|   | 
Details
   web
Records
Author Michel, K.H.; Scuracchio, P.; Peeters, F.M.
Title Sound waves and flexural mode dynamics in two-dimensional crystals Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 96 Issue 9 Pages (down) 094302
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Starting from a Hamiltonian with anharmonic coupling between in-plane acoustic displacements and outof-plane (flexural) modes, we derived coupled equations of motion for in-plane displacements correlations and flexural mode density fluctuations. Linear response theory and time-dependent thermal Green's functions techniques are applied in order to obtain different response functions. As external perturbations we allow for stresses and thermal heat sources. The displacement correlations are described by a Dyson equation where the flexural density distribution enters as an additional perturbation. The flexural density distribution satisfies a kinetic equation where the in-plane lattice displacements act as a perturbation. In the hydrodynamic limit this system of coupled equations is at the basis of a unified description of elastic and thermal phenomena, such as isothermal versus adiabatic sound motion and thermal conductivity versus second sound. The general theory is formulated in view of application to graphene, two-dimensional h-BN, and 2H-transition metal dichalcogenides and oxides.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000409246200003 Publication Date 2017-09-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 6 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:145630 Serial 4751
Permanent link to this record
 

 
Author Galvan-Moya, J.E.; Misko, V.R.; Peeters, F.M.
Title Generic ordering of structural transitions in quasi-one-dimensional Wigner crystals Type A1 Journal article
Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 90 Issue 9 Pages (down) 094111
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We investigate the dependence of the structural phase transitions in an infinite quasi-one-dimensional system of repulsively interacting particles on the profile of the confining channel. Three different functional expressions for the confinement potential related to real experimental systems are used that can be tuned continuously from a parabolic to a hard-wall potential in order to find a thorough understanding of the ordering of the chainlike structure transitions. We resolve the long-standing issue why the most theories predicted a 1-2-4-3-4 sequence of chain configurations with increasing density, while some experiments found the 1-2-3-4 sequence.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000342127000001 Publication Date 2014-09-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 9 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-VI) and the Odysseus and Methusalem programmes of the Flemish government. Computational resources were provided by HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center (VSC). ; Approved Most recent IF: 3.836; 2014 IF: 3.736
Call Number UA @ lucian @ c:irua:119904 Serial 1326
Permanent link to this record
 

 
Author Roy, P.; Torun, E.; de Groot, R.A.
Title Effect of doping and elastic properties in (Mn,Fe)2(Si,P) Type A1 Journal article
Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 93 Issue 93 Pages (down) 094110
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Mixed magnetism (the coexistence of strong and weak magnetism in one material) is regarded as the origin of the giant magnetocaloric effect (GMCE). A good example is (Mn,Fe)(2)(Si,P), which is established as one of the best magnetocaloric materials available. Tuning the material properties are essential for optimizing its performance, and a straightforward way to do that is by doping. In this article, an ab initio electronic structure method was used to calculate the structure and magnetic properties of 3d-transition-metal-doped (Mn,Fe)(2)(Si,P) materials for magnetocaloric applications (transition metals are Cr, Co, Mn, Ni, Cu). For a steady performance, the material should be mechanically stable. A detailed analysis of the elastic constants shows that the mechanical stability of the (Mn,Fe)(2)(Si,P) system increases significantly by doping with boron without affecting the magnetic properties. Insights of the influence of doping enable future studies to understand and predict bettermagnetocaloric materials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000372712100001 Publication Date 2016-03-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 9 Open Access
Notes ; This work is part of an Industrial Partnership Programme (IPP I28) of Fundamenteel Onderzoek der Materie (FOM) (The Netherlands) and co-financed by BASF New Business. The authors would like to thank Phuong Thao Nguyen and Dr. Gilles A. de Wijs for very useful discussions. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:133192 Serial 4164
Permanent link to this record
 

 
Author Carvalho, J.C.N.; Ferreira, W.P.; Farias, G.A.; Peeters, F.M.
Title Yukawa particles confined in a channel and subject to a periodic potential : ground state and normal modes Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 83 Issue 9 Pages (down) 094109-094109,12
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We consider a classical system of two-dimensional (2D) charged particles, interacting through a repulsive Yukawa potential exp(-r/λ)/r, and confined in a parabolic channel that limits the motion of the particles in the y direction. Along the x direction, the particles are subject to a periodic potential. The ground-state configurations and the normal-mode spectra of the system are obtained as a function of the periodicity and strength of the periodic potential (V0) and density. An interesting set of tunable ground-state configurations are found, with first- or second-order structural transitions between them. A configuration with particles aligned, perpendicular to the x direction, in each minimum of the periodic potential is obtained for V0 larger than some critical value that has a power-law dependence on the density. The phonon spectrum of different configurations was also calculated. A localization of the modes into a small frequency interval is observed for sufficiently large strength of the periodic potential, and a tunable gap in the phonon spectrum is found as a function of V0.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000288119700001 Publication Date 2011-03-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 9 Open Access
Notes ; This work was supported by the Brazilian agencies CNPq and FUNCAP (PRONEX-Grant), and the bilateral projects between Flanders and Brazil and the Flemish Science Foundation (FWO-VI) and CNPq. ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:88779 Serial 3928
Permanent link to this record
 

 
Author Frota, D.A.; Chaves, A.; Ferreira, W.P.; Farias, G.A.; Milošević, M.V.
Title Superconductor-ferromagnet bilayer under external drive : the role of vortex-antivortex matter Type A1 Journal article
Year 2016 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 119 Issue 119 Pages (down) 093912
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using advanced Ginzburg-Landau simulations, we study the superconducting state of a thin superconducting film under a ferromagnetic layer, separated by an insulating oxide, in applied external magnetic field and electric current. The taken uniaxial ferromagnet is organized into a series of parallel domains with alternating polarization of out-of-plane magnetization, sufficiently strong to induce vortex-antivortex pairs in the underlying superconductor in absence of other magnetic field. We show the organization of such vortex-antivortex matter into rich configurations, some of which are not matching the periodicity of the ferromagnetic film. The variety of possible configurations is enhanced by applied homogeneous magnetic field, where additional vortices in the superconductor may lower the energy of the system by either annihilating the present antivortices under negative ferromagnetic domains or by lowering their own energy after positioning under positive ferromagnetic domains. As a consequence, both the vortex-antivortex reordering in increasing external field and the evolution of the energy of the system are highly nontrivial. Finally, we reveal the very interesting effects of applied dc electric current on the vortex-antivortex configurations, since resulting Lorentzian force has opposite direction for vortices and antivortices, while direction of the applied current with respect to ferromagnetic domains is of crucial importance for the interaction of the applied and the Meissner current, as well as the consequent vortex-antivortex dynamics-both of which are reflected in the anisotropic critical current of the system. (C) 2016 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000372351900018 Publication Date 2016-03-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 4 Open Access
Notes ; This work was supported by the Brazilian agencies CNPq, PRONEX/FUNCAP, and CAPES, and the Research Foundation-Flanders (FWO). ; Approved Most recent IF: 2.068
Call Number UA @ lucian @ c:irua:133200 Serial 4255
Permanent link to this record
 

 
Author de Sousa, J.S.; Covaci, L.; Peeters, F.M.; Farias, G.A.
Title Time-dependent investigation of charge injection in a quantum dot containing one electron Type A1 Journal article
Year 2012 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 112 Issue 9 Pages (down) 093705-93709
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The interaction of an injected electron towards a quantum dot (QD) containing a single confined electron is investigated using a flexible time-dependent quantum mechanics formalism, which allows both electrons to move and undergo quantum transitions. Different scenarios combining quantum dot dimensions, dielectric constant, injected wave packet energy, and width were explored, and our main results are: (i) due to the large characteristic transitions times between the confined state in the quantum dot and the delocalized state in the continuum, it is relatively difficult to ionize the occupied QD by Coulomb interaction solely and (ii) the charging state of the quantum dot can be sensed by direct injection of charges. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4759292]
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000311968400052 Publication Date 2012-11-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 1 Open Access
Notes ; This work was financially supported by the Brazilian National Research Council (CNPq), under Contract No. NanoBioEstruturas 555183/2005-0, Fundao Cearense de Apoio ao Desenvolvimento Cientfico e Tecnolgico (Funcap), CAPES, Pronex/CNPq/ Funcap, the Bilateral program between Flanders and Brazil, and the Flemish Science Foundation (FWO). ; Approved Most recent IF: 2.068; 2012 IF: 2.210
Call Number UA @ lucian @ c:irua:106014 Serial 3664
Permanent link to this record
 

 
Author Chen, Q.; Guo, A.-M.; Liu, J.; Peeters, F.M.; Sun, Q.-F.
Title Topological phase transitions and Majorana zero modes in DNA double helix coupled to s-wave superconductors Type A1 Journal article
Year 2021 Publication New Journal Of Physics Abbreviated Journal New J Phys
Volume 23 Issue 9 Pages (down) 093047
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Topological properties of a double-stranded DNA (dsDNA) proximity-coupled by an s-wave superconductor are investigated, in which the energy spectra and the differential conductance are calculated within the framework of tight-binding approximation. Our results indicate that this dsDNA-superconductor system hosts Majorana zero modes (MZMs) when the Zeeman field is perpendicular to the helix axis, whereas no MZM could be observed when the Zeeman field is parallel to the helix axis, in sharp contrast to previous studies on nanowires including single-stranded DNA. In particular, two topological phase transitions could take place in the dsDNA-superconductor system by changing the Zeeman field, one from a topological trivial phase to a topological nontrivial phase with one pair of MZMs in small Zeeman field regime, and the other from a phase with one pair of MZMs to a phase with two pairs of MZMs by further increasing the Zeeman field. In the presence of a gate field normal to the helix axis, the topological nontrivial phase with two pairs of MZMs can transform into the phase with one pair of MZMs. The topological phase with one pair of MZMs is more stable and robust against Anderson disorder.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000702122000001 Publication Date 2021-09-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.786 Times cited 4 Open Access OpenAccess
Notes Approved Most recent IF: 3.786
Call Number UA @ admin @ c:irua:182597 Serial 7033
Permanent link to this record
 

 
Author Alexandrov, A.L.; Schweigert, I.V.; Peeters, F.M.
Title A non-Maxwellian kinetic approach for charging of dust particles in discharge plasmas Type A1 Journal article
Year 2008 Publication New journal of physics Abbreviated Journal New J Phys
Volume 10 Issue Pages (down) 093025,1-093025,12
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Nanoparticle charging in a capacitively coupled radio frequency discharge in argon is studied using a particle in cell Monte Carlo collisions method. The plasma parameters and dust potential were calculated self-consistently for different unmovable dust profiles. A new method for definition of the dust floating potential is proposed, based on the information about electron and ion energy distribution functions, obtained during the kinetic simulations. This approach provides an accurate balance of the electron and ion currents on the dust particle surface and allows us to precisely calculate the dust floating potential. A comparison of the obtained floating potentials with the results of the traditional orbital motion limit (OML) theory shows that in the presence of the ion resonant charge exchange collisions, even when the OML approximation is valid, its results are correct only in the region of a weak electric field, where the ion drift velocity is much smaller than the thermal one. With increasing ion drift velocity, the absolute value of the calculated dust potential becomes significantly smaller than the theory predicts. This is explained by a non-Maxwellian shape of the ion energy distribution function for the case of fast ion drift.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000259615700004 Publication Date 2008-09-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.786 Times cited 19 Open Access
Notes Approved Most recent IF: 3.786; 2008 IF: 3.440
Call Number UA @ lucian @ c:irua:76519 Serial 2348
Permanent link to this record
 

 
Author Iyikanat, F.; Sahin, H.; Senger, R.T.; Peeters, F.M.
Title Ag and Au atoms intercalated in bilayer heterostructures of transition metal dichalcogenides and graphene Type A1 Journal article
Year 2014 Publication APL materials Abbreviated Journal Apl Mater
Volume 2 Issue 9 Pages (down) 092801
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract The diffusive motion of metal nanoparticles Au and Ag on monolayer and between bilayer heterostructures of transition metal dichalcogenides and graphene are investigated in the framework of density functional theory. We found that the minimum energy barriers for diffusion and the possibility of cluster formation depend strongly on both the type of nanoparticle and the type of monolayers and bilayers. Moreover, the tendency to form clusters of Ag and Au can be tuned by creating various bilayers. Tunability of the diffusion characteristics of adatoms in van der Waals heterostructures holds promise for controllable growth of nanostructures. (C) 2014 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000342568000020 Publication Date 2014-08-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2166-532X ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.335 Times cited 10 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. H.S. is supported by a FWO Pegasus Marie Curie Fellowship. F.I. and R.T.S. acknowledge the support from TUBITAK Project No. 111T318. ; Approved Most recent IF: 4.335; 2014 IF: NA
Call Number UA @ lucian @ c:irua:119950 Serial 82
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Hernández-Nieves, A.D.; Milošević, M.V.; Peeters, F.M.; Dominguez, D.
Title Flux-quantum-discretized dynamics of magnetic flux entry, exit, and annihilation in current-driven mesoscopic type-I superconductors Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 85 Issue 9 Pages (down) 092502-092502,4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study nonlinear flux dynamics in a current-carrying type-I superconductor. The stray magnetic field of the current induces the intermediate state, where nucleation of flux domains is discretized to a single fluxoid at a time, while their final shape (tubular or laminar), size, and nucleation rate depend on applied current and edge conditions. The current induces opposite flux domains on opposite sides of the sample, and subsequently drives them to annihilation-which is also discretized, as a sequence of vortex-antivortex pairs. The discretization of both nucleation and annihilation leaves measurable traces in the voltage across the sample and in locally probed magnetization. The reported dynamic phenomena thus provide an unambiguous proof of a flux quantum being the smallest building block of the intermediate state in type-I superconductors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000301183000002 Publication Date 2012-03-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 14 Open Access
Notes ; This work was supported by the Belgian Science Policy (IAP), the Flemish Science Foundation (FWO-Vl), and the collaborative project FWO-MINCyT (Project No. FW/08/01). G. R. B. and A. D. H acknowledge support from FWO-Vl. A. D. H. and D. D. acknowledge support from CONICET, CNEA, and ANPCyT (Grant No. PICT07-824). ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:97180 Serial 1243
Permanent link to this record
 

 
Author Reijniers, J.; Partoens, B.; Steckel, J.; Peremans, H.
Title HRTF measurement by means of unsupervised head movements with respect to a single fixed speaker Type A1 Journal article
Year 2020 Publication Ieee Access Abbreviated Journal Ieee Access
Volume 8 Issue Pages (down) 92287-92300
Keywords A1 Journal article; Mass communications; Engineering Management (ENM); Condensed Matter Theory (CMT); Co-Design of Cyber-Physical Systems (Cosys-Lab)
Abstract In a standard state-of-the-art measurement the head-related transfer function (HRTF) is obtained in an anechoic room with an elaborate setup involving multiple calibrated loudspeakers. In search for a simplified method that would open up the possibility for an HRTF measurement in a home environment, it has been suggested that this setup could be replaced with one with a single, fixed loudspeaker. In such a setup, the subject samples different directions by moving the head with respect to this loudspeaker, while the head movements are tracked in some way. In this paper, the feasibility of such an approach is studied. To this end, the HRTF is measured in an unmodified (non-anechoic) room by means of a single external speaker and a high resolution head tracking system. The differences between the dynamically obtained HRTF and the standard static HRTF are investigated, and are shown to be mostly due to variable torso reflections.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000539041600001 Publication Date 2020-05-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2169-3536 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.9 Times cited 4 Open Access
Notes ; This work was supported in part by the Research Foundation Flanders (FWO) under Grant G023619N, and in part by the Agency for Innovation and Entrepreneurship (VLAIO). ; Approved Most recent IF: 3.9; 2020 IF: 3.244
Call Number UA @ admin @ c:irua:170318 Serial 6539
Permanent link to this record
 

 
Author Sarmadian, N.; Saniz, R.; Partoens, B.; Lamoen, D.
Title First-principles study of the optoelectronic properties and photovoltaic absorber layer efficiency of Cu-based chalcogenides Type A1 Journal article
Year 2016 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 120 Issue 120 Pages (down) 085707
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract Cu-based chalcogenides are promising materials for thin-film solar cells with more than 20% measured

cell efficiency. Using first-principles calculations based on density functional theory, the

optoelectronic properties of a group of Cu-based chalcogenides Cu2-II-IV-VI4 is studied. They are

then screened with the aim of identifying potential absorber materials for photovoltaic applications.

The spectroscopic limited maximum efficiency (SLME) introduced by Yu and Zunger [Phys. Rev.

Lett. 108, 068701 (2012)] is used as a metric for the screening. After constructing the currentvoltage

curve, the SLME is calculated from the maximum power output. The role of the nature of

the band gap, direct or indirect, and also of the absorptivity of the studied materials on the maximum

theoretical power conversion efficiency is studied. Our results show that Cu2II-GeSe4 with

II¼ Cd and Hg, and Cu2-II-SnS4 with II ¼ Cd, Hg, and Zn have a higher theoretical efficiency

compared with the materials currently used as absorber layer.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000383913400074 Publication Date 2016-08-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 29 Open Access
Notes We acknowledge the financial support from the FWO-Vlaanderen through project G.0150.13N and a GOA fund from the University of Antwerp. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), bothfunded by the FWO-Vlaanderen and the Flemish Government–department EWI. Approved Most recent IF: 2.068
Call Number c:irua:135089 Serial 4113
Permanent link to this record
 

 
Author Li, L.L.; Moldovan, D.; Xu, W.; Peeters, F.M.
Title Electric-and magnetic-field dependence of the electronic and optical properties of phosphorene quantum dots Type A1 Journal article
Year 2017 Publication Nanotechnology Abbreviated Journal Nanotechnology
Volume 28 Issue 8 Pages (down) 085702
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Recently, black phosphorus quantum dots were fabricated experimentally. Motivated by these experiments, we theoretically investigate the electronic and optical properties of rectangular phosphorene quantum dots (RPQDs) in the presence of an in-plane electric field and a perpendicular magnetic field. The energy spectra and wave functions of RPQDs are obtained numerically using the tight-binding approach. We find edge states within the band gap of the RPQD which are well separated from the bulk states. In an undoped RPQD and for in-plane polarized light, due to the presence of well-defined edge states, we find three types of optical transitions which are between the bulk states, between the edge and bulk states, and between the edge states. The electric and magnetic fields influence the bulk-to-bulk, edge-to-bulk, and edge-to- edge transitions differently due to the different responses of bulk and edge states to these fields.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000403100700001 Publication Date 2017-01-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.44 Times cited 32 Open Access
Notes ; This work was financially supported by the China Scholarship Council (CSC), the Flemish Science Foundation (FWO-Vl), the National Natural Science Foundation of China (Grant Nos. 11304316 and 11574319), and by the Chinese Academy of Sciences (CAS). ; Approved Most recent IF: 3.44
Call Number UA @ lucian @ c:irua:144325 Serial 4648
Permanent link to this record
 

 
Author Zarenia, M.; Leenaerts, O.; Partoens, B.; Peeters, F.M.
Title Substrate-induced chiral states in graphene Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 86 Issue 8 Pages (down) 085451
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Unidirectional chiral states are predicted in single layer graphene which originate from the breaking of the sublattice symmetry due to an asymmetric mass potential. The latter can be created experimentally using boron-nitride (BN) substrates with a line defect (B-B or N-N) that changes the induced mass potential in graphene. Solving the Dirac-Weyl equation, the obtained energy spectrum is compared with the one calculated using ab initio density functional calculations. We found that these one-dimensional chiral states are very robust and they can even exist in the presence of a small gap between the mass regions. In the latter case additional bound states are found that are topologically different from those chiral states.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000308005600015 Publication Date 2012-08-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 41 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), and the European Science Foundation (ESF) under the EUROCORES Program: EuroGRAPHENE (project CONGRAN). ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:101100 Serial 3347
Permanent link to this record
 

 
Author Sivek, J.; Sahin, H.; Partoens, B.; Peeters, F.M.
Title Adsorption and absorption of boron, nitrogen, aluminum, and phosphorus on silicene : stability and electronic and phonon properties Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue 8 Pages (down) 085444-85448
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Ab initio calculations within the density-functional theory formalism are performed to investigate the chemical functionalization of a graphene-like monolayer of siliconsilicenewith B, N, Al, or P atoms. The structural, electronic, magnetic, and vibrational properties are reported. The most preferable adsorption sites are found to be valley, bridge, valley and hill sites for B, N, Al, and P adatoms, respectively. All the relaxed systems with adsorbed/substituted atoms exhibit metallic behavior with strongly bonded B, N, Al, and P atoms accompanied by an appreciable electron transfer from silicene to the B, N, and P adatom/substituent. The Al atoms exhibit opposite charge transfer, with n-type doping of silicene and weaker bonding. The adatoms/substituents induce characteristic branches in the phonon spectrum of silicene, which can be probed by Raman measurements. Using molecular dynamics, we found that the systems under study are stable up to at least T=500 K. Our results demonstrate that silicene has a very reactive and functionalizable surface.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000315482900007 Publication Date 2013-02-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 169 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. H.S. is supported by a FWO Pegasus Marie Curie Fellowship. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:107071 Serial 60
Permanent link to this record
 

 
Author Rezaei, M.; Sisakht, E.T.; Fazileh, F.; Aslani, Z.; Peeters, F.M.
Title Tight-binding model investigation of the biaxial strain induced topological phase transition in GeCH3 Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 96 Issue 8 Pages (down) 085441
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We propose a tight-binding (TB) model, that includes spin-orbit coupling (SOC), to describe the electronic properties of methyl-substituted germanane (GeCH3). This model gives an electronic spectrum in agreement with first principle results close to the Fermi level. Using the Z(2) formalism, we show that a topological phase transition from a normal insulator (NI) to a quantum spin Hall (QSH) phase occurs at 11.6% biaxial tensile strain. The sensitivity of the electronic properties of this system on strain, in particular its transition to the topological insulating phase, makes it very attractive for applications in strain sensors and other microelectronic applications.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000408570800004 Publication Date 2017-08-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 10 Open Access
Notes ; ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:145697 Serial 4755
Permanent link to this record
 

 
Author Chen, Q.; Li, L.L.; Peeters, F.M.
Title Magnetic field dependence of electronic properties of MoS2 quantum dots with different edges Type A1 Journal article
Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 97 Issue 8 Pages (down) 085437
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using the tight-binding approach, we investigate the energy spectrum of square, triangular, and hexagonal MoS2 quantum dots (QDs) in the presence of a perpendicular magnetic field. Novel edge states emerge in MoS2 QDs, which are distributed over the whole edge which we call ring states. The ring states are robust in the presence of spin-orbit coupling (SOC). The corresponding energy levels of the ring states oscillate as a function of the perpendicular magnetic field which are related to Aharonov-Bohm oscillations. Oscillations in the magnetic field dependence of the energy levels and the peaks in the magneto-optical spectrum emerge (disappear) as the ring states are formed (collapsed). The period and the amplitude of the oscillation decrease with the size of the MoS2 QDs.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000426042800009 Publication Date 2018-02-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 18 Open Access
Notes ; Q. Chen acknowledges financial support from the (China Scholarship Council (CSC)). This work was also supported by Hunan Provincial Natural Science Foundation of China (Grant No. 2015JJ2040) and by the Scientific Research Fund of Hunan Provincial Education Department (Grant No. 15A042). Additional support from the FLAG-ERA TRANS-2D-TMD is acknowledged. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:149905UA @ admin @ c:irua:149905 Serial 4941
Permanent link to this record
 

 
Author Krstajić, P.M.; Peeters, F.M.
Title Remote electron plasmon polaron in graphene Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 85 Issue 8 Pages (down) 085436-085436,5
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The Coulomb interaction and the correlation of a remote electron with a single layer of graphene is investigated in the presence of a magnetic field applied perpendicular to the graphene layer. The remote electron polarizes the electron gas in the graphene layer, which we describe in terms of excitations of virtual plasmons in graphene. The composite quasiparticle formed by electron plus polarization is called a plasmon polaron. The ground-state energy of this quasiparticle is calculated within perturbation theory for remote electrons in different environments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000300831900012 Publication Date 2012-02-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 4 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:97202 Serial 2869
Permanent link to this record
 

 
Author Grujić, M.; Tadić, M.; Peeters, F.M.
Title Antiferromagnetism in hexagonal graphene structures : rings versus dots Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue 8 Pages (down) 085434-85436
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Themean-field Hubbard model is used to investigate the formation of the antiferromagnetic phase in hexagonal graphene rings with inner zigzag edges. The outer edge of the ring was taken to be either zigzag or armchair, and we found that both types of structures can have a larger antiferromagnetic interaction as compared with hexagonal dots. This difference could be partially ascribed to the larger number of zigzag edges per unit area in rings than in dots. Furthermore, edge states localized on the inner ring edge are found to hybridize differently than the edge states of dots, which results in important differences in the magnetism of graphene rings and dots. The largest staggered magnetization is found when the outer edge has a zigzag shape. However, narrow rings with armchair outer edge are found to have larger staggered magnetization than zigzag hexagons. The edge defects are shown to have the least effect on magnetization when the outer ring edge is armchair shaped. DOI: 10.1103/PhysRevB.87.085434
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000315146600005 Publication Date 2013-02-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 29 Open Access
Notes ; This work was supported by the EuroGRAPHENE programme of the ESF (project CONGRAN), the Serbian Ministry of Education, Science, and Technological Development, and the Flemish Science Foundation (FWO-VI). ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:107661 Serial 137
Permanent link to this record
 

 
Author Neek-Amal, M.; Peeters, F.M.
Title Graphene nanoribbons subjected to axial stress Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 82 Issue 8 Pages (down) 085432-085432,6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Atomistic simulations are used to study the bending of rectangular graphene nanoribbons subjected to axial stress both for free boundary and supported boundary conditions. The shapes of the deformations of the buckled graphene nanoribbons, for small values of the stress, are sine waves where the number of nodal lines depend on the longitudinal size of the system and the applied boundary condition. The buckling strain for the supported boundary condition is found to be independent of the longitudinal size and estimated to be 0.86%. From a calculation of the free energy at finite temperature we find that the equilibrium projected two-dimensional area of the graphene nanoribbon is less than the area of a flat sheet. At the optimum length the boundary strain for the supported boundary condition is 0.48%.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000281065100007 Publication Date 2010-08-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 92 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP). ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:84583 Serial 1373
Permanent link to this record
 

 
Author Yagmurcukardes, M.; Peeters, F.M.; Sahin, H.
Title Electronic and vibrational properties of PbI2: From bulk to monolayer Type A1 Journal article
Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 98 Issue 8 Pages (down) 085431
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using first-principles calculations, we study the dependence of the electronic and vibrational properties of multilayered PbI2 crystals on the number of layers and focus on the electronic-band structure and the Raman spectrum. Electronic-band structure calculations reveal that the direct or indirect semiconducting behavior of PbI2 is strongly influenced by the number of layers. We find that at 3L thickness there is a direct-to-indirect band gap transition (from bulk-to-monolayer). It is shown that in the Raman spectrum two prominent peaks, A(1g) and E-g, exhibit phonon hardening with an increasing number of layers due to the interlayer van der Waals interaction. Moreover, the Raman activity of the A(1g) mode significantly increases with an increasing number of layers due to the enhanced out-of-plane dielectric constant in the few-layer case. We further characterize rigid-layer vibrations of low-frequency interlayer shear (C) and breathing (LB) modes in few-layer PbI2. A reduced monatomic (linear) chain model (LCM) provides a fairly accurate picture of the number of layers dependence of the low-frequency modes and it is shown also to be a powerful tool to study the interlayer coupling strength in layered PbI2.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000442667200008 Publication Date 2018-08-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 41 Open Access
Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. acknowledges financial support from the Scientific and Technological Research Council of Turkey (TUBITAK) under Project No. 117F095. Part of this work was supported by FLAG-ERA project TRANS-2D-TMD. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:153716UA @ admin @ c:irua:153716 Serial 5097
Permanent link to this record
 

 
Author Bacaksiz, C.; Sahin, H.; Ozaydin, H.D.; Horzum, S.; Senger, R.T.; Peeters, F.M.
Title Hexagonal A1N : dimensional-crossover-driven band-gap transition Type A1 Journal article
Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 91 Issue 91 Pages (down) 085430
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Motivated by a recent experiment that reported the successful synthesis of hexagonal (h) AlN [Tsipas et al., Appl. Phys. Lett. 103, 251605 (2013)], we investigate structural, electronic, and vibrational properties of bulk, bilayer, and monolayer structures of h-AlN by using first-principles calculations. We show that the hexagonal phase of the bulk h-AlN is a stable direct-band-gap semiconductor. The calculated phonon spectrum displays a rigid-layer shear mode at 274 cm(-1) and an E-g mode at 703 cm(-1), which are observable by Raman measurements. In addition, single-layer h-AlN is an indirect-band-gap semiconductor with a nonmagnetic ground state. For the bilayer structure, AA'-type stacking is found to be the most favorable one, and interlayer interaction is strong. While N-layered h-AlN is an indirect-band-gap semiconductor for N = 1 – 9, we predict that thicker structures (N >= 10) have a direct band gap at the Gamma point. The number-of-layer-dependent band-gap transitions in h-AlN is interesting in that it is significantly different from the indirect-to-direct crossover obtained in the transition-metal dichalcogenides.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000350319200020 Publication Date 2015-02-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 99 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). C.B. and R.T.S. acknowledge the support from TUBITAK Project No 114F397. H.S. is supported by a FWO Pegasus Long Marie Curie Fellowship. ; Approved Most recent IF: 3.836; 2015 IF: 3.736
Call Number c:irua:125416 Serial 1421
Permanent link to this record
 

 
Author Demiroglu, I.; Sevik, C.
Title Extraordinary negative thermal expansion of two-dimensional nitrides : a comparative ab initio study of quasiharmonic approximation and molecular dynamics simulations Type A1 Journal article
Year 2021 Publication Physical Review B Abbreviated Journal Phys Rev B
Volume 103 Issue 8 Pages (down) 085430
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Thermal expansion behavior of two-dimensional (2D) nitrides and graphene were studied by ab initio molecular dynamics (MD) simulations as well as quasiharmonic approximation (QHA). Anharmonicity of the acoustic phonon modes are related to the unusual negative thermal expansion (NTE) behavior of the nitrides. Our results also hint that direct ab initio MD simulations are a more elaborate method to investigate thermal expansion behavior of 2D materials than the QHA. Nevertheless, giant NTE coefficients are found for h-GaN and h-AlN within the covered temperature range 100-600 K regardless of the chosen computational method. This unusual NTE of 2D nitrides is reasoned with the out-of-plane oscillations related to the rippling behavior of the monolayers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000620346100007 Publication Date 2021-02-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.836
Call Number UA @ admin @ c:irua:176671 Serial 7956
Permanent link to this record
 

 
Author García, J.H.; Uchoa, B.; Covaci, L.; Rappoport, T.G.
Title Adatoms and Anderson localization in graphene Type A1 Journal article
Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 90 Issue 8 Pages (down) 085425
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We address the nature of the disordered state that results from the adsorption of adatoms in graphene. For adatoms that sit at the center of the honeycomb plaquette, as in the case of most transition metals, we show that the ones that form a zero-energy resonant state lead to Anderson localization in the vicinity of the Dirac point. Among those, we show that there is a symmetry class of adatoms where Anderson localization is suppressed, leading to an exotic metallic state with large and rare charge droplets, that localizes only at the Dirac point. We identify the experimental conditions for the observation of the Anderson transition for adatoms in graphene.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000341238600004 Publication Date 2014-08-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 12 Open Access
Notes ; We acknowledge F. Guinea, K. Mullen, A. H. Castro Neto, and E. Mucciolo for discussions. B. U. acknowledges the University of Oklahoma for financial support and NSF Grant No. DMR-1352604 for partial support. T.G.R. and J.H.G acknowledge Brazilian agencies CNPq, FAPERJ, and “INCT de nanoestruturas de carbono” for financial support. ; Approved Most recent IF: 3.836; 2014 IF: 3.736
Call Number UA @ lucian @ c:irua:119258 Serial 57
Permanent link to this record
 

 
Author Michel, K.H.; Verberck, B.
Title Theory of the evolution of phonon spectra and elastic constants from graphene to graphite Type A1 Journal article
Year 2008 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B
Volume 78 Issue 8 Pages (down) 085424,1-085424,17
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We present a unified theory of the phonon dispersions and elastic properties of graphene, graphite, and graphene multilayer systems. Starting from a fifth-nearest-neighbor force-constant model derived from full in-plane phonon dispersions of graphite [Mohr et al., Phys. Rev. B 76, 035439 (2007)], we use Born's long-wave method to calculate the tension and bending coefficients of graphene. Extending the model by interplanar interactions, we study the phonon dispersions and the elastic constants of graphite, and the phonon spectra of graphene multilayers. We find that the inner displacement terms due to sublattice shifts between inequivalent C atoms are quantitatively important in determining the elastomechanical properties of graphene and of graphite. The overall agreement between theory and experiment is very satisfactory. We investigate the evolution from graphene to graphite by studying the increase in the rigid plane optical mode as a function of the number of layers N. At N=10 the graphite value B2g1127 cm−1 is attained within a few percent.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000259406900106 Publication Date 2008-08-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 72 Open Access
Notes Approved Most recent IF: 3.836; 2008 IF: 3.322
Call Number UA @ lucian @ c:irua:76527 Serial 3622
Permanent link to this record
 

 
Author Sahin, H.; Peeters, F.M.
Title Adsorption of alkali, alkaline-earth, and 3d transition metal atoms on silicene Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue 8 Pages (down) 085423-85429
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The adsorption characteristics of alkali, alkaline-earth, and transition metal adatoms on silicene, a graphene-like monolayer structure of silicon are analyzed by means of first-principles calculations. In contrast to graphene, interaction between the metal atoms and the silicene surface is quite strong due to its highly reactive buckled hexagonal structure. In addition to structural properties, we also calculate the electronic band dispersion, net magnetic moment, charge transfer, work function, and dipole moment of the metal adsorbed silicene sheets. Alkali metals, Li, Na, and K, adsorb to hollow sites without any lattice distortion. As a consequence of the significant charge transfer from alkalis to silicene, metalization of silicene takes place. Trends directly related to atomic size, adsorption height, work function, and dipole moment of the silicene/alkali adatom system are also revealed. We found that the adsorption of alkaline-earth metals on silicene is entirely different from their adsorption on graphene. The adsorption of Be, Mg, and Ca turns silicene into a narrow gap semiconductor. Adsorption characteristics of eight transition metals Ti, V, Cr, Mn, Fe, Co, Mo, and W are also investigated. As a result of their partially occupied d orbital, transition metals show diverse structural, electronic, and magnetic properties. Upon the adsorption of transition metals, depending on the adatom type and atomic radius, the system can exhibit metal, half-metal, and semiconducting behavior. For all metal adsorbates, the direction of the charge transfer is from adsorbate to silicene, because of its high surface reactivity. Our results indicate that the reactive crystal structure of silicene provides a rich playground for functionalization at nanoscale. DOI: 10.1103/PhysRevB.87.085423
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000315146500008 Publication Date 2013-02-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 281 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl). Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. is supported by a FWO Pegasus Marie Curie Fellowship. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:107663 Serial 62
Permanent link to this record
 

 
Author Sahin, H.
Title Structural and phononic characteristics of nitrogenated holey graphene Type A1 Journal article
Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 92 Issue 92 Pages (down) 085421
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Recent experimental studies showed that formation of a two-dimensional crystal structure of nitrogenated holey graphene (NHG) is possible. Similar to graphene, NHGs have an atomically thin and strong crystal structure. Using first-principles calculations, we investigate the structural, phononic, and thermal properties of monolayer NHG crystal. Our charge analysis reveals that the charged holey sites of NHG provide a reactive ground for further functionalization by adatoms or molecules. We also found that similar to graphene, the NHG structure has quite high-frequency phonon modes and the presence of nitrogen atoms leads to the emergence of additional vibrational modes. Our phonon analysis reveals the presence of three characteristic Raman-active modes of NHG. Furthermore, the analysis of constant-volume heat capacity showed that the NHG structure has a linear temperature dependence in the low-temperature region. The strong lattice structure and unique thermal properties of the NHG crystal structure are desirable in nanoscale device applications.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000359860700007 Publication Date 2015-08-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 49 Open Access
Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. is supported by a FWO Pegasus Long Marie Curie Fellowship. ; Approved Most recent IF: 3.836; 2015 IF: 3.736
Call Number UA @ lucian @ c:irua:127755 Serial 4252
Permanent link to this record
 

 
Author Sisakht, E.T.; Fazileh, F.; Zare, M.H.; Zarenia, M.; Peeters, F.M.
Title Strain-induced topological phase transition in phosphorene and in phosphorene nanoribbons Type A1 Journal article
Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 94 Issue 94 Pages (down) 085417
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using the tight-binding (TB) approximation with inclusion of the spin-orbit interaction, we predict a topological phase transition in the electronic band structure of phosphorene in the presence of axial strains. We derive a low-energy TB Hamiltonian that includes the spin-orbit interaction for bulk phosphorene. Applying a compressive biaxial in-plane strain and perpendicular tensile strain in ranges where the structure is still stable leads to a topological phase transition. We also examine the influence of strain on zigzag phosphorene nanoribbons (zPNRs) and the formation of the corresponding protected edge states when the system is in the topological phase. For zPNRs up to a width of 100 nm the energy gap is at least three orders of magnitude larger than the thermal energy at room temperature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000381600800004 Publication Date 2016-08-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 76 Open Access
Notes ; This work was supported by Ministry of Science, Research and Technology, Iran. M.Z. acknowledges support as a postdoctoral fellow of the Flemish Research Foundation (FWO-Vl). ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:135643 Serial 4309
Permanent link to this record
 

 
Author Bafekry, A.; Neek-Amal, M.
Title Tuning the electronic properties of graphene-graphitic carbon nitride heterostructures and heterojunctions by using an electric field Type A1 Journal article
Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B
Volume 101 Issue 8 Pages (down) 085417-10
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Integration of graphene-based two-dimensional materials is essential for nanoelectronics applications. Using density-functional theory, we systematically investigate the electronic properties of vertically stacked graphene-graphitic carbon nitrides (GE/GCN). We also studied the covalently lateral stitched graphene-graphitic carbon nitrides (GE-GCN heterojunctions). The effects of perpendicular electric field on the electronic properties of six different heterostructures, i.e., (i) one layer of GE on top of a layer of CnNm with (n, m) = (3,1), (3,4), and (4,3) and (ii) three heterostructures CnNm/Cn'Nm', where (n, m) not equal (n', m') are elucidated. The most important calculated features are (i) the systems GE/C3N4, C3N/C3N4, GE-C3N, GE-C4N3, and C3N-C3N4 exhibit semiconducting characteristics having small band gaps of Delta(0)=20, 250, 100, 100, 80 meV, respectively while (ii) the systems GE/C4N3, C3N/C4N3, and C3N-C4N3 show ferromagnetic-metallic properties. In particular, we found that, in semiconducting heterostructures, the band gap increases nontrivially with increasing the absolute value of the applied perpendicular electric field. This work is useful for designing heterojunctions and heterostructures made of graphene and other two-dimensional materials such as those proposed in recent experiments [X. Liu and M. C. Hersam Sci. Adv. 5, 6444 (2019)].
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000515659700007 Publication Date 2020-02-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited 24 Open Access
Notes ; ; Approved Most recent IF: 3.7; 2020 IF: 3.836
Call Number UA @ admin @ c:irua:167760 Serial 6640
Permanent link to this record
 

 
Author Ozbal, G.; Senger, R.T.; Sevik, C.; Sevincli, H.
Title Ballistic thermoelectric properties of monolayer semiconducting transition metal dichalcogenides and oxides Type A1 Journal article
Year 2019 Publication Physical review B Abbreviated Journal
Volume 100 Issue 8 Pages (down) 085415
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Combining first-principles calculations with Landauer-Mittiker formalism, ballistic thermoelectric transport properties of semiconducting two-dimensional transition metal dichalcogenides (TMDs) and oxides (TMOs) (namely MX2 with M = Cr, Mo, W, Ti, Zr, Hf; X = O, S, Se, Te) are investigated in their 2H and 1T phases. Having computed structural, as well as ballistic electronic and phononic transport properties for all structures, we report the thermoelectric properties of the semiconducting ones. We find that 2H phases of four of the studied structures have very promising thermoelectric properties, unlike their 1T phases. The maximum room temperature p-type thermoelectric figure of merit (ZT) of 1.57 is obtained for 2H-HfSe2, which can be as high as 3.30 at T = 800 K. Additionally, 2H-ZrSe2, 2H-ZrTe2, and 2H-HfS2 have considerable ZT values (both nand p-type), that are above 1 at room temperature. The 1T phases of Zr and Hf-based oxides possess relatively high power factors, however their high lattice thermal conductance values limit their ZT values to below 1 at room temperature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000480389100007 Publication Date 2019-08-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:193773 Serial 7549
Permanent link to this record