place of Publication New York Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume 893 Series Issue Edition
ISSN (down) 978-0-7354-0397-0; 0094-243x ISBN Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:103601 Serial 1369
Permanent link to this record
 

 
Author Verreck, D.; Van de Put, M.L.; Verhulst, A.S.; Sorée, B.; Magnus, W.; Dabral, A.; Thean, A.; Groeseneken, G.
Title 15-band spectral envelope function formalism applied to broken gap tunnel field-effect transistors Type P1 Proceeding
Year 2015 Publication 18th International Workshop On Computational Electronics (iwce 2015) Abbreviated Journal
Volume Issue Pages
Keywords P1 Proceeding; Condensed Matter Theory (CMT)
Abstract A carefully chosen heterostructure can significantly boost the performance of tunnel field-effect transistors (TFET). Modelling of these hetero-TFETs requires a quantum mechanical (QM) approach with an accurate band structure to allow for a correct description of band-to-band-tunneling. We have therefore developed a fully QM 2D solver, combining for the first time a full zone 15-band envelope function formalism with a spectral approach, including a heterostructure basis set transformation. Simulations of GaSb/InAs broken gap TFETs illustrate the wide body capabilities and transparant transmission analysis of the formalism.
Address
Corporate Author Thesis
Publisher Ieee Place of Publication New york Editor
Language Wos 000380398200055 Publication Date 2015-10-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 978-0-692-51523-5 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:134998 Serial 4131
Permanent link to this record
 

 
Author Moors, K.; Sorée, B.; Magnus, W.
Title Analytic solution of Ando's surface roughness model with finite domain distribution functions Type P1 Proceeding
Year 2015 Publication 18th International Workshop On Computational Electronics (iwce 2015) Abbreviated Journal
Volume Issue Pages
Keywords P1 Proceeding; Condensed Matter Theory (CMT)
Abstract Ando's surface roughness model is applied to metallic nanowires and extended beyond small roughness size and infinite barrier limit approximations for the wavefunction overlaps, such as the Prange-Nee approximation. Accurate and fast simulations can still be performed without invoking these overlap approximations by averaging over roughness profiles using finite domain distribution functions to obtain an analytic solution for the scattering rates. The simulations indicate that overlap approximations, while predicting a resistivity that agrees more or less with our novel approach, poorly estimate the underlying scattering rates. All methods show that a momentum gap between left- and right-moving electrons at the Fermi level, surpassing a critical momentum gap, gives rise to a substantial decrease in resistivity.
Address
Corporate Author Thesis
Publisher Ieee Place of Publication New york Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 978-0-692-51523-5 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:134996 Serial 4140
Permanent link to this record
 

 
Author Van de Put, M.L.; Vandenberghe, W.G.; Magnus, W.; Sorée, B.; Fischetti, M.V.
Title Modeling of inter-ribbon tunneling in graphene Type P1 Proceeding
Year 2015 Publication 18th International Workshop On Computational Electronics (iwce 2015) Abbreviated Journal
Volume Issue Pages
Keywords P1 Proceeding; Condensed Matter Theory (CMT)
Abstract The tunneling current between two crossed graphene ribbons is described invoking the empirical pseudopotential approximation and the Bardeen transfer Hamiltonian method. Results indicate that the density of states is the most important factor determining the tunneling current between small (similar to nm) ribbons. The quasi-one dimensional nature of graphene nanoribbons is shown to result in resonant tunneling.
Address
Corporate Author Thesis
Publisher Ieee Place of Publication New york Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 978-0-692-51523-5 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:134997 Serial 4206
Permanent link to this record
 

 
Author Rakesh Roshan, S.C.; Yedukondalu, N.; Pandey, T.; Kunduru, L.; Muthaiah, R.; Rajaboina, R.K.; Ehm, L.; Parise, J.B.
Title Effect of atomic mass contrast on lattice thermal conductivity : a case study for alkali halides and alkaline-earth chalcogenides Type A1 Journal article
Year 2023 Publication ACS applied electronic materials Abbreviated Journal
Volume 5 Issue 11 Pages 5852-5863
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Lattice thermal conductivity (kappa(L)) is of great scientific interest for the development of efficient energy conversion technologies. Therefore, microscopic understanding of phonon transport is critically important for designing functional materials. In our previous study (Roshan et al., ACS Applied Energy Mater. 2021, 5, 882-896), anomalous kappa(L) trends were predicted for rocksalt alkaline-earth chalcogenides (AECs). In the present work, we extended it to alkali halides (AHs) and conducted a thorough investigation to explore the role of atomic mass contrast on lattice dynamics and phonon transport properties of 36 binary compounds (20 AHs + 16 AECs). The calculated spectral and cumulative kappa(L) reveal that low-lying optical phonon modes significantly boost kappa(L) alongside acoustic phonons in materials where the atomic mass ratio approaches unity and cophonocity nears zero. Phonon scattering rates are relatively low for materials with a mass ratio close to one, and the corresponding phonon lifetimes are higher, which enhances kappa(L). Phonon lifetimes play a critical role, outweighing phonon group velocities, in determining the anomalous trends in kappa(L) for both AHs and AECs. To further explore the role of atomic mass contrast in kappa(L), the effect of tensile lattice strain on phonon transport has also been investigated. Under tensile strain, both group velocities and phonon lifetimes decrease in the low frequency range, leading to a decrease in kappa(L). This work provides insights on how atomic mass contrast can tune the contribution of optical phonons to kappa(L) and its implications on scattering rates by either enhancing or suppressing kappa(L). These insights would aid in the selection of elements for designing new functional materials with and without atomic mass contrast to achieve relatively high and low kappa(L) values, respectively.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001096792500001 Publication Date 2023-10-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2637-6113 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:201198 Serial 9026
Permanent link to this record
 

 
Author Yedukondalu, N.; Pandey, T.; Roshan, S.C.R.
Title Effect of hydrostatic pressure on lone pair activity and phonon transport in Bi₂O₂S Type A1 Journal article
Year 2023 Publication ACS applied energy materials Abbreviated Journal
Volume 6 Issue 4 Pages 2401-2411
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Dibismuth dioxychalcogenides, Bi2O2Ch (Ch = S, Se, Te), are a promising class of materials for next-generation electronics and thermoelectrics due to their ultrahigh carrier mobility and excellent air stability. An interesting member of this family is Bi2O2S, which has a stereochemically active 6s2 lone pair of Bi3+ cations, heterogeneous bonding, and a high mass contrast between its constituent elements. In the present study, we have used first-principles calculations in combination with Boltzmann transport theory to systematically investigate the effect of hydrostatic pressure on lattice dynamics and phonon transport properties of Bi2O2S. We found that the ambient Pnmn phase has a low average lattice thermal conductivity (kappa l) of 1.71 W/(m K) at 300 K. We also predicted that Bi2O2S undergoes a structural phase transition from a low-symmetry (Pnmn) to a high-symmetry (I4/mmm) structure at around 4 GPa due to centering of Bi3+ cations with pressure. Upon compression, the lone pair activity of Bi3+ cations is suppressed, which increases kappa l by almost 3 times to 4.92 W/ (m K) at 5 GPa for the I4/mmm phase. The computed phonon lifetimes and Gru''neisen parameters show that anharmonicity decreases with increasing pressure due to further suppression of the lone pair activity and strengthening of intra-and intermolecular interactions, leading to an average room-temperature kappa l of 12.82 W/(m K) at 20 GPa. Overall, this study provides a comprehensive understanding of the effect of hydrostatic pressure on the stereochemical activity of the lone pair of Bi3+ cations and its implications on the phonon transport properties of Bi2O2S.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000929103700001 Publication Date 2023-02-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2574-0962 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.4 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 6.4; 2023 IF: NA
Call Number UA @ admin @ c:irua:195245 Serial 7300
Permanent link to this record
 

 
Author Siriwardane, E.M.D.; Demiroglu, I.; Sevik, C.; Cakir, D.
Title Achieving Fast Kinetics and Enhanced Li Storage Capacity for Ti3C2O2 by Intercalation of Quinone Molecules Type A1 Journal article
Year 2019 Publication ACS applied energy materials Abbreviated Journal
Volume 2 Issue 2 Pages 1251-1258
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Using first-principles calculations, we demonstrated that high lithium storage capacity and fast kinetics are achieved for Ti3C2O2 by preintercalating organic molecules. As a proof-of-concept, two different quinone molecules, namely 1,4-benzoquinone (C6H4O2) and tetrafluoro-1,4-benzoquinone (C6F4O2) were selected as the molecular linkers to demonstrate the feasibility of this interlayer engineering strategy for energy storage. As compared to Ti3C2O2 bilayer without linker molecules, our pillared structures facilitate a much faster ion transport, promising a higher charge/discharge rate for Li. For example, while the diffusion barrier of a single Li ion within pristine Ti3C2O2 bilayer is at least 1.0 eV, it becomes 0.3 eV in pillared structures, which is comparable and even lower than that of commercial materials. At high Li concentrations, the calculated diffusion barriers are as low as 0.4 eV. Out-of-plane migration of Li ions is hindered due to large barrier energy with a value of around 1-1.35 eV. Concerning storage capacity, we can only intercalate one monolayer of Li within pristine Ti3C2O2 bilayer. In contrast, pillared structures offer significantly higher storage capacity. Our calculations showed that at least two layers of Li can be intercalated between Ti3C2O2 layers without forming bulk Li and losing the pillared structure upon Li loading/unloading. A small change in the in-plane lattice parameters (<0.5%) and volume (<1.0%) and ab initio molecular dynamics simulations prove the stability of the pillared structures against Li intercalation and thermal effects. Intercalated molecules avoid the large contraction/expansion of the whole structure, which is one of the key problems in electrochemical energy storage. Pillared structures allow us to realize electrodes with high capacity and fast kinetics. Our results open new research paths for improving the performance of not only MXenes but also other layered materials for supercapacitor and battery applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000459948900037 Publication Date 2019-01-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2574-0962 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:193759 Serial 7414
Permanent link to this record
 

 
Author Paulus, A.; Hendrickx, M.; Mayda, S.; Batuk, M.; Reekmans, G.; von Holst, M.; Elen, K.; Abakumov, A.M.; Adriaensens, P.; Lamoen, D.; Partoens, B.; Hadermann, J.; Van Bael, M.K.; Hardy, A.
Title Understanding the Activation of Anionic Redox Chemistry in Ti4+-Substituted Li2MnO3as a Cathode Material for Li-Ion Batteries Type A1 Journal Article
Year 2023 Publication ACS applied energy materials Abbreviated Journal ACS Appl. Energy Mater.
Volume 6 Issue 13 Pages 6956-6971
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract Layered Li-rich oxides, demonstrating both cationic and anionic redox chemistry being used as positive electrodes for Li-ion batteries,have raised interest due to their high specific discharge capacities exceeding 250 mAh/g. However, irreversible structural transformations triggered by anionic redox chemistry result in pronounced voltagefade (i.e., lowering the specific energy by a gradual decay of discharge potential) upon extended galvanostatic cycling. Activating or suppressing oxygen anionic redox through structural stabilization induced by redox-inactivecation substitution is a well-known strategy. However, less emphasishas been put on the correlation between substitution degree and theactivation/suppression of the anionic redox. In this work, Ti4+-substituted Li2MnO3 was synthesizedvia a facile solution-gel method. Ti4+ is selected as adopant as it contains no partially filled d-orbitals. Our study revealedthat the layered “honeycomb-ordered” C2/m structure is preserved when increasing the Ticontent to x = 0.2 in the Li2Mn1-x Ti (x) O-3 solidsolution, as shown by electron diffraction and aberration-correctedscanning transmission electron microscopy. Galvanostatic cycling hintsat a delayed oxygen release, due to an improved reversibility of theanionic redox, during the first 10 charge-discharge cyclesfor the x = 0.2 composition compared to the parentmaterial (x = 0), followed by pronounced oxygen redoxactivity afterward. The latter originates from a low activation energybarrier toward O-O dimer formation and Mn migration in Li2Mn0.8Ti0.2O3, as deducedfrom first-principles molecular dynamics (MD) simulations for the“charged” state. Upon lowering the Ti substitution to x = 0.05, the structural stability was drastically improvedbased on our MD analysis, stressing the importance of carefully optimizingthe substitution degree to achieve the best electrochemical performance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001018266700001 Publication Date 2023-07-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2574-0962 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.4 Times cited Open Access Not_Open_Access: Available from 24.12.2023
Notes Universiteit Hasselt, AUHL/15/2 – GOH3816N ; Russian Science Foundation, 20-43-01012 ; Fonds Wetenschappelijk Onderzoek, AUHL/15/2 – GOH3816N G040116N ; The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO Vlaanderen and the Flemish Government-department EWI. Approved Most recent IF: 6.4; 2023 IF: NA
Call Number EMAT @ emat @c:irua:198160 Serial 8809
Permanent link to this record